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Summary. We investigate the fixed point property for continua that are unions of chain-
able continua. We answer Question 2 of our paper [Fund. Math. 231 (2013)] by showing
the fixed point property is additive for chainable continua. We additionally show that
(i) various finite unions of chainable continua have the fixed point property, and (ii) in-
finite unions of chainable continua that are 1-dimensional, upper semicontinuous clumps
as defined by H. Cook have the fixed point property.

A continuum is a nonempty, compact, connected metric space. A map or
mapping is a continuous function between topological spaces. A continuumX
has the fixed point property (fpp) if each self mapping on X has a fixed point.
LetX, Y , andX∩Y be continua with the fpp. We say that the fpp is additive
for X and Y if X ∪Y has the fpp. If G is some class of continua, we say that
the fpp is additive for the class G provided that whenever X and Y are in G,
the fpp is additive for X and Y .

The general question, “for which classes of continua is the fpp additive?”,
has, until now, had only one positive answer. K. Borsuk’s theory of absolute
retracts from the 1940s establishes that the fpp is additive for the class
of absolute retracts. We show the fpp is additive for the class of chainable
continua, as well as establishing the fpp for various other unions of chainable
continua. Over the last 55 years, it has been shown the fpp is not additive
for the following classes of continua:

(1) (W. Lopez [8], 1967) polyhedra;
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(2) (A. L. Yandl [16], 1968) one-dimensional, planar continua;
(3) (R. Mańka [11], 1987) uniquely arcwise connected curves;
(4) (R. Mańka [12], 1990) rational, arcwise connected continua;
(5) (C. L. Hagopian and M. M. Marsh [4], 2015) tree-like continua.

Furthermore, the fpp is not additive for the classes of n-cell-like continua
for n ≥ 2, since R. L. Russo [14] and Hagopian [13, Theorem 6] indepen-
dently proved each tree-like continuum can be realized as an n-cell-like con-
tinuum. There are various positive and negative results for the fpp of unions
of continua X and Y with the fpp when additional conditions are added,
particularly when strong conditions are placed on the continuum X ∩Y . For
example, it is easy to prove the wedge of two continua with the fpp must
have the fpp. Further discussion and more references can be found in [4,
Section 1].

Surprisingly, the question of additivity of the fpp for the class of chainable
continua has remained unanswered, and consequently presented an obvious
gap that needs filling in this area of study. Using results of T. Maćkowiak,
who continued work begun by Mańka [10], H. Bell [1], and Sieklucki [15], we
establish a number of positive results for unions of chainable continua. Two
questions of interest remain open.

Question 1 (Mańka [12, Remark, p. 35]). If X and Y are one-dimen-
sional, planar continua with the fpp, and X ∩ Y is arcwise connected, must
X ∪ Y have the fpp?

Question 2 (Hagopian and Marsh [4, Question 1, p. 218]). If X and Y
are tree-like continua with the fpp, and X ∩ Y is a dendroid, must X ∪ Y
have the fpp?

A continuum is hereditarily unicoherent if each pair of its intersecting sub-
continua has a connected intersection. A dendroid is an arcwise connected,
hereditarily unicoherent continuum. A continuum X is chainable if for each
ε > 0, there is a finite collection U1, . . . , Un of open sets covering X such
that Ui ∩ Uj 6= ∅ if and only if |i − j| ≤ 1, and diam(Ui) < ε for 1 ≤ i ≤ n.
In 1951, O. H. Hamilton [5] proved chainable continua have the fpp.

Given ε > 0, a mapping f : X → Y is an ε-mapping if for each y ∈ Y ,
diam(f−1(y))< ε. A continuum X is arc-like if for each ε > 0, there exists an
ε-mapping from X onto [0, 1]. A continuum X is tree-like if for each ε > 0,
there exists a tree T and an ε-mapping from X onto T . It is well known that
a continuum is chainable if and only if it is arc-like.

A continuum is indecomposable if it is not the union of two proper sub-
continua. Let x be a point of a continuum X. The x-composant of X is
the union of all proper subcontinua of X that contain x. If X is indecom-
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posable, then X is the union of uncountably many dense, pairwise disjoint
composants.

The following four theorems are of fundamental importance in establish-
ing the results in this paper.

Theorem 1 (Cook, [2, Theorem 1]). Suppose X is a hereditarily uni-
coherent continuum such that each indecomposable subcontinuum of X is
tree-like. Then X is tree-like.

Theorem 2 (Cook, [2, Lemma 2]). If a continuum M is the union of
two hereditarily unicoherent continua H and K whose intersection is a con-
tinuum, then M is hereditarily unicoherent.

