Lattices and Vertex Operator Algebras

Gerald Höhn
Kansas State University

Vertex Operator Algebras, Number Theory, and Related Topics A conference in Honor of Geoffrey Mason Sacramento, June 2018

How all began

From gerald Mon Apr 24 18:49:10 1995
To: gem@cats.ucsc.edu
Subject: Santa Cruz / Babymonster twisted sector Dear Prof. Mason,
Thank you for your detailed letter from Thursday.
It is probably the best choice for me to come to Santa Cruz in the year 95-96. I see some projects which I can do in connection with my thesis. The main project is the classification of all self-dual SVOA's with rank smaller than 24. The method to do this is developed in my thesis, but not all theorems are proven. So I think it is really a good idea to stay at a place where I can discuss the problems with other people. [...]
I must probably first finish my thesis to make an application [to the DFG] and then they need around 4 months to decide the application, so in principle I can come September or October.
[...]
I have not all of this proven, but probably the methods you have developed are enough. I hope that I have at least really constructed my Babymonster SVOA of rank $231 / 2$.
(edited for spelling and grammar)

Theorem (H. \& Mason 2014)

Let X be the Fano variety of the smooth cubic fourfold

$$
S=\left\{\left(x_{0}: \ldots: x_{5}\right) \mid x_{0}^{3}+\cdots+x_{5}^{3}+\lambda \cdot \tilde{\sigma}_{3}\left(x_{0}, \ldots, x_{5}\right)\right\} \subset \mathbf{C P}^{5}
$$

It is a complex 4-dimensional Hyperkähler manifold of deformation type $K 3{ }^{[2]}$ with the group M_{10} as automorphism group. Here, $K 33^{[2]}$ denotes the second Hilbert scheme of a K3 surface.
Its equivariant complex elliptic genus $\left.\chi_{-y}(g, q, \mathcal{L} X)\right)$ for $g \in M_{10}$ equals the second coefficient of the equivariant second quantized complex elliptic genus
$\chi_{-y}(g ; q, \mathcal{L} \exp (p X))=\prod_{n>0, m \geq 0, \ell} \exp \left(\sum_{k=1}^{\infty} \frac{1}{k} c_{g^{k}}\left(4 n m-\ell^{2}\right)\left(p^{n} q^{m} y^{\ell}\right)^{k}\right)$,
where $\left.\chi_{-y}(g, q, \mathcal{L K} 3)\right)=\sum_{n, \ell \in \mathbb{Z}} c_{g}\left(4 n-\ell^{2}\right) q^{n} y^{\ell}$ as formally predicted by Mathieu Moonshine.

Theorem (Borcherds (1986), Frenkel/Lepowsky/Meurman (1988))

There exists a vertex operator algebra (VOA) V^{\natural} of central charge 24 called the Moonshine module which has the Monster, the largest sporadic group, as its automorphism group.

Definition

A VOA V of central charge c is a tuple $(V, \mathbf{1}, \omega, Y)$ consisting of a graded complex vector space $V=\bigoplus_{n=0}^{\infty} V_{n}$ with two elements $1 \in V_{0}$ and $\omega \in V_{2}$ and a linear map $Y: V \longrightarrow \operatorname{End}(V)\left[\left[z, z^{-1}\right]\right]$ satisfying several axioms motivated from CFT.

The character of a VOA V is the series

$$
\chi_{V}:=q^{-c / 24}\left(\sum_{n=0}^{\infty} \operatorname{dim} V_{n} \cdot q^{n}\right)
$$

One has

$$
\chi_{V^{\natural}}=j-744=q^{-1}\left(1+196884 q^{2}+21493760 q^{3}+\cdots\right)
$$

where j is Klein's j-invariant, a modular function of weight zero for the modular group $\mathrm{SL}(2, \mathbf{Z})$ defined on the upper half-plane for $q=e^{2 \pi i \tau}$.

Conjecture (FLM)

The Moonshine module V^{\natural} is the unique VOA with character $j-744$.

