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Vertex operator algebras and automorphisms

Vertex operator algebra (V ,Y , 1, ω):

V is a graded vector space V =
⊕

n≥N V(n), V(n) finite dimensional.

Y (·, x) : V → (EndV )[[x , x−1]] given by
v 7→ Y (v , x) =

∑
n∈Z v(n) x−n−1.

Y (1, x) = 1V , Y (ω, x) =
∑

n∈Z L(n)x−n−2 gives action of the
Virasoro algebra.

Jacobi identity, etc.

Automorphisms of V : gY (v , x)g−1 = Y (g · v , x), g · 1 = 1, g · ω = ω.

If G is a topological group of automorphisms of V , G acts continuously on
V if it acts continuously on the finite-dimensional V(n), with respect to the
usual Euclidean topology.
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The setting

V is a simple vertex operator algebra

G is a compact Lie group of automorphisms acting continuously on V .

V G = {v ∈ V | g · v = v for all g ∈ G} is the fixed-point vertex
operator subalgebra, also called the orbifold subalgebra.

Theorem (Dong-Li-Mason, 1996)

V is semisimple as a G × V G -module. Specifically,

V =
⊕
χ∈Ĝ

Mχ ⊗ Vχ

where χ runs over all irreducible characters of G , Mχ is the corresponding
irreducible G -module, and the Vχ are (non-zero) distinct irreducible
V G -modules.
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An example

Take Q = Zα the sl2 root lattice (〈α, α〉 = 2) and V = VQ the lattice
vertex operator algebra.

The weight-1 subspace V(1) is a copy of sl2. The zero modes
a(0) = Resx Y (a, x) for a ∈ V(1) give an action of sl2 on V .
Exponentiate: the operators exp a(0) for a ∈ V(1) generate a
(faithful) action of the complex Lie group PSL(2,C) on V . This
restricts to a faithful action of the compact subgroup SO(3).

(Dong-Griess, 1998) The orbifold subalgebra V
SO(3)
Q is generated by

the conformal vector ω, and is the the central charge c = 1 Virasoro
vertex operator algebra L(1, 0).
As a SO(3)× L(1, 0)-module,

VQ =
∞⊕
n=0

M2n ⊗ L(1, n2),

where M2n is the (2n + 1)-dimensional SO(3)-module and L(1, n2) is
the irreducible L(1, 0)-module with lowest conformal weight n2.
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The categories

Given V and G , let RepG be the category of finite-dimensional
G -modules and let CV be the abelian category of V G -modules generated
by the Vχ for χ ∈ Ĝ .

Dong, Li, and Mason’s theorem implies that the correspondence
Mχ 7→ Vχ determines an equivalence of abelian categories
RepG → CV .

But RepG is much more than an abelian category: it is a rigid
symmetric tensor category: tensor product M ⊗ N, tensor unit C,
associativity isomorphisms, symmetry RM,N : M ⊗N → N ⊗M, duals
M∗, iM : C→ M ⊗M∗, eM : M∗ ⊗M → C.

Suppose we know that V G has a braided tensor category C of
modules, as constructed by Huang-Lepowsky-(Zhang), that contains
CV . Does the equivalence RepG → CV of abelian categories also
preserve tensor structure?
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The first theorem

Theorem (M. 2018)

Assume V G has a braided tensor category of modules C that contains CV .
Then there is a braided tensor functor Φ : RepG → C such that
Vχ ∼= Φ(M∗χ). In particular, Φ gives an equivalence of symmetric tensor
categories between its image CV and RepG .

This result was obtained by Kirillov in a categorical setting, but he
assumed C was rigid. However, rigidity is difficult to prove and often
not known for braided tensor categories of vertex operator algebra
modules.

Rigidity of modules in CV , and thus essentially the equivalence, was
obtained in the compact abelian case by Carnahan-Miyamoto and
Creutzig-Kanade-Linshaw-Ridout.
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The second theorem

When does V G actually have a braided tensor category of modules that
includes the Vχ?

One case: If V is C2-cofinite and G is finite solvable, then V G is also
C2-cofinite (Miyamoto, 2015), and hence the full category of
(grading-restricted, generalized/logarithmic) V G -modules has braided
tensor category structure (Huang, 2009). But this won’t apply to general
compact groups.

Theorem (M. 2018)

If the fusion rules for intertwining operators among modules in CV agree
with dimensions of spaces of G -module intertwiners,
HomC(Mχ ⊗Mψ,Mρ), then CV itself has braided tensor category structure
as given by Huang-Lepowsky.

Idea of proof: In this setting, associativity for intertwining operators in CV
follows from associativity of the vertex operator for V .
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The functor, after Kirillov

How to get a V G -module from a G -module naturally:

Given M in RepG , M ⊗ V is a G × V -module (not necessarily an
object of CV unless G is finite).

