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Abstract

In this paper the researcher studies palindromic ramsey theory on the
integers. Given an integer coloring of any length the researcher studies
the restrictions imposed by mirroring the first half of the coloring onto
the second half. Let pdw(k1, k2, . . . , kr, r) be defined as the smallest
integer n, such that every palindromic r-coloring contains some ki-
term monochromatic progression. This paper includes proofs for lower
bounds on palindromic colorings and explicit colorings that avoid a
ki-term monochromatic progression are given. New and exact values are
computed for pdw(k1, k2, . . . , kr, r) and this paper includes the algorithm
used. New open questions are proposed in the conclusion.

1 Introduction
Ramsey theory began in a seminal 1928 paper [10] by Frank Ramsey.

The theory has a nice philosophical interpretation: one is searching for order
in randomness. In particular, Ramsey theory attempts to identify which
constraints one can place on a set to guarantee that a certain property holds.
There has been extensive research done within the field, dealing with various
sets and various constraints. Techniques used in researching Ramsey theory
have mostly been counting arguments such as the Pigeonhole principle [5],
that have allowed mathematicians to put upper bounds on the growth rate of
Ramsey problems. A classic example of the Pigeon Hole principle is that if
you have thirteen people in a room, you know that at least two people out of
the thirteen have the same birthday month. More generally, the Pigeonhole
Principle claims that there is a size of a set for which certain conditions will
have to hold, like the example above. This is just one of the tools used in order
to help put bounds on the problem.

Consequences of Ramsey theory stretch into numerous other mathematical
fields such as geometry, number theory, and graph theory [11], all of which have
major consequences in technological advancements. Studying this phenomenon
can allow mathematicians to better understand random structures that appear
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especially often in computer science [7]. Finding patterns in randomness quickly
and efficiently is one of the most popular research topics in computer science
given that it could provide insight into the P vs. NP problems, such as the
traveling salesman problem [6]. The Traveling Salesman Problem asks, when
given a list of cities and the distance between the cities, what is the shortest
route that visits each city only once and returns back to the original city. These
problems seek to identify how “hard” a problem is to solve with a computer, and
have challenged researchers for decades. The Traveling Salesman problem alone
has applications in general planning, studying DNA sequences, and the building
of modern microchips. [9] The more that is known about Ramsey theory the
more tools researchers have to identify the complexity of such problems. There
are many useful tools for studying such problems that can be found in [3]
and [4]. These are classic resources for approaching combinatorial problems
that contain the basics of studying such problems. Erdos and Renyi [2] studied
the evolution of random graphs and used some interesting techniques that today
are crucial tools in combinatorics research. The main contribution of Erdos
and Renyi is the use of statistical and heuristic arguments for being able to say
that certain conditions will hold. Calculating the probability that a certain
condition will hold and figuring out how many different ways this condition
could occur is key to studying random structures. Approaching problems in
this manner is extremely insightful because it helps mathematicians understand
and have reason for why there must be some order in any random structure.
These methods are employed in the research done on the problem. Some useful
notation is as follows.

Notation 1.1.

1. A k-term monochromatic arithmetic progression will be abbreviated
k-TMAP.

2. [N ] := {1, 2, . . . , N}.

3. “Arithmetic progression” will be abbreviated AP.

4. A bound on a palindromic coloring for 2 colors and k1 and k2 length
progressions that must be avoided in each color respectively will be
denoted as pdw(k1, k2, 2).

5. A bound on a palindromic coloring for r colors and a k length progression
that must be avoided in all colors will be denoted as pdw(k, r).

6. A bound on a palindromic coloring for r colors and a ki length pro-
gression that must be avoided in a specific color will be denoted as
pdw(k1, k2, . . . , kr, r).
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Theorem 1.2. (van der Waerden)
For every k, r ∈ N there is some N = N(k, r) such that every r-coloring

of [N ] contains a k-TMAP. The smallest such N will be denoted w(k, r).