It is unclear if any essential progress has been made in the last 30 years.
One idea: Look at "similar" VOAs.
This leads to the notion of the genus of VOAs.

Theorem (Huang)

For a "nice" rational VOA V, the representation category $\mathcal{T}(V)$ has the structure of a modular tensor category.

Simple objects of $\mathcal{T}(V)$ are the irreducible V-modules.
$\mathcal{T}\left(V^{\natural}\right)=\mathbf{1}$ since the only irreducible V^{\natural}-module (up to isomorphism) is V^{\natural} itself (C. Dong).

Theorem

If $\mathcal{T}(V)=\mathbf{1}$, the central charge c of V is an integer multiple of 8 .
This follows from Zhu's result about the genus 1 correllation functions of V which implies here that χ_{V} is projectively invariant under the action of $\operatorname{SL}(2, \mathbf{Z})$ on the upper half-plane.

Definition

The genus of a nice rational VOA V is the pair $(\mathcal{T}(V), c)$. We denote by $\operatorname{gen}(\mathcal{T}(V), c)$ the set of isomorphism classes of $V O A s W$ with the same genus as V.

- $\operatorname{gen}(\mathbf{1}, 8)=\left\{V_{E_{8}}\right\}$
- $\operatorname{gen}(1,16)=\left\{V_{E_{8} \oplus E_{8}}, V_{D_{16}^{+}}\right\}$
- gen $(\mathbf{1}, 24)$, the genus of V^{\natural} : Conjecture of Schellekens (1992)

For sufficiently nice VOAs one has:

- V_{1} has the structure of a reductive Lie algebra $\mathbf{g}=\bigoplus_{i} \mathbf{g}_{i}$.
- Let $\left\langle V_{1}\right\rangle$ be the subVOA of V generated by $V_{1} .\left\langle V_{1}\right\rangle$ is a fundamental integrable highest weight representation of the affine Kac-Moody algebra $\widetilde{\mathbf{g}}=\bigoplus_{i} \widetilde{\mathbf{g}}_{i}$, i.e. $\left\langle V_{1}\right\rangle=\bigotimes_{i} V_{\widetilde{\mathbf{g}}_{i}, k_{i}}$.

Theorem (Schellekens (1992))

Let V be a VOA in the genus of V^{\natural}. Then the Lie algebra $V_{1}=\bigoplus_{i} \mathbf{g}_{i}$ must be one of 71 possibilities:

- $V_{1}=0$ realized by $V=V^{\natural}$,
- $V_{1}=\mathbf{t}_{24}$ realized by $V=V_{\Lambda}$,
- V_{1} is semisimple and $\left\langle V_{1}\right\rangle$ has central charge 24 (69 cases). Furthermore, in each case, $\left\langle V_{1}\right\rangle$ and the decomposition of V as $\left\langle V_{1}\right\rangle$-module is uniquely determined.

Goals:

- Construct VOAs in all cases.
- Show uniqueness in all cases.
- Find a better description.

Theorem (1985-2018)

There exists at least 71 self-dual VOAs of central charge 24 realizing all 71 possibilities of $\left\langle V_{1}\right\rangle$. In all cases besides possibly for $\left\langle V_{1}\right\rangle=0$, these VOAs are unique.

The proof is a joint effort of many people (Griess, Borcherds, Frenkel, Lepowsky, Meurmann, Goddard, Dolan, Montague, Carnahan, Dong, Lam, Mason, Miyamoto, Möller, Scheithauer, Shimakura, van Ekeren, Yamauchi, Xu, ...). Mostly Case-by-case study.

In the following, I will discuss three novel lattice descriptions of Schellekens' list.

Definition

An even integral lattice is a free Z-module L of finite rank together with a symmetric non-degenerate bilinear form $b: L \times L \longrightarrow \mathbf{Z}$ such that $b(v, v)$ is even for all lattice vectors v.

