On the Tensor Structure of Modules for Compact Orbifold Vertex Operator Algebras

Robert McRae
Vanderbilt University
June 13, 2018

Vertex operator algebras and automorphisms

Vertex operator algebra $(V, Y, \mathbf{1}, \omega)$:

- V is a graded vector space $V=\bigoplus_{n \geq N} V_{(n)}, V_{(n)}$ finite dimensional.
- $Y(\cdot, x): V \rightarrow($ End $V)\left[\left[x, x^{-1}\right]\right]$ given by
$v \mapsto Y(v, x)=\sum_{n \in \mathbb{Z}} v(n) x^{-n-1}$.
- $Y(\mathbf{1}, x)=1_{V}, Y(\omega, x)=\sum_{n \in \mathbb{Z}} L(n) x^{-n-2}$ gives action of the Virasoro algebra.
- Jacobi identity, etc.

Vertex operator algebras and automorphisms

Vertex operator algebra $(V, Y, \mathbf{1}, \omega)$:

- V is a graded vector space $V=\bigoplus_{n \geq N} V_{(n)}, V_{(n)}$ finite dimensional.
- $Y(\cdot, x): V \rightarrow($ End $V)\left[\left[x, x^{-1}\right]\right]$ given by

$$
v \mapsto Y(v, x)=\sum_{n \in \mathbb{Z}} v(n) x^{-n-1}
$$

- $Y(\mathbf{1}, x)=1_{V}, Y(\omega, x)=\sum_{n \in \mathbb{Z}} L(n) x^{-n-2}$ gives action of the Virasoro algebra.
- Jacobi identity, etc.

Automorphisms of $V: g Y(v, x) g^{-1}=Y(g \cdot v, x), g \cdot \mathbf{1}=\mathbf{1}, g \cdot \omega=\omega$.

Vertex operator algebras and automorphisms

Vertex operator algebra $(V, Y, \mathbf{1}, \omega)$:

- V is a graded vector space $V=\bigoplus_{n \geq N} V_{(n)}, V_{(n)}$ finite dimensional.
- $Y(\cdot, x): V \rightarrow($ End $V)\left[\left[x, x^{-1}\right]\right]$ given by $v \mapsto Y(v, x)=\sum_{n \in \mathbb{Z}} v(n) x^{-n-1}$.
- $Y(\mathbf{1}, x)=1_{V}, Y(\omega, x)=\sum_{n \in \mathbb{Z}} L(n) x^{-n-2}$ gives action of the Virasoro algebra.
- Jacobi identity, etc.

Automorphisms of $V: g Y(v, x) g^{-1}=Y(g \cdot v, x), g \cdot \mathbf{1}=\mathbf{1}, g \cdot \omega=\omega$.
If G is a topological group of automorphisms of V, G acts continuously on V if it acts continuously on the finite-dimensional $V_{(n)}$, with respect to the usual Euclidean topology.

The setting

- V is a simple vertex operator algebra
- G is a compact Lie group of automorphisms acting continuously on V.
- $V^{G}=\{v \in V \mid g \cdot v=v$ for all $g \in G\}$ is the fixed-point vertex operator subalgebra, also called the orbifold subalgebra.

The setting

- V is a simple vertex operator algebra
- G is a compact Lie group of automorphisms acting continuously on V.
- $V^{G}=\{v \in V \mid g \cdot v=v$ for all $g \in G\}$ is the fixed-point vertex operator subalgebra, also called the orbifold subalgebra.

Theorem (Dong-Li-Mason, 1996)

V is semisimple as a $G \times V^{G}$-module. Specifically,

$$
V=\bigoplus_{\chi \in \widehat{G}} M_{\chi} \otimes V_{\chi}
$$

where χ runs over all irreducible characters of G, M_{χ} is the corresponding irreducible G-module, and the V_{χ} are (non-zero) distinct irreducible V^{G}-modules.

An example

Take $Q=\mathbb{Z} \alpha$ the $\mathfrak{s l}_{2}$ root lattice $(\langle\alpha, \alpha\rangle=2)$ and $V=V_{Q}$ the lattice vertex operator algebra.