• • . . . •︸ ︷︷ ︸
d times

• • . . . •︸ ︷︷ ︸
d times

• • . . . •︸ ︷︷ ︸
d times

• • . . . •︸ ︷︷ ︸
d times

. . . (1)

This coloring has several possible MAPs, one of which is the d-TMAP
for the underline and overline colorings. Depending on how long this pattern
repeats, it is known that one can find k-TMAPs for terms between the groups
of colorings in the above figure. For example, the first term is underlined and
there is another underlined term of distance 2d away from the first term, and
then another that is 2d away from that term, and so on until the pattern ends.

There has been very little work done on Palindromic Ramsey theory.
This is a subset of basic Ramsey theory and the research strongly relates to
the work done by Van der Waerden [12]. Van der Waerden’s work (1.2) is
a strong foundation from which the researcher will seek to establish bounds
on the growth rate of the studied problem. Van der Waerden established
some loose bounds on general Ramsey theory coloring problems, which informs
the researcher of when one can expect to find a k-TMAP within any random
coloring of a set.

The problem studied by the researcher was first introduced in a paper by
Ahmed, Kullmann and Snevily [1] and deals with Palindromic Ramsey theory.
By applying van der Waerden’s theorem one can show that there exists some N
for which every palindromic coloring of the set {1, 2, 3, . . . , N} has a k-TMAP.
If there exists such an N , then certainly there exists a smallest N with this
property. In this project the researcher works to find bounds on this smallest
N .

Definition 1.3. A palindromic coloring of a set is where the first half of
the coloring is reflected over the midpoint, thus imposing a level of order and
specificity to a random coloring with no restrictions. An example of such a
coloring is below.

1 2 3 4 5 6 7 8 (2)

In [1], Ahmed, Kullmann, and Snevily computed some bounds for palindromic
colorings of the form pdw(3, k2, 2) for small n. In the following section, the
researcher proves a general lower bound and uses computed values from [1] as
well as computes new values to study the trend of valid colorings.
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2 Methods
In order to be able to find bounds on the growth rate of when palindromic

colorings must contain a k-TMAP, it is important to understand how the two
mirrored halves interact with one another. Throughout the research process
some interesting behaviors of palindromic colorings that severely hinder the
growth rate of pdw(k1, k2, . . . , kr, r) were discovered.

Lemma 2.1. Given any even length set colored palindromically, if one color
contains within its set the two center elements and no other elements that
are adjacent, then there will exist no k-TMAP in that color that contains the
center elements as middle elements of the k-TMAP.

Proof of Lemma 2.1. It is known that in any k-TMAP where k ≥ 3, there is a
3-TMAP within the k-TMAP. Therefore, showing that you can never construct
a 3-TMAP containing the center elements of the coloring as middle elements of
the k-TMAP, then this excludes the possibility of having larger k-TMAPs that
work with the given constrictions of a palindromic coloring. For any 3-TMAP,
the end points of the AP must be of different parity when numbering the
integers in the method used in the coloring below. However, in palindromic
colorings of even length, when you mirror an element in the first half to the
second half, the parity of the related element remains the same. Consider
the coloring below, one can observe that 3 is the mirroring of -3 and 6 is the
mirroring of -6, and so on.

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 (3)

The only time one would use the center elements is if the coloring were to have
two elements in both halves that are equidistant from the same center element
in the same color. This means that the only elements in palindromic colorings
that would ever contain the center elements as the middle of a 3-TMAP is two
elements that are mirror images of one another or an element that is adjacent
to the mirrored element. The lemma restricts monochromatically coloring
elements that are adjacent to one another, if that same color is also used to
color the center elements. It was mentioned earlier that the parity between
two mirrored elements in an even length palindromic coloring is the same,
thus there does not exist a center element in an even length coloring that is
equidistant from two monochromatically colored elements.

Corollary 2.2. Lemma 2.1 also implies, that in a coloring that has no adjacent
monochromaticly colored elements, the distance between an element and its
respective mirrored element is always odd. Thus, if in either half of the coloring
the distance between monochromatically colored elements is even, then there
cannot possibly be an AP that crosses the center, since the distance from any
element to a similarly colored element in the other half of the coloring is odd.
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It is important to note that this does not mean that a k-TMAP that goes
across the center of the set cannot be found. In (3) it can be seen that -8, -3,
and 3 make a 3-TMAP. Center elements may also be used as endpoints of a
k-TMAP, for example in the above coloring -1, 3, and 6 make a 3-TMAP.

