Homework 2

- 1. Prove that if n is odd, then $n^2 + 4n + 9$ is even.
- 2. Prove that if $a \mid b$ and $a \mid c$, then $a \mid (b+c)$.
- 3. For each of the following pairs of numbers, list all of their common divisors (positive and negative!), and find gcd(a, b).
 - (a) a = 12, b = 330 (b) a = -36, b = 64 (c) a = 7, b = -27
- 4. Determine the remainder when 3^{302} is divided by 28, and show how you found your answer (without a calculator!). Hint: First figure out $3^3 \pmod{28}$.
- 5. Assume that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Prove the following.

(a) $a - c \equiv b - d \pmod{n}$. (b) $a \cdot c \equiv b \cdot d \pmod{n}$.

6. Prove that for every integer n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