- The weight-1 subspace $V_{(1)}$ is a copy of $\mathfrak{s l}_{2}$. The zero modes $a(0)=\operatorname{Res}_{x} Y(a, x)$ for $a \in V_{(1)}$ give an action of $\mathfrak{s l}_{2}$ on V.
- Exponentiate: the operators $\exp a(0)$ for $a \in V_{(1)}$ generate a (faithful) action of the complex Lie group $\operatorname{PSL}(2, \mathbb{C})$ on V. This restricts to a faithful action of the compact subgroup $S O$ (3).

An example

Take $Q=\mathbb{Z} \alpha$ the $\mathfrak{s l}_{2}$ root lattice $(\langle\alpha, \alpha\rangle=2)$ and $V=V_{Q}$ the lattice vertex operator algebra.

- The weight-1 subspace $V_{(1)}$ is a copy of $\mathfrak{s l}_{2}$. The zero modes $a(0)=\operatorname{Res}_{x} Y(a, x)$ for $a \in V_{(1)}$ give an action of $\mathfrak{s l}_{2}$ on V.
- Exponentiate: the operators $\exp a(0)$ for $a \in V_{(1)}$ generate a (faithful) action of the complex Lie group $\operatorname{PSL}(2, \mathbb{C})$ on V. This restricts to a faithful action of the compact subgroup $S O(3)$.
- (Dong-Griess, 1998) The orbifold subalgebra $V_{Q}^{S O(3)}$ is generated by the conformal vector ω, and is the the central charge $c=1$ Virasoro vertex operator algebra $L(1,0)$.
- As a $S O(3) \times L(1,0)$-module,

$$
V_{Q}=\bigoplus_{n=0}^{\infty} M_{2 n} \otimes L\left(1, n^{2}\right),
$$

where $M_{2 n}$ is the $(2 n+1)$-dimensional $S O(3)$-module and $L\left(1, n^{2}\right)$ is the irreducible $L(1,0)$-module with lowest conformal weight n^{2}.

The categories

Given V and G, let $\operatorname{Rep} G$ be the category of finite-dimensional G-modules and let \mathcal{C}_{V} be the abelian category of V^{G}-modules generated by the V_{χ} for $\chi \in \widehat{G}$.

- Dong, Li, and Mason's theorem implies that the correspondence $M_{\chi} \mapsto V_{\chi}$ determines an equivalence of abelian categories $\operatorname{Rep} G \rightarrow \mathcal{C}_{V}$.

The categories

Given V and G, let $\operatorname{Rep} G$ be the category of finite-dimensional G-modules and let \mathcal{C}_{V} be the abelian category of V^{G}-modules generated by the V_{χ} for $\chi \in \widehat{G}$.

- Dong, Li, and Mason's theorem implies that the correspondence $M_{\chi} \mapsto V_{\chi}$ determines an equivalence of abelian categories $\operatorname{Rep} G \rightarrow \mathcal{C}_{V}$.
- But $\operatorname{Rep} G$ is much more than an abelian category: it is a rigid symmetric tensor category: tensor product $M \otimes N$, tensor unit \mathbb{C}, associativity isomorphisms, symmetry $\mathcal{R}_{M, N}: M \otimes N \rightarrow N \otimes M$, duals $M^{*}, i_{M}: \mathbb{C} \rightarrow M \otimes M^{*}, e_{M}: M^{*} \otimes M \rightarrow \mathbb{C}$.

The categories

Given V and G, let Rep G be the category of finite-dimensional G-modules and let \mathcal{C}_{V} be the abelian category of V^{G}-modules generated by the V_{χ} for $\chi \in \widehat{G}$.

- Dong, Li, and Mason's theorem implies that the correspondence $M_{\chi} \mapsto V_{\chi}$ determines an equivalence of abelian categories $\operatorname{Rep} G \rightarrow \mathcal{C}_{V}$.
- But Rep G is much more than an abelian category: it is a rigid symmetric tensor category: tensor product $M \otimes N$, tensor unit \mathbb{C}, associativity isomorphisms, symmetry $\mathcal{R}_{M, N}: M \otimes N \rightarrow N \otimes M$, duals $M^{*}, i_{M}: \mathbb{C} \rightarrow M \otimes M^{*}, e_{M}: M^{*} \otimes M \rightarrow \mathbb{C}$.
- Suppose we know that V^{G} has a braided tensor category \mathcal{C} of modules, as constructed by Huang-Lepowsky-(Zhang), that contains \mathcal{C}_{V}. Does the equivalence $\operatorname{Rep} G \rightarrow \mathcal{C}_{V}$ of abelian categories also preserve tensor structure?