Lemma 2.3. For any palindromic coloring of even length where the number 1
is the first element in the second half of the palindrome, coloring numbers of
the form n and 3n− 1 in the same color creates a 4-TMAP, where n ≥ 1.

Proof of Lemma 2.3. In even length palindromic colorings, the researcher
showed that for any number n ≥ 1, the mirrored element related to n is of
distance 2n − 1 away from n. In (3) this can be observed, for example the
distance between 2 and -2 is 2(2)− 1 = 3. The distance between two numbers
n and 3n− 1 is the difference between the values. So 3n− 1− n = 2n− 1. So
by monochromatically coloring elements n and 3n− 1 a 4-TMAP is created as
a result of the palindrome. In (3), it can be seen that -5, -2, 2, and 5 are all
colored blue and therefore create a 4-TMAP.

Lemma 2.4. For any palindromic coloring of odd length where the number 0
is the center element of the palindrome, coloring numbers of the form n and
3n in the same color creates a 4-TMAP, where n ≥ 1. The proof is the same
as the one for Lemma 2.3.

A common method to approaching problems like these is to look for
systematic ways to build colorings that avoid the given k-TMAPs. For general
Ramsey theory, there currently aren’t any good systematic constructions that
provide good bounds for the problem. The major problem in looking for
patterns when moving from avoiding a k-TMAP to a (k + 1)-TMAP, is that
one can often find k-TMAPs within a good coloring that does not have a
(K + 1)-TMAP. So patterns found in colorings that do not contain k-TMAPs
are often not found in colorings not containing (k + 1)-TMAPs. After studying
the palindromic colorings for sometime, it became evident that these colorings
also do not have repeating patterns for increasing k. However, in the Results
section below, Theorem 3.1 demonstrates how to construct systematic colorings
that do not contain k-TMAPs. The theorem creates a general and currently
best known lower bound for all colorings of the form pdw(k, r).

The next approach was to use the algorithm to compute small values
and look at the amount of valid colorings that exist for varying lenths n. A
valid coloring is defined as one that does not contain a k-TMAP for any k.
Specifically the researcher observed and recorded the data for colorings of
the form pdw(3, k2, 2) so that it can be compared with the results from [1].
By studying the amount of valid colorings on n while fixing the values for
pdw(k1, k2, . . . , kr, r), it is possible to view the problem in a different light.
The researcher can study the growth rate of the valid amount of colorings and
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observe the trend of how slowly the amount of valid colorings reduces as n
increases.

3 Results
The above graph shows the amount of valid colorings for pdw(3, 4, 2) on

a set of n integers. An interesting property that can be noticed from this graph
is that the amount of valid colorings on a set of n integers corresponds to
the parity of n. All odd length colorings follow one trend, while even length
colorings follow a different trend. In general, it is noted in [1] that there is a
gap between the size at which odd length colorings run out of valid colorings
and when even length colorings no longer contain valid colorings. This is due
to the fact that the center elements play an important role forcing k-TMAPs
in even colorings more so than in odd colorings. Given that for even length
colorings, the center element is mirrored, and so by definition is more likely to
create more new K-TMAPs as is stated in Lemma 2.1. In odd length colorings,
there is only one center element and this element is not subject to mirroring.
This trend can be seen more clearly in the following graph. The researcher
computed the values of n up to the largest that the computer could handle.
For pdw(3, 8, 2), which is represented in the graph below, finding the amount
of valid colorings past n = 41 is extremely time consuming even with current
technology given the complexity of Ramsey theory.
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Figure 1: This graph illustrates that amount of valid colorings on a 2-colored
set of n integers such that there are no 3-TMAPs in one color and no 8-TMAPs
in the other.

