Homework 9 (!)

- 1. Consider the power set $\mathcal{P}(\mathbb{N})$. Let ~ be the relation $A \sim B$ provided A is a subset of B.
 - (a) Determine whether \sim is reflexive, symmetric or transitive. For each, justify your answer.
 - (b) Is \sim an equivalence relation? If so, what are its equivalence classes?
- 2. Consider the relation ~ on the set $\{a, b, c, d\}$ such that this is the complete list of related elements:

$d \sim d$	$b \sim c$	$c \sim b$
$a \sim a$	$b\sim b$	$c \sim c$

Is ~ reflexive? Symmetric? Transitive? If a property holds, you do not need to justify it. If it doesn't, say why it fails. If all three hold, then ~ is an equivalence relation; in this case, list the equivalence classes.

3. Consider the relation \sim on the set $\{a, b, c\}$ such that this is the complete list of related elements:

$c \sim c$	$c \sim b$	$a \sim c$
$a \sim b$	$b \sim c$	$b \sim b$

Is ~ reflexive? Symmetric? Transitive? If a property holds, you do not need to justify it. If it doesn't, say why it fails. If all three hold, then ~ is an equivalence relation; in this case, list the equivalence classes.

4. Let ~ be the relation on \mathbb{Z} where $a \sim b$ if $a^2 \equiv b^2 \pmod{4}$. Prove that ~ is an equivalence relation. What are its equivalence classes?