The first theorem

Theorem (M. 2018)

Assume V^{G} has a braided tensor category of modules \mathcal{C} that contains \mathcal{C}_{V}. Then there is a braided tensor functor $\Phi: \operatorname{Rep} G \rightarrow \mathcal{C}$ such that $V_{\chi} \cong \Phi\left(M_{\chi}^{*}\right)$. In particular, Φ gives an equivalence of symmetric tensor categories between its image \mathcal{C}_{V} and $\operatorname{Rep} G$.

The first theorem

Theorem (M. 2018)

Assume V^{G} has a braided tensor category of modules \mathcal{C} that contains \mathcal{C}_{V}. Then there is a braided tensor functor $\Phi: \operatorname{Rep} G \rightarrow \mathcal{C}$ such that $V_{\chi} \cong \Phi\left(M_{\chi}^{*}\right)$. In particular, Φ gives an equivalence of symmetric tensor categories between its image \mathcal{C}_{V} and $\operatorname{Rep} G$.

- This result was obtained by Kirillov in a categorical setting, but he assumed \mathcal{C} was rigid. However, rigidity is difficult to prove and often not known for braided tensor categories of vertex operator algebra modules.
- Rigidity of modules in \mathcal{C}_{V}, and thus essentially the equivalence, was obtained in the compact abelian case by Carnahan-Miyamoto and Creutzig-Kanade-Linshaw-Ridout.

The second theorem

When does V^{G} actually have a braided tensor category of modules that includes the V_{χ} ?

One case: If V is C_{2}-cofinite and G is finite solvable, then V^{G} is also C_{2}-cofinite (Miyamoto, 2015), and hence the full category of (grading-restricted, generalized/logarithmic) V^{G}-modules has braided tensor category structure (Huang, 2009). But this won't apply to general compact groups.

The second theorem

When does V^{G} actually have a braided tensor category of modules that includes the V_{χ} ?

One case: If V is C_{2}-cofinite and G is finite solvable, then V^{G} is also C_{2}-cofinite (Miyamoto, 2015), and hence the full category of (grading-restricted, generalized/logarithmic) V^{G}-modules has braided tensor category structure (Huang, 2009). But this won't apply to general compact groups.

Theorem (M. 2018)

If the fusion rules for intertwining operators among modules in \mathcal{C}_{V} agree with dimensions of spaces of G-module intertwiners, $\operatorname{Hom}_{\mathbb{C}}\left(M_{\chi} \otimes M_{\psi}, M_{\rho}\right)$, then \mathcal{C}_{V} itself has braided tensor category structure as given by Huang-Lepowsky.

Idea of proof: In this setting, associativity for intertwining operators in \mathcal{C}_{V} follows from associativity of the vertex operator for V.

The functor, after Kirillov

How to get a V^{G}-module from a G-module naturally:

- Given M in $\operatorname{Rep} G, M \otimes V$ is a $G \times V$-module (not necessarily an object of \mathcal{C}_{V} unless G is finite).
- The G-invariants $(M \otimes V)^{G}$ form a V^{G}-module.
- Define $\Phi(M)=(M \otimes V)^{G}$ and for $f: M_{1} \rightarrow M_{2}$, define $\Phi(f)=\left.\left(f \otimes 1_{V}\right)\right|_{\left(M_{1} \otimes V\right)^{G}}$.