Theorem 3 (Cook, [2, Theorem 2]). If a continuum M is the union of
two tree-like continua H and K whose intersection is connected, then M is
tree-like.

As defined by Maćkowiak [9], a composant C of an indecomposable sub-
continuum Q of a continuum X is a K-composant in X if there is a subcon-
tinuum L of X such that ∅ 6= L ∩Q ⊂ C and L \Q 6= ∅.

Theorem 4 (Maćkowiak, [9, Corollary 1(iv)]). Suppose X is a heredi-
tarily unicoherent continuum, and each nondegenerate indecomposable sub-
continuum of X has the fpp and contains a composant that is not a K-
composant. Then X has the fpp.

Definition 1. Let J be a subset of N with at least two elements, and
suppose for each i ∈ J , Hi is a continuum. Let X =

⋃
i∈J Hi be a continuum,

and suppose that

(i)
⋂

i∈J Hi 6= ∅,
(ii) for i ∈ J , Hi \

⋃
j 6=iHj 6= ∅, and

(iii) for i, j ∈ J , Hi ∩Hj is a continuum.

Then we call X a fan of continua. More specifically, if J is a finite [infinite]
subset of N, we call X a finite [countable] fan of continua. If Hi is hereditarily
unicoherent [treelike, chainable] for each i ∈ J , then we call X a fan of
hereditarily unicoherent [tree-like, chainable] continua.

We establish some lemmas about fans of hereditarily unicoherent con-
tinua before we consider fans and other unions of chainable continua.

Lemma 1. Suppose X =
⋃

i∈J Hi is a fan of hereditarily unicoherent
continua. Then

⋂
i∈J ′ Hi is connected for each nonempty J ′ ⊂ J .

Proof. Suppose
⋂

i∈J ′ Hi is not connected for some J ′ ⊂ J . Assume,
without loss of generality, that 1 ∈ J ′. Let a and b be points in different
components of

⋂
i∈J ′ Hi. Let A be a subcontinuum of H1 that is irreducible

between a and b. For some j ∈ J ′, Hj does not contain some point p in A. By
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Definition 1(iii), H1 ∩Hj is a subcontinuum of H1. We note that a, b ∈ H1 ∩
Hj ∩A. It follows from the hereditary unicoherence of H1 that (H1∩Hj)∩A
is a continuum. By the irreducibility of A, we know that H1 ∩Hj ∩ A = A.
So, p ∈ Hj , contradicting our choice of j. Hence,

⋂
i∈J ′ Hi is connected.

Lemma 2. Suppose X =
⋃n

i=1Hi is a finite fan of hereditarily unicoher-
ent continua. Then X is a hereditarily unicoherent continuum.

Proof. We use induction on n. For n = 2, the lemma follows from Theo-
rem 2. Assume the lemma holds for some n− 1 ≥ 2. So,

⋃n−1
i=1 Hi is a hered-

itarily unicoherent continuum. We consider the two hereditarily unicoherent
continua

⋃n−1
i=1 Hi and Hn, and we show their intersection is a continuum.

Note that (
⋃n−1

i=1 Hi) ∩ Hn =
⋃n−1

i=1 (Hi ∩ Hn). For 1 ≤ i ≤ n − 1, by
Definition 1, Hi ∩Hn is a hereditarily unicoherent continuum. By Lemma 1,
for 1 ≤ i < j ≤ n−1, (Hi∩Hn)∩ (Hj ∩Hn) = Hi∩Hj ∩Hn is a continuum.

So, by inductive assumption, (
⋃n−1

i=1 Hi) ∩ Hn is a hereditarily unico-
herent continuum. So, by Theorem 2,

⋃n
i=1Hi is a hereditarily unicoherent

continuum.

Lemma 3. Suppose X =
⋃n

i=1Hi is a finite fan of tree-like continua.
Then X is a tree-like continuum.

Proof. By Lemma 2, X is a hereditarily unicoherent continuum. We use
induction on n to show that X is tree-like.

For n = 2, the lemma follows from Theorem 3. Assume the lemma holds
for some n−1 ≥ 2. So,M =

⋃n−1
i=1 Hi is tree-like. LetQ be an indecomposable

subcontinuum of X =
⋃n

i=1Hi. Suppose Q meets both M \Hn and Hn \M .
Then Q is the union of two nonempty proper subcontinua, namely Q =
(Q ∩ M) ∪ (Q ∩ Hn), which contradicts the indecomposability of Q. So,
either Q ⊂M or Q ⊂ Hn, in which case Q is tree-like. By Theorem 1, X is
tree-like.

A continuum T is a triod if there exist subcontinua A1, A2, A3, and K
of T such that T = A1 ∪ A2 ∪ A3, K is a proper subcontinuum of Ai for
i ∈ {1, 2, 3}, and K = A1 ∩A2 = A1 ∩A3 = A2 ∩A3.