In the following the lattices are assumed to be positive definite.
One sets $L^{*}=\{v \in L \otimes \mathbf{Q} \mid b(v, w) \in \mathbf{Z}$ for all $w \in L\}$. Then the pair $L^{*} / L=\left(L^{*} / L, \bar{b}\right)$ where $\bar{b}: L^{*} / L \longrightarrow \mathbf{Q} / 2 \mathbf{Z}$ is a finite quadratic space.

Definition

The genus of a lattice L is the pair $\left(L^{*} / L, \operatorname{rank} L\right)$.
We denote by $\operatorname{gen}\left(L^{*} / L, \operatorname{rank} L\right)$ the set of isomorphism classes of lattices K with the same genus as L.

Remark: The so defined genus is the same as the collection of p-adic lattice $L \otimes \mathbf{Z}_{p}$ for $p=2,3,5, \ldots, \infty$.

To an even lattice L, one can associate a $\mathrm{VOA} V_{L}$ called a lattice VOA. It has the character

$$
\chi V=\left(\sum_{v \in L} q^{b(x, x) / 2}\right) /\left(q^{1 / 24} \prod_{n=0}^{\infty}\left(1-q^{n}\right)\right)^{\mathrm{rank} L}
$$

To a finite quadratic space $A=(A, q)$, one can associate a modular tensor category $\mathcal{Q}(A)$.

This results in the commutative diagram even integral lattice $L \quad \longrightarrow \quad$ genus $\left(L^{*} / L, \operatorname{rank} L\right)$

where the vertical maps are injective.
$\mathcal{T}\left(V_{L}\right)=\mathbf{1} \Leftrightarrow L^{*} / L=\mathbf{0} \Leftrightarrow L^{*}=L \Leftrightarrow: L$ is unimodular

- $\operatorname{gen}(\mathbf{0}, 8)=\left\{E_{8}\right\}$
- $\operatorname{gen}(\mathbf{0}, 16)=\left\{E_{8} \oplus E_{8}, D_{16}^{+}\right\}$(Witt 1941)
- gen(0,24) contains 24 lattices (Niemeier 1973)

To describe the 24 Niemeier lattices one uses:

- $L_{2}=\{v \in L \mid b(v, v)=2\}$ is a root system with components of type A_{i}, D_{i}, E_{i}.
- Let $R=\left\langle L_{2}\right\rangle$ be the sublattice of L generated by L_{2} called the root lattice of L.
- Given a root lattice R, the unimodular lattices L having R as root lattice and satisfying $\operatorname{rank} R=\operatorname{rank} L$ are determined by the the isotropic subspaces $C=L / R \subset R^{*} / R$ with $|C|^{2}=\left|R^{*} / R\right|$. We call C the glue code.

Theorem (Niemeier (1973))

Let L be a lattice in the genus formed by the even unimodular lattices of rank 24. Then the root lattice R must be one of 24 possibilities:

- $R=0$ realized by $L=\Lambda$, the Leech lattice,
- R has rank 24 (23 cases).

Furthermore, in each of the rank $R=24$ cases, the glue code $C=L / R$ is (up to equivalence under $O(R)$) uniquely determined.

- The Leech lattice \wedge (Leech 1967) is the unique positive-definite, even, unimodular lattice of rank 24 without roots.
- It provides the densest sphere packing in dimension 24 (Cohn, Kumar, Miller, Radchenko, Viazovska (2016)).
- Its automorphism group is the Conway group $\mathrm{Co}_{0}=O(\Lambda)$, its group quotient $\mathrm{Co}_{1}=O(\Lambda) /\{ \pm 1\}$ is one of the 26 sporadic simple groups (Conway 1968).