The functor, after Kirillov

How to get a V^{G}-module from a G-module naturally:

- Given M in $\operatorname{Rep} G, M \otimes V$ is a $G \times V$-module (not necessarily an object of \mathcal{C}_{V} unless G is finite).
- The G-invariants $(M \otimes V)^{G}$ form a V^{G}-module.
- Define $\Phi(M)=(M \otimes V)^{G}$ and for $f: M_{1} \rightarrow M_{2}$, define $\Phi(f)=\left.\left(f \otimes 1_{V}\right)\right|_{\left(M_{1} \otimes V\right)^{G}}$.
Calculate $\Phi\left(M_{\chi}^{*}\right)$:

$$
\Phi\left(M_{\chi}^{*}\right)=\bigoplus_{\psi \in \widehat{G}}\left(M_{\chi}^{*} \otimes\left(M_{\psi} \otimes V_{\psi}\right)\right)^{G}=\bigoplus_{\psi \in \widehat{G}}\left(M_{\chi}^{*} \otimes M_{\psi}\right)^{G} \otimes V_{\psi}=V_{\chi}
$$

The functor, after Kirillov

How to get a V^{G}-module from a G-module naturally:

- Given M in $\operatorname{Rep} G, M \otimes V$ is a $G \times V$-module (not necessarily an object of \mathcal{C}_{V} unless G is finite).
- The G-invariants $(M \otimes V)^{G}$ form a V^{G}-module.
- Define $\Phi(M)=(M \otimes V)^{G}$ and for $f: M_{1} \rightarrow M_{2}$, define $\Phi(f)=\left.\left(f \otimes 1_{V}\right)\right|_{\left(M_{1} \otimes V\right)^{G}}$.
Calculate $\Phi\left(M_{\chi}^{*}\right)$:

$$
\Phi\left(M_{\chi}^{*}\right)=\bigoplus_{\psi \in \widehat{G}}\left(M_{\chi}^{*} \otimes\left(M_{\psi} \otimes V_{\psi}\right)\right)^{G}=\bigoplus_{\psi \in \widehat{G}}\left(M_{\chi}^{*} \otimes M_{\psi}\right)^{G} \otimes V_{\psi}=V_{\chi}
$$

Specific isomorphism $\varphi_{\chi}: V_{\chi} \rightarrow \Phi\left(M_{\chi}^{*}\right)$:

$$
\varphi_{\chi}\left(v_{\chi}\right)=\sum_{i} m_{\chi, i}^{\prime} \otimes\left(m_{\chi, i} \otimes v_{\chi}\right)
$$

using a basis of M_{χ} and the dual basis of M_{χ}^{*} (this is just the coevaluation in $\operatorname{Rep} G$).

The natural transformation

For Φ to be a tensor functor, we need a natural isomorphism

$$
J_{M_{1}, M_{2}}: \Phi\left(M_{1}\right) \boxtimes \Phi\left(M_{2}\right) \rightarrow \Phi\left(M_{1} \otimes M_{2}\right) .
$$

The natural transformation

For Φ to be a tensor functor, we need a natural isomorphism

$$
J_{M_{1}, M_{2}}: \Phi\left(M_{1}\right) \boxtimes \Phi\left(M_{2}\right) \rightarrow \Phi\left(M_{1} \otimes M_{2}\right)
$$

To construct this, we use the following intertwining operator $\mathcal{Y}_{M_{1}, M_{2}}$ of type $\binom{\Phi\left(M_{1} \otimes M_{2}\right)}{\Phi\left(M_{1}\right) \Phi\left(M_{2}\right)}$:

$$
\begin{aligned}
&\left(M_{1} \otimes V\right)^{G} \otimes\left(M_{2} \otimes V\right)^{G} \hookrightarrow \\
& \xrightarrow{1_{M_{1} \otimes M_{2} \otimes Y(\cdot, x)}^{\longrightarrow}}\left(\left(M_{1} \otimes M_{2}\right) \otimes(V \otimes V)\right)^{G} \\
&\left(\left(M_{1} \otimes M_{2}\right) \otimes V\right)^{G}\left[\left[x, x^{-1}\right]\right] .
\end{aligned}
$$

By the universal property of tensor products of vertex operator algebra modules, $\mathcal{Y}_{M_{1}, M_{2}}$ induces a unique homomorphism $J_{M_{1}, M_{2}}$ of the desired type.

