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CONNECTEDNESS OF INVERSE LIMITS WITH

SET-VALUED FUNCTIONS

M. M. MARSH

Abstract. We establish general results for determining connect-

edness of inverse limits on continua with set-valued bonding func-

tions. These results generalize all theorems in the literature where
connectedness of the inverse limit can be established by checking

easily observable properties of the bonding functions. For inverse

limits on [0, 1], we note several useful special cases of our main
theorem. The results provide answers to two questions of W. T.

Ingram. We give a number of examples to illustrate the utility of
the results.

1. Introduction

Unlike ordinary inverse sequences on continua with mappings for bond-
ing functions, an inverse sequence on continua with set-valued bonding
functions may not have a connected limit, even when the graphs of the
bonding functions are continua. We establish sufficient conditions for
connectedness of inverse limits on continua with upper semi-continuous
set-valued functions. The conditions are simply-checked properties of the
bonding functions. We also provide an additional result for connectedness
of inverse limits on [0, 1] with set-valued bonding functions. The results
provide answers to Problems 6.3 and 6.4 of Ingram in [2]. The results
also generalize all theorems presently in the literature that give connect-
edness of an inverse limit with set-valued functions, where one only needs
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to observe that the bonding functions satisfy certain conditions. In the
last section of the paper, we provide examples that illustrate the utility
of the results.

A general introduction to results and questions related to connected-
ness of an inverse limit with set-valued functions can be found in Section
2 of [1], in Sections 2.2, 2.3, 2.4, 2.6, and 2.7 of [2], and in Section 4 of
[3]. A more recent detailed discussion of results in the literature related
to connectedness or non-connectedness of inverse limits with set-valued
functions can be found in Section 1 of [7].

2. Basic definitions and observations

A compactum is a compact metric space. All spaces considered in this
paper will be compacta. A continuum is a connected compactum. We
note that a continuum may be degenerate. A continuous function will be
referred to as a mapping.

Let X and Y be compacta. We refer to functions f : X → 2Y as set-
valued functions from X to Y and we write f : X → Y is a set-valued
function. Note that throughout, we are assuming that, for x ∈ X, the
value f(x) of a set-valued function is a closed set. The graph of f , which
we denote by G(f), is the set in X ×Y consisting of all points (x, y) with
y ∈ f(x).

A set-valued function f : X → Y is upper semi-continuous at the point
x ∈ X if for each open set V in Y containing the closed set f(x), there
is an open set U in X such that x ∈ U and f(p) ⊂ V for each p ∈ U . If
f : X → Y is upper semi-continuous at each point of X, then f is said to
be upper semi-continuous.

A set-valued function f : X → Y is surjective if for each y ∈ Y , there
exists x ∈ X such that y ∈ f(x). If the set-valued function f : X → Y
is surjective, we let f−1 : Y → X be the set-valued function such that
x ∈ f−1(y) if and only if y ∈ f(x). Clearly, G(f−1) is homeomorphic
to G(f); so, it follows from [2, Theorem 1.2] that f−1 is upper semi-
continuous if f is upper semi-continuous. For f : X → Y a set-valued
function, and A ⊂ X, we let f |A be the set-valued function whose domain
is A, and f |A(x) = f(x) for x ∈ A. If x ∈ X and f(x) is degenerate, we
will sometimes treat f(x) as a point of Y .

A set-valued function f : X → Y is continuum-valued if for each x ∈ X,
the set f(x) is a subcontinuum of Y . If, for each (x, y) ∈ G(f), there
exists a continuum-valued function g : X → Y such that G(g) ⊂ G(f)
and (x, y) ∈ G(g), we say that f : X → Y (and G(f)) is a union of
continuum-valued functions. Let A ⊂ X and B ⊂ Y . If, for each point
(x, y) ∈ G(f)∩ (A×B), there exists a continuum-valued function g : A→
B such that (x, y) ∈ G(g) ⊂ G(f), then we say that G(f) ∩ (A × B)
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is a union of continuum-valued functions. Letting f(A,B) : A → B be
the set-valued function whose graph is G(f) ∩ (A× B), we also say that
f(A,B) is a union of continuum-valued functions. We note that for some
A and B, G(f)∩ (A×B) may be empty, in which case, f(A,B) does not
exist.

For i ≥ 1, letXi be a compactum, and let fi : Xi+1 → Xi be a surjective
upper semi-continuous set-valued function. Throughout, we let {Xi, fi}
denote an inverse sequence, and its inverse limit is given by

lim
←−
{Xi, fi} = {x = (x1, x2, . . .) ∈

∏
i≥1

Xi | xi ∈ fi(xi+1) for i ≥ 1}.

For n ∈ N, we define the set below.

G′n = G′(f1, . . . , fn) = {x ∈
n+1∏
i=1

Xi | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}.

We refer to these sets as partial graphs in the inverse sequence. For

consistency of notation, we let G′0 = X1. The notation X
T
≈ Y will

indicate that X is homeomorphic to Y .
Let {Xi, fi} be an inverse sequence on compact sets with upper semi-

continuous surjective set-valued bonding functions. For n ≥ 1, we de-
fine the set-valued function Fn : Xn+1 → G′n−1, where (x1, x2, . . . , xn) ∈
Fn(z) if and only if (x1, x2, . . . , xn, z) is in G′n. So, G(F−1n ) = G′n. V.
Nall introduced this function in [8], and showed that Fn is upper semi-
continuous. If, for each 1 ≤ i ≤ n, Xi is a continuum, and fi is continuum-
valued, the author showed in [6, Theorem 5] that Fn is continuum-valued.