The Niemeier lattices

	R	C	C	G_{1}	G_{2}	
A1	$D_{24,1}$	(s)	2	1	1	1
A2	$D_{16,1} E_{8,1}$	$(s, 0)$	2	1	1	1
A3	$E_{8,1}^{3}$	-	1	1	6	1
A4	$A_{24,1}$	(5)	5	2	1	1
A5	$D_{12,1}^{2}$	([s, v])	4	1	2	1
A6	$A_{17,1} E_{7,1}$	$(3,1)$	6	2	1	1
A7	$D_{10,1} E_{7,1}^{2}$	$(s, 1,0),(c, 0,1)$	4	1	2	1
A8	$A_{15,1} D_{9,1}$	$(2, s)$	8	2	1	1
A9	$D_{8,1}^{3}$	([s, v, v])	8	1	6	1
A10	$A_{12,1}^{2}$	$(1,5)$	13	2	2	1
A11	$A_{11,1} D_{7,1} E_{6,1}$	$(1, s, 1)$	12	2	1	1
A12	$E_{6,1}^{4}$	(1, [0, 1, 2])	9	2	24	1
A13	$A_{9,1}^{2} D_{6,1}$	$(2,4,0),(5,0, s),(0,5, c)$	20	2	2	1
A14	$D_{6,1}^{4}$	$(0, s, v, c),(1,1,1,1)$	16	1	24	1
A15	$A_{8,1}^{3}$	([1, 1, 4])	27	2	6	1
A16	$A_{7,1}^{2} D_{5,1}^{2}$	$(1,1, s, v),(1,7, v, s)$	32	2	4	1
A17	$A_{6,1}^{4}$	(1, [2, 1, 6])	49	2	12	1
A18	$A_{5,1}^{4} D_{4,1}$	$(2,[0,2,4], 0),(3,3,0,0, s),(3,0,3,0, v),(3,0,0,3, c)$	72	2	24	1
A19	$D_{4,1}^{6}$	$(s, s, s, s, s, s),(0,[0, v, c, c, v])$	64	3	720	1
A20	$A_{4,1}^{6}$	$(1,[0,1,4,4,1])$	125	2	120	1
A21	$A_{3,1}^{8}$	(3, [2, 0, 0, 1, 0, 1, 1])	256	2	1344	1
A22	$A_{2,1}^{12}$	(2, [1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2])	729	2	$\mid M_{12}$ \|	1
A23	$A_{1,1}^{24}$	$(1,[0,0,0,0,0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,1,1,1,1])$	4096	1	$\left\|M_{24}\right\|$	1
A24	$U(1)^{24}=\mathbf{R}^{24} / \Lambda$		1	三 1	$\equiv \mathrm{EO}_{0}{ }^{\circ}$	1

Gerald Höhn Kansas State University Lattices and Vertex Operator Algebras

There are at least four different methods to show the theorem:
(1) Computation of (enough parts of) the neighborhood graph (Niemeier 1973).
(2) Classify root lattices and possible glue codes (Venkov 1978).
(3) Mass formula (Conway/Sloane $<=1982$).
(9) Deep holes of Leech lattice and Lorentian picture (Conway/Parker/Sloane 1982 and Borcherds' thesis)

Theorem (H. 2016)

The possible 69 non-abelian affine Kac-Moody structures of VOAs V in the genus of V^{\natural} are in a natural bijective correspondence with the equivalence classes of cyclic subgroups Z of positive type of the glue codes of the twenty-three Niemeier lattices.
These are precisely the cases for Z where $R(Z)$ is a root lattice for a Lie algebra \mathbf{g} with $\operatorname{dim} \mathbf{g}>24$.

The simple current code D for the affine Kac-Moody algebra of V is induced from C and Z under the above the bijective correspondence for all possible 69 cases of non-abelian affine Kac-Moody structures.

To N and $Z=\langle c\rangle \subset C, c=\left(c_{1}, \ldots, c_{r}\right)$, we assign the orbit lattice $N(Z)$ as follows. For each component S of $R=R_{1} \oplus \cdots \oplus R_{r}$ use $S(0)=S$ and