Lemma 4. Suppose X is a chainable continuum, and Q is an indecom-
posable proper subcontinuum of X. Then Q has at most two composants that
are K-composants in X.

Proof. Assume Q has three distinct composants C1, C2, and C3 that are
K-composants in X. For i = 1, 2, 3, let Li be a subcontinuum of X such
that ∅ 6= Li ∩ Q ⊂ Ci and Li \ Q 6= ∅. Note that Li ∩ Q = Li ∩ Ci for
each i = 1, 2, 3. So, by hereditary unicoherence, L1, L2, and L3 are pairwise
disjoint. It follows that (L1 ∪Q)∪ (L2 ∪Q)∪ (L3 ∪Q) is a triod in X, which
contradicts the assumption that X is chainable.
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Hereafter, we consider various unions of chainable continua.

Lemma 5. Suppose X =
⋃n

i=1Hi is a finite fan of chainable continua.
Then each indecomposable subcontinuum of X is contained in Hi for some
1 ≤ i ≤ n.

Proof. We use induction on n. If n = 2, and Q is an indecomposable
subcontinuum of X, then either Q ⊂ H1 or Q ⊂ H2 as we saw in the
inductive step of the proof of Lemma 3.

Assume the lemma is true for some n−1 ≥ 2. LetQ be an indecomposable
subcontinuum of X, and assume Q 6⊂ Hi for all 1 ≤ i ≤ n. Let L =

⋃n−1
i=1 Hi.

If Q ⊂ L, then by inductive assumption, there exists 1 ≤ i ≤ n−1 such that
Q ⊂ Hi, contradicting our assumption. So, we have Q ∩ (Hn \ L) 6= ∅. Also,
Q∩ (L\Hn) 6= ∅ since Q 6⊂ Hn. By Lemma 2, X is hereditarily unicoherent.
So, it follows that Q is the union of two of its nonempty proper subcontinua,
specifically Q = (Q ∩ L) ∪ (Q ∩ Hn), contradicting the indecomposability
of Q.

Theorem 5. Suppose X =
⋃n

i=1Hi is a finite fan of chainable continua.
Then X is a tree-like continuum with the fpp.

Proof. By Lemma 3, X is a tree-like continuum, and hence hereditarily
unicoherent. Since chainable continua have the fpp, it follows from Lemma 4,
Lemma 5, and Theorem 4 that X has the fpp.

Corollary 1. The fixed point property is additive for the class of chain-
able continua.

Example 2, at the end of the paper, shows Theorem 5 cannot be gener-
alized to a countable fan of chainable continua.

Definition 2. A continuum X is a tree of chainable continua if X is
hereditarily unicoherent, and X is a finite union of finite fans of chainable
continua.

Theorem 6. Suppose X is a tree of chainable continua. Then each inde-
composable subcontinuum of X is contained in some chainable subcontinuum
of X.

Proof. Let X =
⋃n

i=1Xi, where each Xi =
⋃mi

j=1Hij is a fan of chainable
continua. We show, in particular, that each indecomposable subcontinuum
of X is contained in Hij for some 1 ≤ i ≤ n and 1 ≤ j ≤ mi. We use
induction on n.

If n = 1, the result follows from Lemma 5. Assume the lemma holds for
some n− 1 ≥ 1.

Let L =
⋃n−1

i=1 Xi, and let Q be an indecomposable subcontinuum of X. If
either Q ⊂ L, or Q ⊂ Xn, then the theorem follows, respectively, either from
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the inductive assumption or from Lemma 5. So, we assume Q ∩ (L \Xn) 6=
∅ 6= Q∩(Xn\L). It follows thatQ = (Q∩L)∪(Q∩Xn) is not indecomposable,
a contradiction.

Theorem 7. Suppose X is a tree of chainable continua. Then X is a
tree-like continuum with the fpp.

Proof. It follows from Theorems 6 and 1 that X is tree-like. It follows
from Theorem 6, Lemma 4, and Theorem 4 that X has the fpp.

Considering infinite unions of hereditarily unicoherent, tree-like, or chain-
able continua, it is useful to recall Cook’s clumps of continua. In [3], Cook
defines a nondegenerate collection G of continua to be a clump provided that⋃

g∈G g is a continuum, there exists a continuum C that is a proper subcon-
tinuum of each g ∈ G, and C is the intersection of any two members of G.
Cook calls C the center of G. As Cook’s clumps relate to notions and results
in this paper, for convenience we also say that X =

⋃
g∈G g is a clump of

continua. Thus, saying a continuum is either a clump or a fan of continua is
a structural statement about realizing X as a certain union of subcontinua.