The well-known results and observations below will be used throughout
the paper, sometimes without reference.

For items 1 and 2, let X and Y be compacta, and f : X → Y be an
upper semi-continuous, set-valued function.

1. ([3, Theorem 4.1]) If f is continuum-valued and X is connected,
then G(f) is connected.

2. (a) If f is continuum-valued and K ⊂ X, then f |K : K → Y is
continuum-valued.

(b) If f is a union of continuum-valued functions and K ⊂ X,
then f |K : K → Y is a union of continuum-valued functions.

(c) If x ∈ X, f |{x} : {x} → Y is a union of continuum-valued
functions.
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For items 3 and 4, let X = lim
←−
{Xi, fi}, where, for each i ≥ 1, Xi is a

compactum and fi is a surjective, upper semi-continuous, set-valued func-
tion. For i ≥ 1, define the mapping ρi : G′i → G′i−1 by ρi(x1 . . . , xi, xi+1) =
(x1 . . . , xi). Note that {G′i−1, ρi} is an inverse sequence with mappings
for bonding functions.

3. ([2, Corollary 4.2]) X
T
≈ lim
←−
{G′i−1, ρi}. Also, we observe that

since Xi and G′i−1 are continuous images of G′j for each 1 ≤ i ≤ j,
it follows that if G′n is connected for some n ≥ 1, then both Xi

and G′i are connected for each 1 ≤ i ≤ n. Furthermore, X is
connected if and only if G′n is connected for each n ≥ 0.

4. Note that F1 : [0, 1] → G′0 is f1 : [0, 1] → [0, 1]. For n > 1, a
pointwise, inductive definition of the function Fn : Xn+1 → G′n−1
is given by Fn(z) = G(Fn−1|−1fn(z)

). It is easily seen from this

definition and item 1, that if both Fn−1 and fn are continuum-
valued, then Fn is continuum-valued.

5. ([9, Theorem 3.3] Let M be a continuum, and f : M → M be
a surjective, upper semi-continuous, set-valued function. Then
lim
←−
{M,f} is connected if and only if lim

←−
{M,f−1} is connected.

3. Connectedness of partial graphs and inverse limits on
continua

For the product X × Y of two compacta, let c1 : X × Y → X and
c2 : X × Y → Y denote the coordinate projection mappings.

Lemma 1. Let X, Y , and Z be continua, and let f : Z → Y and g : Y →
X be surjective, upper semi-continuous, set-valued functions whose graphs
are connected. Suppose whenever (z1, y) and (z2, y) are two points of
G(f), there exists a continuum L ⊂ G(f) containing the points (z1, y)
and (z2, y) such that g|c2(L) : c2(L) → X is a union of continuum-valued
functions. Then G′(g, f) is connected.

Proof. Let A and B be closed sets such that A ∪ B = G′(g, f). Let
ρ : G′(g, f) → G(g−1) be the natural projection mapping. Since G(g−1)
is connected, there is a point (x, y) in ρ(A)∩ρ(B). Let a = (x, y, z1) ∈ A,
and b = (x, y, z2) ∈ B. We assume that a 6= b.

By hypothesis, there exists a continuum L ⊂ G(f) containing the
points (z1, y) and (z2, y) such that g|c2(L) : c2(L) → X is a union of
continuum-valued functions. Let K = c2(L), and let ĝ : K → X be a
continuum-valued function such that (y, x) ∈ G(ĝ) ⊂ G(g|K). Define
the set-valued function ` : L−1 → X by `(s, t) = ĝ(s). Note that ` is
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continuum-valued since ĝ is continuum-valued. Since L−1 is a contin-
uum, it follows that G(`) is connected. So, G(`−1) is connected. Also, we
see that a and b are in G(`−1) ⊂ G′(g, f). So, G(`−1) meets A and B, and
it follows that A and B are not disjoint. Hence, G′(g, f) is connected. �

Corollary 1. Let X, Y , and Z be continua, and let f : Z → Y and
g : Y → X be surjective, upper semi-continuous, set-valued functions
whose graphs are connected. If f−1 is continuum-valued, then G′(g, f)
is connected.

Proof. Suppose (z1, y) and (z2, y) are two points of G(f). Since f−1 is
continuum-valued, H = f−1(y) is a continuum containing the points z1
and z2. By item 2(c) in the previous section, g|{y} is a union of continuum-
valued functions. So, by Lemma 1, G′(g, f) is connected. �

Let {Xi, fi} be an inverse sequence, where for each i ≥ 1, Xi is a
compactum, and fi : Xi+1 → Xi is a surjective, upper semi-continuous,
set-valued function. For each n ≥ 1, let Fn : Xn+1 → G′n−1 be the set-
valued function defined in Section 2 and discussed in item 4 of Section
2.