S	A_{n}	$D_{2 k}$	$D_{2 k}$	$D_{2 k+1}$	$D_{2 k+1}$	E_{6}	E_{7}
d	i	s	v	s	v	1	1
$S(d)$	$\sqrt{\frac{n+1}{i}} A_{i-1}$	B_{k}	$C_{2 k-2}$	B_{k-1}	$C_{2 k-1}$	G_{2}	F_{4}
type	$1^{-1}\left(\frac{n+1}{i}\right)^{i}$	2^{k}	$1^{2 k-4} 2^{2}$	$1^{-1} 2^{k-1} 4^{1}$	$1^{2 k-3} 2^{2}$	3^{2}	1.2^{3}

Let ℓ be the order of c in C, m_{i} be the order of c_{i} in S_{i}^{*} / S_{i}. Set $R(Z)=\sqrt{k_{1}} S\left(c_{1}\right) \oplus \cdots \oplus \sqrt{k_{r}} S\left(c_{r}\right)$, where the scaling factors k_{i} are given by $k_{i}=\frac{\ell}{m_{i}} \alpha$ with $\alpha=1$, if $\operatorname{norm}(Z)=4$ and $\alpha=2$ if $\operatorname{norm}(Z)=6$ and norm (Z) denotes the largest minimal norm of a coset $R+v$ for all cosets with $(R+v) / R \subset Z$.
The orbit lattice $N(Z)$ itself is $R(Z)$ extended by the orbit glue code $C(Z) \subset R(Z)^{*} / R(Z)$ defined by the component-wise projection of the elements of C onto the glue groups of $S(d)$.

Lattice	generator	order	norms	$R(Z)$	$\operatorname{dim} \mathbf{g}$	No.in $[S]$	type
$D_{16} E_{8}$	$(0,0)$	1	0	$D_{16,1} E_{8,1}$	744	69	1^{24}
	$(s, 0)$	2	0,4	$B_{8,1} E_{8,2}$	384	62	$1^{8} 2^{8}$
A_{3}^{8}	$\left(0^{8}\right)$	1	0	$A_{3,1}^{8}$	120	30	1^{24}
	$\left(0^{4}, 2^{4}\right)$	2	0,4	$A_{3,2}^{4} A_{1,1}^{4}$	72	16	$1^{8} 2^{8}$
	$\left(2^{8}\right)$	2	0,8	$A_{1, *}^{8}$	24	-	$\left[2^{16} / 1^{8}\right]$
	$\left(0^{3}, 2^{1},(\pm 1)^{4}\right)$	4	0,4	$A_{3,4}^{3} A_{1,2}$	48	7	$1^{4} 2^{2} 4^{4}$
	$\left(0^{1}, 2^{3},(\pm 1)^{4}\right)$	4	$0,4,6$	$A_{3,8} A_{1,4}^{3}$	24	-	$\left[2^{6} 4^{4} / 1^{4}\right]$
	$\left((\pm 1)^{8}\right)$	4	$0,6,8$	-	0	-	$\left[4^{8} / 1^{8}\right]$
A_{1}^{24}	$\left(0^{24}\right)$	1	0	$A_{1,1}^{24}$	72	15	1^{24}
	$\left(0^{16}, 1^{8}\right)$	2	0,4	$A_{1,2}^{16}$	48	5	$1^{8} 2^{8}$
	$\left(0^{12}, 1^{12}\right)$	2	0,6	$A_{1,4}^{12}$	36	2	2^{12}
	$\left(0^{8}, 1^{16}\right)$	2	0,8	$A_{1, *}^{8}$	24	-	$\left[2^{16} / 1^{8}\right]$
	$\left(1^{24}\right)$	2	0,12	-	0	,$- \equiv\left[2^{24} / 1_{2}^{24}\right]$	

Theorem (H.)

Nice VOAs V with $\mathcal{T}(V)=1$ of central charge c are up to isomorphisms in one-to-one correspondence to quadruples
$(\mathcal{G}, L, W,[i])$ consisting of the following data:
(a) A genus $\mathcal{G}=((A, q), k)$ of positive definite lattices of rank k.
(b) An isometry class of lattices L in the genus \mathcal{G}.
(c) An isomorphism class of vertex operator algebras W of central charge $c-k$ with $\mathcal{T}(W)=\mathcal{Q}(A,-q)$ and $W_{1}=0$.
(d) An equivalence class [i] of anti-isometries
$i:\left(A_{L}, q_{L}\right) \longrightarrow\left(A_{W}, q_{W}\right)$ under the double coset action of $\bar{O}(L) \times i^{*} \overline{\operatorname{Aut}}(W)$ on $O(A, q)$.