The natural transformation

For Φ to be a tensor functor, we need a natural isomorphism

$$
J_{M_{1}, M_{2}}: \Phi\left(M_{1}\right) \boxtimes \Phi\left(M_{2}\right) \rightarrow \Phi\left(M_{1} \otimes M_{2}\right)
$$

To construct this, we use the following intertwining operator $\mathcal{Y}_{M_{1}, M_{2}}$ of type $\binom{\Phi\left(M_{1} \otimes M_{2}\right)}{\Phi\left(M_{1}\right) \Phi\left(M_{2}\right)}$:

$$
\begin{aligned}
&\left(M_{1} \otimes V\right)^{G} \otimes\left(M_{2} \otimes V\right)^{G} \hookrightarrow \\
& \xrightarrow{1_{M_{1} \otimes M_{2} \otimes Y(\cdot, x)}^{\longrightarrow}}\left(\left(M_{1} \otimes M_{2}\right) \otimes(V \otimes V)\right)^{G} \\
&\left(\left(M_{1} \otimes M_{2}\right) \otimes V\right)^{G}\left[\left[x, x^{-1}\right]\right] .
\end{aligned}
$$

By the universal property of tensor products of vertex operator algebra modules, $\mathcal{Y}_{M_{1}, M_{2}}$ induces a unique homomorphism $J_{M_{1}, M_{2}}$ of the desired type.

But is $J_{M_{1}, M_{2}}$ an isomorphism?

Surjectivity

Showing J is surjective amounts to showing that if

$$
V_{\chi} \boxtimes V_{\psi} \xrightarrow{\varphi_{\chi} \boxtimes \varphi_{\psi}} \Phi\left(M_{\chi}^{*}\right) \boxtimes \Phi\left(M_{\psi}^{*}\right) \xrightarrow{J_{M_{\chi}^{*}, M_{\psi}^{*}}} \Phi\left(M_{\chi}^{*} \otimes M_{\psi}^{*}\right) \xrightarrow{\Phi(f)} \Phi\left(M_{\rho}^{*}\right)
$$

equals 0 , then $f=0$.

Surjectivity

Showing J is surjective amounts to showing that if

$$
V_{\chi} \boxtimes V_{\psi} \xrightarrow{\varphi_{\chi} \boxtimes \varphi_{\psi}} \Phi\left(M_{\chi}^{*}\right) \boxtimes \Phi\left(M_{\psi}^{*}\right) \xrightarrow{J_{M_{\chi}^{*}, M_{\psi}^{*}}} \Phi\left(M_{\chi}^{*} \otimes M_{\psi}^{*}\right) \xrightarrow{\Phi(f)} \Phi\left(M_{\rho}^{*}\right)
$$

equals 0 , then $f=0$.
Equivalently, we need to show that if the intertwining operator

$$
\mathcal{Y}_{f}=\Phi(f) \circ \mathcal{Y}_{M_{\chi}^{*}, M_{\psi}^{*}} \circ\left(\varphi_{\chi} \otimes \varphi_{\psi}\right)=0,
$$

then $f=0$.

Surjectivity

Showing J is surjective amounts to showing that if

$$
V_{\chi} \boxtimes V_{\psi} \xrightarrow{\varphi_{\chi} \boxtimes \varphi_{\psi}} \Phi\left(M_{\chi}^{*}\right) \boxtimes \Phi\left(M_{\psi}^{*}\right) \xrightarrow{J_{M_{\chi}^{*}, M_{\psi}^{*}}} \Phi\left(M_{\chi}^{*} \otimes M_{\psi}^{*}\right) \xrightarrow{\Phi(f)} \Phi\left(M_{\rho}^{*}\right)
$$

equals 0 , then $f=0$.
Equivalently, we need to show that if the intertwining operator

$$
\mathcal{Y}_{f}=\Phi(f) \circ \mathcal{Y}_{M_{\chi}^{*}, M_{\psi}^{*}} \circ\left(\varphi_{\chi} \otimes \varphi_{\psi}\right)=0,
$$

then $f=0$.
By the definitions,

$$
0=\mathcal{Y}_{f}\left(v_{\chi}, x\right) v_{\psi}=\sum_{i, j} f\left(m_{\chi, i}^{\prime} \otimes m_{\psi, j}^{\prime}\right) \otimes Y\left(m_{\chi, i} \otimes v_{\chi}, x\right)\left(m_{\psi, j} \otimes v_{\psi}\right)
$$