Corollary 2. Let {Xi, fi} be an inverse sequence, where for each i ≥
1, Xi is a continuum, and fi : Xi+1 → Xi is a surjective, upper semi-
continuous, set-valued function whose graph is connected. Suppose for i ≥
2, if (a, x) and (b, x) are two points of G(fi), then there exists a continuum
Li ⊂ G(fi) containing (a, x) and (b, x) such that Fi−1|c2(Li) : c2(Li) →
G′i−2 is a union of continuum-valued functions. Then G′n is connected for
each n ≥ 1. Furthermore, lim

←−
{Xi, fi} is a continuum.

Proof. We use induction on n to see that G′n is connected for each n ≥ 1.
For n = 1, G′1 = G(f−11 ) is connected by hypothesis.

Assume G′n is connected for some n ≥ 1. We note, by hypothesis,
fn+1 : Xn+2 → Xn+1 and Fn : Xn+1 → G′n−1 satisfy the conditions of

Lemma 1. So, G′(Fn, fn+1)
T
≈ G′n+1 is connected. By induction, G′n is

connected for each n ≥ 1.
It follows from item 3 of the previous section that lim

←−
{Xi, fi} is a

continuum. �

Although Corollary 2 is a general result for establishing connectedness
of inverse limits on continua with set-valued functions, it is not particu-
larly user-friendly. Even for an inverse sequence on a single continuum
with a single bonding function, it can be difficult to determine if the func-
tions Fn or restrictions of them are unions of continuum-valued functions.
Nevertheless, in Example 6, we show that for a given inverse sequence of
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functions, it may be possible to inductively show that appropriate restric-
tions of the functions Fn are unions of continuum-valued functions.

We would like to have easily-checked conditions on each of the bonding
functions fi that would ensure the conditions of Corollary 2 on the func-
tions fi and Fi. There may be many sets of conditions that could do this.
We offer some that are easy to check, generalize well-known connectedness
results in this setting, and apply to many examples in the literature.

In the remainder of this section, the results are for inverse limits on
continua. In the next section, we consider inverse limits on [0, 1].

Lemma 2. Let {Xi, fi} be an inverse sequence, where for each i ≥ 1,
Xi is a continuum, and fi : Xi+1 → Xi is a surjective, upper semi-
continuous, set-valued function whose graph is connected. Let {Si}i≥1
be a sequence such that, for each i ≥ 1, Si is a family of subcontinua of
Xi. Suppose the following conditions hold for each i ≥ 1.

(1) fi(Z) ⊂ ∪Si for each Z ∈ Si+1.
(2) If G(fi) ∩ (Z × Y ) is non-empty for (Z, Y ) ∈ (Si+1 × Si), then it

is a union of continuum-valued functions.

Then Fn|Z : Z → G′n−1 is a union of continuum-valued functions for each
n ≥ 1 and Z ∈ Sn+1.

Proof. For i ≥ 1 and (Z, Y ) ∈ (Si+1 × Si), let fi(Z, Y ) be the set-valued
function, if it exists, whose graph is G(fi) ∩ (Z × Y ). Fix n ≥ 1, and
let Zn+1 ∈ Sn+1. Let (pn+1, p1, . . . , pn) ∈ G(Fn) with pn+1 ∈ Zn+1.
Let Yn+1 = Zn+1. By (1), (pn+1, pn) ∈ G(fn) ∩ (Yn+1 × Yn) for some
Yn ∈ Sn. There is no loss of generality to choose any such Yn. So, pn ∈
fn(Yn+1, Yn)(pn+1). Similarly applying (1) for 1 ≤ i ≤ n− 1, (pi+1, pi) ∈
G(fi) ∩ (Yi+1 × Yi) for some Yi ∈ Si; that is, pi ∈ fi(Yi+1, Yi)(pi+1).
Hence, (p1, . . . , pn, pn+1) ∈ G′(f1(Y2, Y1), . . . , fn(Yn+1, Yn)) ⊂ G′n. By
(2), we have that, for each 1 ≤ i ≤ n, fi(Yi+1, Yi) is a union of continuum-
valued functions. So, beginning with i = n, one by one, for each n ≥ i ≥
1, we pick a continuum-valued function gi : Zi+1 → gi(Zi+1) such that
(pi+1, pi) ∈ G(gi) ⊂ G(fi(Yi+1, Yi)), and we let Zi = gi(Zi+1) ⊂ Yi.

Now, the set-valued function F̂n : Zn+1 → G′(g1, . . . , gn−1) whose in-
verse graph is G′(g1, . . . , gn) is a continuum-valued function such that

(pn+1, p1, . . . , pn) is in G(F̂n); recall the last sentence of the paragraph in
Section 2 where Fn was defined. We have that Fn|Zn+1

: Zn+1 → G′n−1 is
a union of continuum-valued functions. �

Theorem 1 generalizes Theorem 1.6 in [5] and Theorem 1 in [7]. To see
this, simply let Si = {Xi} for each i ≥ 1. See Example 3 in Section 5 for
an example that uses Theorem 1.
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Theorem 1. Let {Xi, fi} be an inverse sequence, where for each i ≥
1, Xi is a continuum, and fi : Xi+1 → Xi is a surjective, upper semi-
continuous, set-valued function whose graph is connected. Let {Si}i≥1 be
a sequence such that, for each i ≥ 1, Si is a family of subcontinua of Xi.
Suppose the following conditions hold for each i ≥ 1.