Proof: Set $V=\bigoplus_{a \in A_{L}} V_{L+a} \otimes W(i(a))$.

Name	type	rank	(A, q)	h	$O(A, q)$	$\# V$		
A	1^{24}	24	1	24	1	24		
B	$1^{8} 2^{8}$	16	$2_{\\| l}^{+10}$	17	$O_{10}^{+}(2) \cdot 2$	17		
C	$1^{6} 3^{6}$	12	3^{-8}	6	$O_{8}^{-}(3) \cdot 2^{2}$	6		
D	2^{12}	12	$2_{\\|}^{-10} 4_{\\|}^{-2}$	2	$2 \cdot 2^{20} \cdot[6] \cdot O_{10}^{-}(2) \cdot 2$	9		
E	$1^{4} 2^{2} 4^{4}$	10	$2_{2}^{+2} 4_{\\|}^{+6}$	5	$2^{14} \cdot 2^{6} \cdot 2 \cdot 2 \cdot O_{7}(2)$	5		
F	$1^{4} 5^{4}$	8	5^{+6}	2	$2 \cdot O_{6}^{+}(5) \cdot 2 \cdot 2$	2		
G	$1^{2} 2^{2} 3^{2} 6^{2}$	8	$2_{\\| l}^{+6} 3^{-6}$	2	$2 \cdot O_{6}^{+}(3) \cdot O_{6}^{+}(2) \cdot\left[2^{2}\right]$	2		
H	$1^{3} 7^{3}$	6	7^{-5}	1	$2 \cdot O_{5}(7) \cdot 2$	1		
I	$1^{2} 2 \cdot 4 \cdot 8^{2}$	6	$2_{5}^{+1} 4_{1}^{+1} 8_{\\|}^{+4}$	1	$\left[2^{21}\right] \cdot O_{5}(2)^{\prime} \cdot 2$	1		
J	$2^{3} 6^{3}$	6	$2_{\\| l}^{+4} 4_{11}^{-2} 3^{+5}$	1	$\left[2^{14} 3^{3}\right] \cdot O_{5}(3) \cdot 2$	2		
K	$2^{2} 10^{2}$	4	$2_{\\| 1}^{-2} 4_{\\|}^{-2} 5^{+4}$	1	$\left[2^{8} 3^{2}\right] \cdot\left(O_{3}(5) \times O_{3}(5)\right) \cdot\left[2^{2}\right]$	1		
L	$2^{24} / 1^{24}$	0	1	1		1		

Given $N(Z)$, interpret Z as an element g of $O(\Lambda) \cong \mathrm{Co}_{0}$ by using type as frame shape. Set

$$
W=W(g):=V_{\left(\Lambda^{g}\right)^{\perp}}^{\langle\hat{g}\rangle} .
$$

Conjecture (H.)

The fixed-point VOAs W are VOAs with a modular tensor category $\mathcal{T}(W)$ isomorphic to the modular tensor category $\mathcal{Q}(A,-q)$ where (A, q) is the discriminant space of the lattice $N(Z)$.
The subgroup $\overline{\operatorname{Aut}}(W)<O(A,-q) \cong O(A, q)$ induced by the action of $\operatorname{Aut}(W)$ on the set of irreducible modules has the following property:
Let K be an orbit lattice $N(Z)$ with discriminant space (A, q). Then there is only one orbit under the double coset action of $O(K) \times \overline{\operatorname{Aut}}(W)$ on $\bar{O}(A, q)$ for all genera besides the two genera D and J.