Surjectivity, continued

Write $f\left(m_{\chi, i}^{\prime} \otimes m_{\psi, j}^{\prime}\right)=\sum_{k}\left\langle m_{\rho, k}, f\left(m_{\chi, i}^{\prime} \otimes m_{\psi, j}^{\prime}\right)\right\rangle m_{\rho, k}^{\prime}$ (this is the rigidity of Rep G). Then

$$
\begin{aligned}
& \sum_{i, j, k}\left\langle m_{\rho, k}, f\left(m_{\chi, i}^{\prime} \otimes m_{\psi, j}^{\prime}\right)\right\rangle m_{\rho, k}^{\prime} \otimes Y\left(m_{\chi, i} \otimes v_{\chi}, x\right)\left(m_{\psi, j} \otimes v_{\psi}\right)=0 \\
& \rightarrow \sum_{j} Y\left(\sum_{i}\left\langle m_{\rho, k}, f\left(m_{\chi, i}^{\prime} \otimes m_{\psi, j}^{\prime}\right)\right\rangle\left(m_{\chi, i} \otimes v_{\chi}\right), x\right)\left(m_{\psi, j} \otimes v_{\psi}\right)=0 \quad \forall k \\
& \rightarrow \sum_{i}\left\langle m_{\rho, k}, f\left(m_{\chi, i}^{\prime} \otimes m_{\psi, j}^{\prime}\right)\right\rangle\left(m_{\chi, i} \otimes v_{\chi}\right)=0 \forall j, k \\
& \rightarrow\left\langle m_{\rho, k}, f\left(m_{\chi, i}^{\prime} \otimes m_{\psi, j}^{\prime}\right)\right\rangle=0 \forall i, j, k \rightarrow f=0
\end{aligned}
$$

The second implication follows from a lemma of Dong and Mason: if V is a simple vertex operator algebra and $\sum_{i} Y\left(u_{i}, x\right) v_{i}=0$ where the v_{i} are linearly independent, then the u_{i} must be 0 .

Application to V_{Q} and $S O(3)$

Recall the action of $S O(3)$ on the $\mathfrak{s l}_{2}$-root lattice vertex operator algebra V_{Q}, with Virasoro orbifold subalgebra $L(1,0)$, where
$V_{Q}=\bigoplus_{n=0}^{\infty} M_{2 n} \otimes L\left(1, n^{2}\right)$.

- By (Milas, 2002), the fusion rules for intertwining operators among the $L\left(1, n^{2}\right)$ agree with the dimensions of the spaces of intertwiners for the $\mathfrak{s l}_{2} / S O(3)$-modules $M_{2 n}$. So by the second theorem, $\mathcal{C}_{V_{Q}}$ is a braided tensor category.
- Then by the first theorem, $\mathcal{C}_{V_{Q}}$ is a symmetric (and rigid!) tensor category equivalent to $\operatorname{Rep} S O(3)$.

Application to V_{Q} and $S O(3)$

Recall the action of $S O(3)$ on the $\mathfrak{s l}_{2}$-root lattice vertex operator algebra V_{Q}, with Virasoro orbifold subalgebra $L(1,0)$, where
$V_{Q}=\bigoplus_{n=0}^{\infty} M_{2 n} \otimes L\left(1, n^{2}\right)$.

- By (Milas, 2002), the fusion rules for intertwining operators among the $L\left(1, n^{2}\right)$ agree with the dimensions of the spaces of intertwiners for the $\mathfrak{s l}_{2} / S O(3)$-modules $M_{2 n}$. So by the second theorem, $\mathcal{C}_{V_{Q}}$ is a braided tensor category.
- Then by the first theorem, $\mathcal{C}_{V_{Q}}$ is a symmetric (and rigid!) tensor category equivalent to $\operatorname{Rep} S O$ (3).

What about the other finite-dimensional $\mathfrak{s l}_{2}$-modules? They are contained in $V_{\frac{1}{2} \alpha+Q}$, the non-trivial irreducible V_{Q}-module. The abelian intertwining algebra $V_{P}=V_{Q} \oplus V_{\frac{1}{2} \alpha+Q}$ admits a faithful action of $S U(2)$.
Then generalizing the first and second theorems to abelian intertwining algebras shows that $\mathcal{C}_{V_{P}}$ is equivalent to $\operatorname{Rep} S U(2)$, except that the symmetry isomorphisms in Rep $S U(2)$ have to be modified.