(1) fi(Z) ⊂ ∪Si for each Z ∈ Si+1.
(2) If G(fi) ∩ (Z × Y ) is non-empty for (Z, Y ) ∈ (Si+1 × Si), then it

is a union of continuum-valued functions.
(3) If (a, x) and (b, x) are two points of G(fi), then there exists a

continuum Li ⊂ G(fi) containing (a, x) and (b, x) such that either
c2(Li) = {x} or c2(Li) ⊂ Y for some Y ∈ Si.

Then G′n is connected for each n ≥ 1.

Proof. We wish to apply Corollary 2. Fix n ≥ 2. Suppose (an+1, xn) and
(bn+1, xn) are two points of G(fn). By (3), there exists a continuum Ln ⊂
G(fn) containing (an+1, xn) and (bn+1, xn) such that either c2(Ln) =
{xn} or c2(Ln) ⊂ Yn for some Yn ∈ Sn. If c2(Ln) = {xn}, then, by item
2(c) of Section 2, Fn−1|{xn} is a union of continuum-valued functions.
Otherwise, Fn−1|Yn

is a union of continuum-valued functions by Lemma
2. In either case, we have Fn−1|c2(Ln) is a union of continuum-valued
functions. By Corollary 2, G′n is connected. �

Corollary 3. Let {Xi, fi} be an inverse sequence, where for each i ≥ 1,
Xi is a continuum, and fi : Xi+1 → Xi is a surjective, upper semi-
continuous, set-valued function whose graph is connected. Suppose there
exists a sequence {Si}i≥1 of families of subcontinua of Xi such that anal-
ogous conditions as in Theorem 1 are satisfied for the inverse functions
f−1i . That is, for i ≥ 1, the following conditions hold.

(1) f−1i (Y ) ⊂ ∪Si+1 for each Y ∈ Si.
(2) If G(f−1i ) ∩ (Y × Z) is non-empty for (Y, Z) ∈ (Si × Si+1), then

it is a union of continuum-valued functions.
(3) If (a, x) and (b, x) are two points of G(f−1i ), then there exists

a continuum Li ⊂ G(f−1i ) containing (a, x) and (b, x) such that
either c2(Li) = {x} or c2(Li) ⊂ Yi+1 for some Yi+1 ∈ Si+1.

Then G′n is connected for each n ≥ 1.

Proof. Given n ≥ 1, we consider the partial graph G′{f−1n , . . . , f−11 } of
the reverse sequence of inverse functions as defined in Section 5 of [4]. We
apply the methods illustrated and used in Section 5 of [4] to get that G′n
is connected. �

Corollary 4 generalizes Corollary 1.8 in [5] and Corollary 1 in [7].
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Corollary 4. Let X = lim
←−
{Xi, fi}, where for each i ≥ 1, Xi is a con-

tinuum, and fi : Xi+1 → Xi is a surjective, upper semi-continuous, set-
valued function whose graph is connected. Suppose there exists a sequence
{Si}i≥1 of families of subcontinua of Xi such that either fi satisfies the

conditions in Theorem 1 for each i ≥ 1, or f−1i satisfies the conditions in
Corollary 4 for each i ≥ 1. Then X is a continuum.

4. Connectedness of partial graphs and inverse limits on [0, 1]

We note the following three immediate corollaries to Theorem 1, Corol-
lary 3, and Corollary 4 respectively. Although, it is clear that these corol-
laries are special cases of the three general results, it is useful to have the
corollaries so stated. See Examples 1, 2, and 5 in Section 5.

A subinterval of [0, 1] is a subcontinuum of [0, 1].

Corollary 5. Let {[0, 1], fi} be an inverse sequence, where, for each i ≥ 1,
fi is a surjective, upper semi-continuous, set-valued function whose graph
is connected. Suppose there exists a sequence of subintervals {Ii}i≥1 of
[0, 1] such that, for each i ≥ 1, the following conditions are satisfied.

(1) fi(Ii+1) ⊂ Ii.
(2) fi|Ii+1 : Ii+1 → Ii is a union of interval-valued functions.
(3) If (a, t) and (b, t) are two points of G(fi), then there exists a

continuum Li ⊂ G(fi) containing (a, t) and (b, t) such that either
c2(Li) = {t}, or c2(Li) ⊂ Ii.

Then G′n is connected for each n ≥ 1.

Corollary 6. Let {[0, 1], fi} be an inverse sequence, where, for each i ≥ 1,
fi is a surjective, upper semi-continuous, set-valued function whose graph
is connected. Suppose there exists a sequence of subintervals {Ii}i≥1 of

[0, 1] such that, for each i ≥ 1, f−1i satisfies analogous conditions that fi
satisfied in Corollary 5. Then G′n is connected for each n ≥ 1.

Many examples in the literature satisfy the conditions of Corollary 7.
In fact, every connected inverse limit example in [2] satisfies Corollary 7.

Corollary 7. Let X = lim
←−
{[0, 1], fi}, where, for each i ≥ 1, fi is a surjec-

tive, upper semi-continuous, set-valued function whose graph is connected.
Suppose there exists a sequence of subintervals {Ii}i≥1 of [0, 1] such that
either fi : Xi → Xi+1 satisfies the conditions in Corollary 5 for each i ≥ 1,
or f−1i : Xi → Xi+1 satisfies the conditions in Corollary 5 for each i ≥ 1.
Then X is connected.