Remarks:

- Conjecture is true for g of frame shape 1^{24} (trivial), $1^{8} 2^{8}$ (Griess, $\left.V_{E_{8}(2)}^{+}\right), 1^{6} 3^{6}$ (Chen, Lam and Shimakura, V_{K}^{τ}) and 2^{12} (Scheithauer and H., $V_{D_{12}(2)}^{+}$); aditional cases: Lam, Shimakura 2017/2018.
- At least the modular tensor category structure of $\mathcal{T}(W(g))$ is correct for the additional cases $1^{4} 5^{4}, 1^{2} 2^{2} 3^{2} 6^{2}$ and $1^{3} 7^{3}(S$. Möller 2016).
- Uniqueness of $W(g)$ can be proven under certain general VOA assumptions by using uniqueness of V_{Λ}.
- The uniqueness statement of Schellekens requires that $\overline{\operatorname{Aut}}(W(g))<O(A,-q)$ have enough elements.

The two pictures joined

$$
\text { Let } M=\Lambda \oplus I_{1,1} \cong \|_{25,1} . \text { Then } O(M) \cong \Lambda \cdot O(\Lambda) \cdot W_{\Lambda} \text { (Conway). }
$$

Theorem (H. 2016)

The 69 orbit lattices $N(Z)$ are in one-to-one correspondence to $O(M)$-orbits of pairs (g, v) where g is an element in $O(M)$ arising from an element in $O(\Lambda)$ with a frame shape as in cases A to K, v is an isotropic vector of M where the Niemeier lattice $v^{\perp} / \mathbf{Z} v$ is not the Leech lattice and g fixes v. Here, we let $O(M)$ act on the first component of the pair (g, v) by conjugation and use the natural $O(M)$-action on the second.

Reference: G. Höhn: On the genus of the Moonshine Module. Preprint 2016.

Ingredients of the Orbifold picture

- Dong/Nagatomo (1998): $G:=\operatorname{Aut}\left(V_{N}\right) \cong G_{0} * \widehat{O}(N)$ where G_{0} is the connected Lie group associated to $R<N<R^{*}$.
- van Ekeren/Möller/Scheithauer (2015): Orbifolding of self-dual VOAs by cyclic groups $\langle g\rangle$ works.
- Lie theory: Description of conjugacy classes of elements g in G for a given class \bar{g} in $G / G_{0}=\pi_{0}(G)$.
- Dong/Lepowsky (1996): Structure of g-twisted modules of V_{N}.
- van Ekeren/Möller/Scheithauer (2017): Dimension formula for $\left(V_{N}^{\text {orb }(g)}\right)_{1}$.
- Höhn/Mason (2015): The 290 fixed-point sublattices of the Leech lattice.
- Höhn/Möller (2018): $100+6217$ lines of MAGMA code.

Definition

An element g of a compact Lie group $G=\operatorname{Aut}\left(V_{N}\right)$ is called good if it has finite order n, its projection $\bar{g} \in \pi_{0}(G)$ has order n, is of the form $g=e^{2 \pi i v} \bar{g}$ where $v \in\left(\frac{1}{n}\left(N^{\bar{s}}\right)^{*}\right) /\left(N^{\bar{s}}\right)^{*}$ has order n and the fixed-point VOA $V_{N}^{\langle g\rangle}$ has $\mathbf{Z} / n \mathbf{Z} \times \mathbf{Z} / n \mathbf{Z}$ fusion.

Theorem (H. \& Möller (last week))

There are exactly 226 conjugacy classes of good elements in the Lie groups arising from the 24 Niemeier lattice VOAs. The corresponding orbifolds consist of all VOAs from Schellekens list besides the Moonshine module.

The proof consists of two parts:
Kansas: 24 hours of computations with MAGMA.
Message from syslogd@euler at Jun 5 10:07:54 ...
kernel: [1538342.464350] Uhhuh. NMI received for unknown reason 2c on CPU 9.
kernel: [1538342.464352] Do you have a strange power saving mode enabled? kernel:[1538342.464352] Dazed and confused, but trying to continue
Final Output: list of 226 quadruples $\left(N, \bar{g}, v, V_{N}^{\text {orb }(g)}\right)$, where N is
a Niemeier lattice, $\bar{g} \in O(N), v \in N \otimes \mathbf{Q}$ and $V_{N}^{\operatorname{orb}(g)}$ is the predicted orbifold.