In general, a trend can be seen that the amount of valid colorings peaks
somewhat earlier than where one would expect pdw(3,8,2)

2 to be. This trend is
likely to become more evident with the increasing length of k-TMAP’s that
the colorings must avoid. In comparison to the growth rate of general Ramsey
theory, the growth rate of palindromic colorings as k increase seems to be
much slower. The code for the program used was written in Java and can be
found in the appendix below. The following theorem comes as a result of the
culmination of the proven theorems and lemma previously in this paper.
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Theorem 3.1. For all r ≥ 2 where r is even, pdw(k, r) > 2r(k − 1).

-8 -7 −6 −5 -4 -3 −2 −1 1 2 3 4 5 6 7 8 (4)

Proof of Theorem 3.1. When constructing palindromic colorings, one needs to
avoid creating k-TMAPS within any half of the coloring and make certain
that there aren’t any k-TMAPs that come about as a result of the interaction
between the two mirrored halves. Using the previous lemmas, it is known
that in even length colorings every element is an odd distance away from it’s
mirrored counterpart. This implies that if every color only colors elements of
one parity, then the mirrored elements will all be of an odd distance from any
of the original elements. Then by coloring elements consecutively by color,
like in (4), then all elements in one color or of the same parity in any half
since r must be even. This method of coloring limits interaction between the
mirrored halves because in any half, monochromatically colored elements have
a distance of r between them. Also, this method of coloring insures there are
no monochromatically colored elements adjacent to one another besides the
center elements which allows us to apply Lemma 2.1 to such colorings. This
allows the placement of k−1 copies of r uniquely colored elements and not have
any k-TMAPs between the two mirrored halves. By placing only k − 1 copies,
there cannot be any k-TMAPs in any half of the coloring. Thus this method
of construction contains no k-TMAPs and since one half of the palindrome is
of length r(k − 1), the full length palindrome is of length 2r(k − 1).

4 Future Work
Theorem 3.1 is the best known general lower bound for pdw(k, r). The

researcher plans to continue researching bounds on the van der Waerden
numbers and to further improve the current results. The next step is to
find a systematic way of stacking permutations of {1, 2, . . . , r} to the current
construction in order to improve Theorem 3.1.

Another approach that may yield interesting results is using the bounds
on the general van der Waerden colorings to place bounds on palindromic
colorings with more colors. It is very likely that there is a correlation between
the growth rate of the regular van der Waerden numbers and the palindromic
van der Waerden numbers.
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6 Appendix
import java . u t i l . Scanner ;

/∗∗
∗ Driver c l a s s c o n t a i n i n g main ( ) and t a k i n g u s e r input
∗/

p u b l i c c l a s s Driver {

p u b l i c s t a t i c void main ( S t r i n g [ ] a r g s ) {

Scanner s c = new Scanner ( System . i n ) ;
i n t s t a r t , end , p , q ;
i n t mode = 0 ;
SetOfNums nums ;
S t r i n g rerun ; // User input to rerun or e x i t the program
S t r i n g modeStr ; // User input f o r mode
S t r i n g stepOne = "STEP ONE: S p e c i f y the i n i t i a l s e t o f numbers " ;
S t r i n g tempNewline = "\ n " ; // Cosmetic e f f e c t ; changes l i k e stepOne

System . out . p r i n t l n ( " Arithmetic P r o g r e s s i o n Checker v2 . 3 . 1
\n\nFor a s e t o f s e q u e n t i a l , c o n t i g u o u s i n t e g e r s " +
" [ n , n + 1 , . . . , k − 1 , k ] , p a l i n d r o m i c p a r t i t i o n s without a r i t h m e t i c p r o g r e s s i o n s o f l e n g t h p
and q , " +
" i f any , w i l l be r e t u r n e d i n ’ mode 1 ’ . In ’ mode 2 ’ , only the f i r s t p r o g r e s s i o n l e s s p a r t i t i o n
w i l l be " + " r e t u r n e d . \ n " ) ;

System . out . p r i n t l n ( " Type \"mode 1\" or \"mode 2\" to s e l e c t mode : " ) ;

do {
modeStr = s c . nextLine ( ) ;
// Admonishment
w h i l e ( ! ( modeStr . e q u a l s ( " mode 1 " ) ) && ! ( modeStr . e q u a l s ( " mode 2 " ) ) && ! ( modeStr . l e n g t h ( ) == 6 ) ) {