For I a subinterval of [0, 1], we let Ic = [0, 1] \ I. Let Ic0 and Ic1 denote,
respectively, the components of Ic that contain 0 and 1. We note that
one or both of Ic0 and Ic1 may not exist.
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Theorems 2 and 3 below are complementary results to Lemma 2 and
Corollary 5, allowing for a bit more generality regarding the behavior of
the bonding functions on a specified subinterval of [0, 1]. Both Corollary
5 and Theorem 3 appear to have rather technical conditions, however, the
conditions are quite easy to check, particularly if there is a single bonding
function. We first establish a lemma that will be needed in the proof of
Theorem 2.

Lemma 3. Let f : [0, 1] → [0, 1] be a surjective, upper semi-continuous,
set-valued function such that, on some subinterval I of [0, 1], G(f)∩(I×I)
is a union of interval-valued functions. If g′ : I → [0, 1] is interval-valued,
G(g′) ⊂ G(f), and y ∈ g′(x) ∩ Ici for some x ∈ I and i ∈ {0, 1}, then
there exists an interval-valued function g : I → I ∪ Ici such that (x, y) ∈
G(g) ⊂ G(f).

Proof. Assume, without loss of generality, that y ∈ g′(x) ∩ Ic0 . If g′(I) ⊂
I ∪ Ic0 , then g′ satisfies the conclusion, and the proof is complete. So, we
assume g′(I) meets both Ic0 and Ic1 .

Suppose g′(x) ∩ I 6= ∅. Let t ∈ g′(x) ∩ I. By hypothesis, we let
f ′ : I → I be an interval-valued function with (x, t) ∈ G(f ′). Note that
[y, t] ⊂ g′(x) since g′ is interval-valued. Let K be the component of f(x)
that contains [y, t]. Let g : I → I ∪ Ic0 be the interval-valued function
where g(x) = K ∩ (I ∪ Ic0), and g(z) = f ′(z) for z 6= x. It is easy to see
that g is the desired interval-valued function.

Suppose that g′(x) ∩ I = ∅. Let I = [u, v], and note that, by our
assumption in the first paragraph of this proof, for some z ∈ I \ {x},
v ∈ g′(z). Let r be the largest number in [u, x) such that v ∈ g′(r),
and let s be the least number in (x, v] such that v ∈ g′(s). We observe
that one and only one of r and s may not exist. By hypothesis, we may
choose interval-valued functions fr : [u, r]→ [u, v] with (r, v) ∈ G(fr) and
fs : [s, v]→ [u, v] with (s, v) ∈ G(fs). Let Kr and Ks be, respectively, the
components of f(r) and f(s) that contain v. We define g : I → I ∪ Ic0 as
follows. Let g(r) = Kr ∩ (I ∪ Ic0), and g(s) = Ks ∩ (I ∪ Ic0). Otherwise, let

g(z) =


fr(z) for u ≤ z < r

g′(z) for r < z < s

fs(z) for s < z ≤ v

It is straightforward to see that g is the desired interval-valued function.
�

Example 4 in Section 5 illustrates the use of Theorem 2 and Theorem
3 below. It may be helpful to read Example 4 alongside reading Theorem
2 and its proof.
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Theorem 2. Let {[0, 1], fi} be an inverse sequence, where, for each i ≥ 1,
fi is a surjective, upper semi-continuous, set-valued function whose graph
is connected. Suppose there exists an interval I ⊂ [0, 1] such that, for each
i ≥ 1, the following conditions are satisfied.

(1) G(fi) ∩ (I × I) is a union of interval-valued functions.
(2) fi|I : I → [0, 1] is a union of interval-valued functions.
(3) For (z, y) ∈ G(fi)∩ (Icj × J) where j ∈ {0, 1} and J ∈ {Ic0 , I, Ic1},

there exists an interval-valued function gi : Icj ∪ I → I ∪ J such
that (z, y) ∈ G(gi) ⊂ G(fi).

Then, for each n ≥ 1,

(a) Fn|I : I → G′n−1 is a union of continuum-valued functions, and
(b) if p = (pn+1, p1, . . . , pn) ∈ G(Fn) with pn+1 ∈ Icj for some j ∈
{0, 1}, then there exists a continuum-valued function F̂n : Icj ∪I →
G′n−1 with p ∈ G(F̂n) ⊂ G(Fn).

Proof. We use induction on n. Let n = 1. Recall, from item 4 of Section
2, that F1 = f1. By (2) of the hypothesis, f1|I is a union of interval-valued
functions. So, (a) is satisfied for F1. Let (p2, p1) ∈ G(f1) with p2 ∈ Icj
for some j ∈ {0, 1}. Now, p1 ∈ J for some J ∈ {Ic0 , I, Ic1}. By (3) of the
hypothesis, there exists an interval-valued function g1 : Icj ∪ I → I ∪ J
such that (p2, p1) ∈ G(g1) ⊂ G(f1). So, (b) is satisfied for F1.

Assume, for some n ≥ 1, properties (a) and (b) hold for the set-valued
function Fn : [0, 1]→ G′n−1. We show that properties (a) and (b) hold for
Fn+1 : [0, 1]→ G′n.

