Homework 2

1. Prove that if n is odd, then $n^{2}+4 n+9$ is even.
2. Prove that if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
3. For each of the following pairs of numbers, list all of their common divisors (positive and negative!), and find $\operatorname{gcd}(a, b)$.
(a) $a=12, b=330$
(b) $a=-36, b=64$
(c) $a=7, b=-27$
4. Determine the remainder when 3^{302} is divided by 28 , and show how you found your answer (without a calculator!). Hint: First figure out $3^{3}(\bmod 28)$.
5. Assume that $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$. Prove the following.
(a) $a-c \equiv b-d(\bmod n)$.
(b) $a \cdot c \equiv b \cdot d(\bmod n)$.
6. Prove that for every integer n, either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.