For subsets J ⊂ N as in Definition 1, it is easy to see that if X =
⋃

i∈J Hi

is a clump of continua, then X =
⋃

i∈J Hi is a fan of continua. However, a
fan X =

⋃
i∈J Hi of continua may not be a clump of continua, expressed as

a union of the same His, since the intersection of some two Hj and Hk may
not equal

⋂
i∈J Hi. Nevertheless, for finite J , we see, from Lemmas 2 and 3,

that each fan X =
⋃

i∈J Hi of hereditarily unicoherent (tree-like) continua
is always a clump of two hereditarily unicoherent (tree-like) continua. The
same cannot be said for finite fans of chainable continua, as can be seen by
viewing a tree T that has exactly three branchpoints, each of order 3, as
a fan of three arcs. In fact, T cannot be realized as a clump of chainable
continua. In general, for finite J with more than two elements, a fan union
is a finer structure than a clump union.

A clump of continua G with center C is said to be upper semicontinuous
provided that whenever {pi}i≥1 and {qi}i≥1 are two sequences of points in
X =

⋃
g∈G g converging, respectively, to p and q in X \ C, where for each

i ≥ 1, pi and qi are in the same member of G, it follows that p and q are in
the same member of G.

Theorem 8. Suppose X =
⋃

g∈G g is an upper semicontinuous clump of
chainable continua, and dim X = 1. Then X is a tree-like continuum with
the fpp.

Proof. It follows from [3, Theorem 12] that X is tree-like, and hence
hereditarily unicoherent. It follows from [3, Theorem 10] that each indecom-
posable subcontinuum of X is contained in g for some g ∈ G. By Lemma 4
and Theorem 4, X has the fpp.
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In [6, Theorem 3.4], W. T. Ingram defines an inverse limitX on [0, 1] with
a single surjective set-valued bonding function f , where the graph of f is the
union of the graphs of two mappings f1 and f2 on [0, 1], the graphs of f1
and f2 intersect only at a common fixed point x of f1 and f2, and f−11 (x) =
{x} = f−12 (x). In the proof of Theorem 3.4, Ingram shows that dim X = 1,
and that X is the union of an upper semicontinuous clump of chainable
continua with a degenerate center. In [7, Theorem 5.6], Ingram extends this
result, allowing f to be the union of finitely many mappings or continuum-
valued functions. In the case of f being a union of mappings, we have the
following theorem that follows immediately from Ingram’s Theorem 5.6 and
our Theorem 8.

Theorem 9. Suppose F = {f1, . . . , fn} is a finite collection of mappings
on [0, 1] such that the union of the graphs of the members of F is the graph
of a surjective upper semicontinuous set-valued function f . Suppose also that
there is a point x ∈ [0, 1] such that (1) if 1 ≤ i ≤ n, then fi(x) = x and
f−1i (x) = {x}, and (2) if fi and fj are two members of F , then x is the only
coincidence point of fi and fj. Then X = lim

←−
f is a tree-like continuum with

the fpp.

Theorem 10. Suppose X =
⋃∞

i=1Hi is a countable clump of chainable
continua. Then X is a tree-like continuum with the fpp.

Proof. It follows from [3, Theorem 15] that X is tree-like. As in the proof
of Theorem 8, by [3, Theorem 10], each indecomposable subcontinuum of X
is contained in Hi for some i ≥ 1. By Lemma 4 and Theorem 4, X has
the fpp.

If X is a countable clump of continua with a degenerate center, then X is
called a countable wedge of continua.

Corollary 2. If X is a countable wedge of chainable continua, then
X is a tree-like continuum with the fpp.

The following example shows Corollary 2 cannot be generalized to wedges
of tree-like continua.

Example 1 (Hagopian and Marsh, [4, Example 1]). There exists a count-
able wedge of tree-like continua, each having the fpp, that is a tree-like con-
tinuum without the fpp. Furthermore, all but one of the tree-like continua are
arcs.

Example 2 below shows the structure of countable fans of chainable con-
tinua is too general to necessitate the fpp.

Example 2. There is a countable fan of chainable continua, in fact of
arcs, that is not tree-like and does not have the fpp.
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Proof. Let X be the continuum in Figure 1. We note that X is a count-
able fan of arcs. Let H1 be the arc in X with endpoints q and p1. For i ≥ 2,
let Hi be the arc in X with endpoints q and pi that contains the point w.
It is clear that X =

⋃
i≥1Hi is a countable fan of arcs that is not tree-like,

and does not have the fpp.

p1
p2p3p4

q

w

Fig. 1. A countable fan of arcs
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