(a) Let p = (pn+2, p1, . . . , pn+1) ∈ G(Fn+1) with pn+2 ∈ I. We consider
the two cases, whether pn+1 ∈ I or pn+1 ∈ Icj for some j ∈ {0, 1}.

Suppose pn+1 ∈ I. By (1) of the hypothesis, there exists an interval-
valued function gn+1 : I → I such that (pn+2, pn+1) ∈ G(gn+1) ⊂ G(fn+1).
By inductive assumption (a), there exists a continuum-valued function

F̂n : I → G′n−1 such that (pn+1, p1, . . . , pn) ∈ G(F̂n) ⊂ G(Fn|I). We de-

fine F̂n+1 : I → G′n by F̂n+1(z) = G(F̂n|−1gn+1(z)
). By item 4 in Section 2,

we see that F̂n+1 is continuum-valued. Also, p ∈ G(F̂n+1) ⊂ G(Fn+1|I).
So, Fn+1|I is a union of continuum-valued functions.

Suppose pn+1 ∈ Icj for some j ∈ {0, 1}. We assume, without loss of
generality, that j = 0. So, (pn+2, pn+1) ∈ I × Ic0 . By (2) of the hy-
pothesis, there exists an interval-valued function g′n+1 : I → [0, 1] such
that (pn+2, pn+1) ∈ G(g′n+1) ⊂ G(fn+1|I). By Lemma 3, there exists
an interval-valued function gn+1 : I → Ic0 ∪ I such that (pn+2, pn+1) ∈
G(gn+1) ⊂ G(fn+1|I). Since pn+1 ∈ Ic0 , by inductive assumption (b),

there exists a continuum-valued function F̂n : Ic0 ∪ I → G′n−1 with p ∈
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G(F̂n) ⊂ G(Fn). We define F̂n+1 : I → G′n analogously as in the previ-
ous paragraph, again getting that Fn+1|I is a union of continuum-valued
functions.

(b) Let p = (pn+2, p1, . . . , pn+1) ∈ G(Fn+1) with pn+2 ∈ Icj for some
j ∈ {0, 1}. Now, pn+1 ∈ J for some J ∈ {Ic0 , I, Ic1}. By (3) of the
hypothesis, there exists an interval-valued function gn+1 : Icj ∪ I → I ∪ J
such that (pn+2, pn+1) ∈ G(gn+1) ⊂ G(fn+1).

If J = I, then gn+1 : Icj ∪ I → I is interval-valued, and we apply

inductive assumption (a) to get a continuum-valued function F̂n : I →
G′n−1 such that (pn+1, p1, . . . , pn) ∈ G(F̂n) ⊂ G(Fn|I). If J = Ick for some
k ∈ {0, 1}, then gn+1 : Icj ∪ I → Ick ∪ I is interval-valued, and we apply

inductive assumption (b) to get a continuum-valued function F̂n : Ick∪I →
G′n−1 with (pn+1, p1, . . . , pn) ∈ G(F̂n) ⊂ G(Fn). In either case, we define

the continuum-valued function F̂n+1 : Icj ∪ I → G′n analogously as in the
proof of property (a), getting that property (b) holds for Fn+1. �

Theorem 3. Let {[0, 1], fi} be an inverse sequence, where, for each i ≥ 1,
fi is a surjective, upper semi-continuous, set-valued function whose graph
is connected. Suppose there exists an interval I ⊂ [0, 1] such that, for each
i ≥ 1, the following conditions are satisfied.

(1) G(fi) ∩ (I × I) is a union of interval-valued functions.
(2) fi|I : I → [0, 1] is a union of interval-valued functions.
(3) For (z, y) ∈ G(fi)∩ (Icj × J) where j ∈ {0, 1} and J ∈ {Ic0 , I, Ic1},

there exists an interval-valued function gi : Icj ∪ I → I ∪ J such
that (z, y) ∈ G(gi) ⊂ G(fi).

(4) If (a, x) and (b, x) are two points of G(fi), then there exists a
continuum Li ⊂ G(fi) containing (a, x) and (b, x) such that either
c2(Li) = {x}, or c2(Li) ⊂ I.

Then G′n is connected for each n ≥ 1; hence, lim
←−
{[0, 1], fi} is a continuum.

Proof. Using Theorem 2 and Lemma 1, the proof is analogous to the proof
of Corollary 2. �

Corollary 8. Let {[0, 1], fi} be an inverse sequence, where, for each i ≥ 1,
fi is a surjective, upper semi-continuous, set-valued function whose graph
is connected. Suppose, for each i ≥ 1, f−1i satisfies analogous conditions
that fi satisfied in Theorem 3. Then G′n is connected for each n ≥ 1;
hence, lim

←−
{[0, 1], fi} is a continuum.
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5. Examples

In this section, we provide examples to illustrate the use of our results
to easily determine connectedness of inverse limits when the set-valued
bonding functions satisfy certain properties. We revisit some well-known
examples, and look at some new ones. There are no other results presently
in the literature that immediately show connectedness of the examples.

Example 1. The functions g and f , whose graphs are pictured in Figure
1, are defined and discussed in Examples 2.8 and 2.9, respectively, in [2].
Ingram proves that each of g and f produces a connected inverse limit
when used as the single bonding function in an inverse sequence on [0, 1].
We observe that g−1 and f , respectively, satisfy the three conditions in
Corollaries 6 and 5. It then follows from Corollary 7 that the two inverse
limits, using one of g or f as a single bonding function, are continua.