New Jersey: 1 hour of computations with MAGMA.
Output: In all 226 cases the orbifold exists and the predicted orbifold is the actual orbifold.

Good automorphisms of Niemeier lattice VOAs

Case	A	B	C	D	E	F	G	H	I	J	K
order $\langle g\rangle$	1	2	3	2	4	5	6	7	8	6	10
$O(\Lambda)$ class of $\Lambda^{\langle g\rangle}$ in $[\mathrm{HM}]$	1	2	4	5	9	20	18	52	55	63	149
lift type	1	1	1	2	1	1	1	1	1	2	2
\# class number of $\Lambda^{\langle g\rangle}$	24	24	10	3	8	5	8	3	4	3	2
$\left[O\left(\Lambda_{\langle g\rangle}^{\prime} / \Lambda_{\langle g\rangle}\right): \bar{O}\left(\Lambda_{\langle g\rangle}\right)\right]$	1	1	1	>1	1	1	1	1	1	>1	>1
\# of classes $\langle g\rangle$	24	24	10	15	8	5	8	3	4	5	4
\# good $O\left(N^{\langle g\rangle}\right)$-orbits	24	76	27	15	31	9	26	3	6	5	4
\# good stabilizer orbits	24	76	27	15	31	9	26	3	6	6	4
\# of different orbifold VOAs	24	17	6	9	5	2	2	1	1	2	1

Three Descriptions of Schellekens List

The Niemeier picture
The Leech picture
The orbifold picture

Genus D — Orbifolding by 2^{12} type elements

	N	A4	A10	A15	A17	A20	A22	A5	A14	A19	A21	A23	A24	A15	A20	A22
	N_{2}	A_{24}	A_{12}^{2}	A_{8}^{3}	A_{6}^{4}	A_{4}^{6}	A_{2}^{12}	D_{12}^{2}	D_{6}^{4}	D_{4}^{6}	A_{3}^{8}	A_{1}^{24}	\wedge	A_{8}^{3}	A_{4}^{6}	A_{2}^{12}
$N^{\text {g }}$																
D1a	$B_{12,2}$	1	.	.	-	.	.	1	
D1b	$B_{6,2}^{2}$.	1	1		
D1c	$B_{4,2}^{3}$.	.	1		1		
D1d	$B_{3,2}^{4}$.	.	.	1	1	
D1e	$B_{2,2}^{6}$.	.	.	-	1	1	.	.	.	
D1f	$A_{1,4}^{12}$	1	1	.	.	.
D2a	$A_{8,2} F_{4,2}$	1	.	
D2b	$C_{4,2} A_{4,2}^{2}$	1	.
D2c	$D_{4,4} A_{2,2}^{4}$	1

Genus E — Orbifolding by $1^{4} 2^{2} 4^{4}$ type elements

N		$A 13$	$A 18$	$A 19$	$A 20$	$A 21$	$A 22$	$A 23$	$A 24$
N_{2}		$A_{9}^{2} D_{6}$	$A_{5}^{4} D_{4}$	D_{4}^{6}	A_{4}^{6}	A_{3}^{8}	A_{2}^{12}	A_{1}^{24}	Λ
N^{g}									
$E 1$	$C_{7,2} A_{3,1}$	1	2	.	1	1	.	.	.
$E 2$	$E_{6,4} B_{2,1} A_{2,1}$	1	.	1	2	1	1	.	.
$E 3 ?$	$A_{7,4} A_{1,1}^{3}$.	1	.	1	1	2	1	.
$E 4 ?$	$D_{5,4} C_{3,2} A_{1,1}^{2}$	\cdot	1	1	1	3	1	2	.
$E 5$	$A_{3,4}^{3} A_{1,2}$	1	1	2	1