System . out . p r i n t l n ( " Enter e i t h e r \"mode 1\" ( r e t u r n s a l l p r o g r e s s i o n l e s s p a r t i t i o n s ) or " +
" \"mode 2\" ( r e t u r n s only the f i r s t p r o g r e s s i o n l e s s p a r t i t i o n ) . " ) ;

modeStr = s c . nextLine ( ) ;
}

mode = Character . getNumericValue ( modeStr . charAt ( 5 ) ) ;
System . out . p r i n t l n ( " Running i n mode " + mode + " . " + tempNewline ) ;
System . out . p r i n t l n ( stepOne ) ;
System . out . p r i n t l n("============================================\n " ) ;
System . out . p r i n t l n ( " Enter s t a r t i n g number n ( g r e a t e r than 0 ) : " ) ;
s t a r t = s c . n e x t I n t ( ) ;

// Admonishment
w h i l e ( ! ( s t a r t > 0 ) ) {

System . out . p r i n t l n ( " The s t a r t i n g number must be g r e a t e r than 0 . P l e a s e re−e n t e r . " ) ;
s t a r t = s c . n e x t I n t ( ) ;

}

System . out . p r i n t l n ( " Enter ending number k ( g r e a t e r than 0 ) : " ) ;
end = s c . n e x t I n t ( ) ;

// Admonishment
w h i l e ( ! ( end > 0 ) ) {

System . out . p r i n t l n ( " The ending number must be g r e a t e r than 0 . P l e a s e re−e n t e r . " ) ;
end = s c . n e x t I n t ( ) ;

}

System . out . p r i n t l n ( " \nSTEP TWO: S p e c i f y the a r i t h m e t i c p r o g r e s s i o n l e n g t h s " ) ;
System . out . p r i n t l n("====================================================\n " ) ;
System . out . p r i n t l n ( " Enter f i r s t p r o g r e s s i o n l e n g t h p ( g r e a t e r than 0 ) : " ) ;
p = s c . n e x t I n t ( ) ;

// Admonishment
w h i l e ( ! ( p > 0 ) ) {

System . out . p r i n t l n ( " P r o g r e s s i o n l e n g t h s must be g r e a t e r than 0 . P l e a s e re−e n t e r . " ) ;
p = s c . n e x t I n t ( ) ;

}

System . out . p r i n t l n ( " Enter second p r o g r e s s i o n l e n g t h q ( g r e a t e r than 0 ) : " ) ;
q = s c . n e x t I n t ( ) ;
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// Admonishment
w h i l e ( ! ( q > 0 ) ) {

System . out . p r i n t l n ( " P r o g r e s s i o n l e n g t h s must be g r e a t e r than 0 . P l e a s e re−e n t e r . " ) ;
q = s c . n e x t I n t ( ) ;

}

// Rock ’ n r o l l
nums = new SetOfNums ( s t a r t , end , p , q , mode ) ;
System . out . p r i n t l n ( " \ nWorking . . . " ) ;
nums . b u i l d P a r t i t i o n S c h e m e s ( ) ;
// A f t e r p a r t y
System . out . p r i n t l n ( nums . g e t R e s u l t s ( ) ) ;
System . out . p r i n t l n ( " Would you l i k e to run another check ( y/n ) ? " ) ;
rerun = s c . next ( ) . toLowerCase ( ) ;

// Admonishment
w h i l e ( rerun . charAt ( 0 ) != ’ y ’ && rerun . charAt ( 0 ) != ’ n ’ &&

rerun . charAt ( 0 ) != ’m’ && rerun . l e n g t h ( ) != 6) {
System . out . p r i n t l n ( " P l e a s e use e i t h e r \" y \" or \" n \" to run another check or e x i t . " ) ;
rerun = s c . next ( ) . toLowerCase ( ) ;

}

stepOne = "\nSTEP ONE: S p e c i f y the i n i t i a l s e t o f numbers " ;
tempNewline = " " ;

}

w h i l e ( rerun . charAt ( 0 ) == ’ y ’ ) ;
System . out . p r i n t l n ( " E x i t i n g . . . " ) ;
s c . c l o s e ( ) ;

}
}
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