To see that g−1 satisfies Corollary 6, let {Ii}i≥1 be the constant se-
quence where each Ii = [ 34 , 1]. Clearly, g−1([ 34 , 1]) ⊂ [ 34 , 1], and g−1|[ 34 ,1]
is a union of two mappings. So, conditions (1) and (2) are satisfied. For
condtion (3), it is easy to see that for two points (a, t) and (b, t) in the
graph of g−1, there is a continuum in the graph of g−1 containing them
whose projection into the second coordinate is a subset of [ 34 , 1]. Hence,
by Corollary 7, lim

←−
{[0, 1], g} is a continuum.

To see that f satisfies Corollary 5, let {Ii}i≥1 be the constant sequence
where each Ii = [0, 14 ]. As in the previous paragraph, it is easy to check
that f satisfies the three conditions in Corollary 5, making lim

←−
{[0, 1], f}

a continuum.

g
g−1

f f−1

Figure 1. Graphs of g, f , and their inverses in Example 1.
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Example 2. We consider the collection of functions fa, for 1
2 ≤ a ≤

1, pictured in Figure 2. In Example 2.24 in [2], Ingram discusses the
function f 1

2
and its associated non-connected inverse limit. He attributes

the example to V. Nall.
For 1

2 < a ≤ 1, we consider the constant sequence {[0, 12 ]}i≥1, and
we note that fa satisfies the three condtions in Corollary 5. Hence, by
Corollalry 7, lim

←−
{[0, 1], fa} is a continuum for 1

2 < a ≤ 1.

fa

Figure 2. Graph of fa for a > 1
2 in Example 2.

Example 3. In this example, the function g1 whose graph is pictured in
Figure 3 does not satisfy the conditions of Corollary 5, but it does satisfy
the conditions of Theorem 1, and hence produces a connected inverse
limit. The graph of g1 is the union of four straight line segments joining
the five points, ( 1

4 ,
1
4 ) to (0, 0) to (1, 0) to (0, 1) to ( 1

2 , 1).

To satisfy the conditions of Theorem 1, we let Si = {[0, 14 ], [ 34 , 1]} for

each i ≥ 1. For condition (1), we see that g1([0, 14 ]) ⊂ [0, 14 ] ∪ [ 34 , 1] and

g1([ 34 , 1]) ⊂ [0, 14 ]. For condition (2), each of G(g1) ∩ ([0, 14 ] × [0, 14 ]),

G(g1) ∩ ([0, 14 ] × [ 34 , 1]), and G(g1) ∩ ([ 34 , 1] × [0, 14 ]) is a union of two
mappings. For condition (3), if (a, x) and (b, x) are two points of G(g1),
we see that there exists a continuum L such that either c2(L) = {1}, or
c2(L) ⊂ [0, 14 ]. Hence, by Corollary 5, lim

←−
{[0, 1], g1} is a continuum.

g1

Figure 3. Graph of g1 in Example 3.
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Example 4. The function g2 whose graph is pictured in Figure 4 does
not satisfy either of Theorem 1 or Corollary 5. It does, however, satisfy
Theorem 3, and hence produces a connected inverse limit. The graph of
g2 is the union of four straight line segments. One from (0, 0) to ( 1

4 , 0),

a second from ( 1
4 , 0) to (1, 34 ), a third from ( 1

2 ,
1
2 ) to ( 3

4 ,
1
2 ), and a fourth

from (1
2 ,

1
2 ) to (1, 1). We let I = [ 12 , 1], and Ic0 = [0, 12 ). We note that the

conditions of Theorem 3 are satisfied.
Clearly, (1) and (2) are satified by g2 on the interval I. For condition

(3), let (z, y) ∈ G(g2) ∩ (Ic0 × J) for some J ∈ {Ic0 , I}. It follows that z ∈
[0, 12 ) and y ∈ J = [0, 12 ). We see that there is a mapping g : [0, 1]→ [0, 1]
such that (z, y) ∈ G(g) ⊂ G(g2). For condition (4), if (a, x) and (b, x)
are two points of G(g2), then there exists a continuum L containing them
such that either c2(L) = {0} or c2(L) ⊂ [ 12 , 1]. Hence, by Theorem 3,
lim
←−
{[0, 1], g2} is a continuum.

g2

Figure 4. Graph of g2 in Example 4.

Example 5. We consider an inverse sequence with alternating functions
p and q whose graphs are pictured in Figure 5. The graph of p is the
union of the graph of f from Example 1 and the line segment from ( 1

4 ,
1
4 )

to ( 1
4 ,

1
2 ). The graph of q is the union of three line segments. One from

( 1
2 , 0) to (0, 14 ), a second from (0, 14 ) to ( 1

2 ,
1
4 ), and a third from ( 1

2 ,
1
4 ) to

(1, 1). Let X and Y be, respectively, the inverse limits on [0, 1] of the
alternating inverse sequences of functions p, q, p, q, . . . and q, p, q, p, , . . ..
We observe that Corollary 5 is satisfied in both cases, and hence, by
Corollary 7, X and Y are continua.

For the sequene p, q, p, q, . . ., let I2i−1 = [0, 12 ] and I2i = [0, 14 ] for i ≥ 1.

