Homework 5

- 1. Look up *Fermat's last theorem* and *Goldbach's conjecture*. Write both down on your homework. Is Fermat's Last Theorem a statement? Is Goldbach's Conjecture a statement?
- 2. Determine which of the following are statements. Among those that are statements, say whether they are true statements or false statements.
 - (a) The sets \mathbb{Z} and \mathbb{Q} . (c) The integer *n* is a multiple of 5.
 - (b) The sets \mathbb{Z} and \mathbb{Q} both contain $\sqrt{2}$. (d) 8675309 is a prime number.
- 3. Each of the following is either a statement or an open sentence. Express each in the form $P \lor Q$, $P \land Q$, or $\sim P$. Make sure you write precisely what your P and Q stand for.

(a)	27 is both odd and is divisible by 3.	(c)	$x \neq y$	
(b)	Either x or y is zero.	(d)	$x \in A \setminus$	B

- 4. Give two examples of an implication $(P \Rightarrow Q)$ which is true, but whose converse $(Q \Rightarrow P)$ is not true. One example should be a real-world example, while the other should be an example from math involving the integers (and perhaps even numbers, odd numbers, divisibility, sets, or anything else you wish).
- 5. Without changing their meanings, convert each of the following sentences into a sentence of the form "If P, then Q."
 - (a) An integer is even provided it is not odd.
 - (b) A geometric series with ratio r diverges whenever $|r| \ge 1$.
 - (c) Every polynomial is continuous.
- 6. Given statements P and Q, write the truth tables for the following.
 - (a) $(\sim P \lor \sim Q) \land Q$
 - (b) $\sim (\sim P \land Q)$
- 7. Determine which of the following are true. If it is true, just say so. If it is false, give a counterexample.
 - (a) For all $n \in \mathbb{N}$, we have $(20 n^2) \in \mathbb{N}$.
 - (b) For all $n \in \mathbb{N}$ there exists some $m \in \mathbb{N}$ such that $(m+1) \mid n$.
 - (c) There exists some $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}$, we have $x^2 = y$.
 - (d) For all $x \in \mathbb{R}$ there exists some $y \in \mathbb{R}$ such that $y^2 = x$.
 - (e) For all $x \in \mathbb{R}$ there exists some $y \in \mathbb{R}$ such that $y^3 = x$.