The G -invariants (M ⊗ V )G form a V G -module.

Define Φ(M) = (M ⊗ V )G and for f : M1 → M2, define
Φ(f ) = (f ⊗ 1V )|(M1⊗V )G .

Calculate Φ(M∗χ):

Φ(M∗χ) =
⊕
ψ∈Ĝ

(M∗χ ⊗ (Mψ ⊗ Vψ))G =
⊕
ψ∈Ĝ

(M∗χ ⊗Mψ)G ⊗ Vψ = Vχ.

Specific isomorphism ϕχ : Vχ → Φ(M∗χ):

ϕχ(vχ) =
∑
i

m′χ,i ⊗ (mχ,i ⊗ vχ),

using a basis of Mχ and the dual basis of M∗χ (this is just the coevaluation
in RepG ).
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The natural transformation

For Φ to be a tensor functor, we need a natural isomorphism

JM1,M2 : Φ(M1) � Φ(M2)→ Φ(M1 ⊗M2).

To construct this, we use the following intertwining operator YM1,M2 of

type
( Φ(M1⊗M2)

Φ(M1) Φ(M2)

)
:

(M1 ⊗ V )G⊗(M2 ⊗ V )G ↪→ ((M1 ⊗M2)⊗ (V ⊗ V ))G

1M1⊗M2
⊗Y (·,x)·

−−−−−−−−−−→ ((M1 ⊗M2)⊗ V )G [[x , x−1]].

By the universal property of tensor products of vertex operator algebra
modules, YM1,M2 induces a unique homomorphism JM1,M2 of the desired
type.

But is JM1,M2 an isomorphism?
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Surjectivity

Showing J is surjective amounts to showing that if

Vχ � Vψ
ϕχ�ϕψ−−−−→ Φ(M∗χ) � Φ(M∗ψ)

JM∗
χ,M

∗
ψ−−−−→ Φ(M∗χ ⊗M∗ψ)

Φ(f )−−−→ Φ(M∗ρ )

equals 0, then f = 0.

Equivalently, we need to show that if the intertwining operator

Yf = Φ(f ) ◦ YM∗
χ,M

∗
ψ
◦ (ϕχ ⊗ ϕψ) = 0,

then f = 0.

By the definitions,

0 = Yf (vχ, x)vψ =
∑
i ,j

f (m′χ,i ⊗m′ψ,j)⊗ Y (mχ,i ⊗ vχ, x)(mψ,j ⊗ vψ)
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Surjectivity, continued

Write f (m′χ,i ⊗m′ψ,j) =
∑

k〈mρ,k , f (m′χ,i ⊗m′ψ,j)〉m′ρ,k (this is the rigidity
of RepG ). Then∑
i ,j ,k

〈mρ,k , f (m′χ,i ⊗m′ψ,j)〉m′ρ,k ⊗ Y (mχ,i ⊗ vχ, x)(mψ,j ⊗ vψ) = 0

→
∑
j

Y

(∑
i

〈mρ,k , f (m′χ,i ⊗m′ψ,j)〉(mχ,i ⊗ vχ), x

)
(mψ,j ⊗ vψ) = 0 ∀k

→
∑
i

〈mρ,k , f (m′χ,i ⊗m′ψ,j)〉(mχ,i ⊗ vχ) = 0 ∀j , k

→ 〈mρ,k , f (m′χ,i ⊗m′ψ,j)〉 = 0 ∀i , j , k → f = 0.

The second implication follows from a lemma of Dong and Mason: if V is
a simple vertex operator algebra and

∑
i Y (ui , x)vi = 0 where the vi are

linearly independent, then the ui must be 0.
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Application to VQ and SO(3)

Recall the action of SO(3) on the sl2-root lattice vertex operator algebra
VQ , with Virasoro orbifold subalgebra L(1, 0), where
VQ =

⊕∞
n=0 M2n ⊗ L(1, n2).

By (Milas, 2002), the fusion rules for intertwining operators among
the L(1, n2) agree with the dimensions of the spaces of intertwiners
for the sl2/SO(3)-modules M2n. So by the second theorem, CVQ

is a
braided tensor category.

Then by the first theorem, CVQ
is a symmetric (and rigid!) tensor

category equivalent to Rep SO(3).

What about the other finite-dimensional sl2-modules? They are contained
in V 1

2
α+Q , the non-trivial irreducible VQ-module. The abelian intertwining

algebra VP = VQ ⊕ V 1
2
α+Q admits a faithful action of SU(2).

Then generalizing the first and second theorems to abelian intertwining
algebras shows that CVP

is equivalent to RepSU(2), except that the
symmetry isomorphisms in RepSU(2) have to be modified.
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