We have that p([0, 14 ]) = [0, 12 ] and p|[0, 14 ] is a union of continuum-valued

functions. Also, if (a, t) and (b, t) are two points of G(p), then there exists
a continuum L ⊂ G(p) such that c2(L) ⊂ [0, 12 ]. Furthermore, we have

that q([0, 12 ]) = [0, 14 ] and q|[0, 12 ] is a union of two mappings. Also, if (a, t)

and (b, t) are two points of G(q), then t = 1
4 and there exists a continuum
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L ⊂ G(q) such that c2(L) = { 14}. So, the conditions of Corollary 5 are
satisfied, and hence, X is a continuum.

A similar argument shows that Corollary 5 holds for the sequence
q, p, q, p, . . .. Hence, Y is a continuum.

p q

Figure 5. Graphs of p and q in Example 5.

In our last example, we show that the limit of an inverse sequence,
where each bonding function is either f or f−1 from Example 1, is a
continuum. Such an inverse limit may, in general, not be connected, even
if f is a mapping.

Example 6. Given the functon f from Example 1, let X = lim
←−
{[0, 1], fi},

where, for each i ≥ 1, fi = f or fi = f−1. Then X is a continuum. Let
I = [0, 14 ]. We use induction on n, and Corollary 2 to show that for
each n ≥ 1, the function Fn|I : I → G′n−1 is a union of continuum-valued
functions, and G(F−1n ) = G′n is connected.

Let n = 1. Then F1 = f1. Since f1 is either f or f−1, we see, in Figure
1, that, in either case, F1|I is a union of interval-valued functions. Also,
G(F1) is connected; so, G′1 is connected.

Assume for some n ≥ 1, Fn|I is a union of continuum-valued functions,
and G′n is connected. By item 3 of Section 2, G′j is connected for each

1 ≤ j ≤ n. We note that, for fn+1 ∈ {f, f−1}, if (a, x) and (b, x) are
two points of G(fn+1), then there exists a continuum L containing (a, x)
and (b, x) such that either c2(L) = {1} or c2(L) ⊂ I. In either case, by
item 2(c) of Section 2 or by inductive assumption, Fn|c2(L) is a union of
continuum-valued functions. So, by Corollary 2, G′n+1 is connected.

We now show that Fn+1|I is a union of continuum-valued functions.
Let p = (pn+2, p1, . . . , pn+1) ∈ G(Fn+1) with pn+2 ∈ I. There are two
cases to consider.

Case 1. Suppose fn+1 = f . Then, fn+1(I) = I and fn+1|I is a union of
two mappings, namely id|I and the constant 0 function on I. Since, by
inductive assumption, Fn|I is a union of continuum-valued functions, we
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let F̂n : I → G′n−1 be a continuum-valued function whose graph contains
the point (pn+1, p1, . . . , pn).

If pn+1 = 0, define F̂n+1 : I → G′n by F̂n+1(t) = F̂n(0)× {0}. We note

that G(F̂n+1) ⊂ G(Fn+1|I), and F̂n+1 is continuum-valued since F̂n(0) is

a continuum. Also, p = (pn+2, p1, . . . , pn, 0) ∈ G(F̂n+1).

If pn+1 6= 0, then pn+1 = pn+2. Define F̂n+1 : I → G′n by F̂n+1(t) =

F̂n(t)×{t}. Analogously, as in the previous paragraph, F̂n+1 is continuum-

valued, and p ∈ G(F̂n+1) ⊂ G(Fn+1|I). So, Fn+1|I is a union of continuum-
valued functions as desired.

Case 2. Suppose fn+1 = f−1. If pn+2 = 0, let F̂n : I → G′n−1 be a
continuum-valued function whose graph contains the point (0, 0, . . . , 0),

and define F̂n+1(0) = G′n, and F̂n+1(t) = F̂n(t) × {t} for 0 < t ≤ 1
4 . By

inductive assumption, G′n is a continuum, and, by definition, F̂n(t) is a

continuum for each 0 < t ≤ 1
4 . So, F̂n+1 is continuum-valued. Also, it is

clear that p ∈ G(F̂n+1) ⊂ G(Fn+1|I).
If pn+2 6= 0, then either pn+1 = pn+2 ∈ I or pn+1 = 1. If pn+1 = pn+2,

let F̂n : I → G′n−1 be a continuum-valued function whose graph contains

the point (pn+1, p1, . . . , pn), and define F̂n+1(t) = F̂n(t)× {t}. It follows

that F̂n+1 is the desired continuum-valued function.
If pn+1 = 1, then either pi = 1 for all 1 ≤ i ≤ n + 1, or there exist a

largest 1 ≤ j < n + 1 such that pj 6= 1. If the former is the case, define

F̂n+1(t) = (1, 1, . . . , 1, t) for t ∈ I. In this case, F̂n+1 is a mapping, and

p ∈ G(F̂n+1) ⊂ G(Fn+1|I). If the latter is the case, then fj = f , and

fj(1) = [0, 1]. So, we define F̂n+1(t) = G′j−1 × (1, . . . , 1, t) for t ∈ I. It

is clear, in this case, that F̂n+1 is continuum-valued, and p ∈ G(F̂n+1) ⊂
G(Fn+1|I).

The inductive proof is complete, and it follows that X is a continuum.
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