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FOLDERS OF CONTINUA

C.L. HAGOPIAN, M.M. MARSH, AND J.R. PRAJS

Abstract. This article is motivated by the following unsolved

fixed point problem of G. R. Gordh, Jr. If a continuum X ad-
mits a map onto an arc such that the preimage of each point is

either a point or an arc, then must X have the fixed point prop-

erty? We call such a continuum an arc folder. This terminology
generalizes naturally to the concept of a continuum folder.

We give several partial solutions to Gordh’s problem. The an-

swer is yes if X is either planar, one dimensional, or an approx-
imate absolute neighborhood retract. We establish basic proper-

ties of both continuum folders and arc folders. We provide several
specific examples of arc folders, and give general methods for con-

structing continuum folders. Numerous related questions are raised

for further research.

1. Introduction

The main focus of this paper is arc folders; that is, continua admit-
ting maps onto an arc with point preimages being an arc or a point. In
conversation (circa 1980) with a number of topologists, G. R. Gordh, Jr.
asked the following question, which is still open.

Question 1. Do all arc folders have the fixed point property?

We find this question challenging and intriguing, and the class of arc
folders interesting and more diverse than its rather restrictive definition
may suggest. In this paper, we give some partial answers to Gordh’s
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question. We establish some general properties and unexpected examples
of arc folders and their generalizations.

A continuum is a non-empty, compact, connected metric space. A map
or mapping is a continuous function. A mapping f : X → Y is monotone
if, for each y ∈ Y , f−1(y) is connected. We study the classM of continua
that admit a monotone mapping onto [0, 1]. If X ∈M and η : X → [0, 1]
is surjective and monotone, we refer to [0, 1] as the base space and to
each η−1(t), for t ∈ [0, 1], as a fiber of X. This structure gives rise to an
upper semi-continuous decomposition of X, where the fibers are elements
of the decomposition. The class M is inverse-invariant with respect to
monotone maps; that is, if X is in M and Y admits a monotone map
onto X, then Y is in M. Metric brush spaces with core an arc are in M
[34]; so, dendrites are in M. The arc of pseudo-arcs [3], [14], [23], the
pseudo-hairy arc [46], and the hairy arc [1] are intricate members of M
that have received recent attention.

For eighty years, there has been considerable interest in the special
case of irreducible continua X in M, see for example [19], [21], [22], [25],
[27, Section 48], [28], [30], [31], [37], [39], [49], and [50]. E.S. Thomas’s
article [49] provides an extensive investigation of this case.

Definition 1. We refer to a member X of M together with a monotone
surjective map η : X → [0, 1] as a continuum folder. So, a continuum
folder is a pair (X, η), but we will typically refer to X as a continuum
folder, with an assumed monotone map η : X → [0, 1]. Let G be a class of
continua. If each fiber of X is either a point or belongs to G, we call X a
G folder or a folder of continua from G.

Definition 2. For M a continuum, an {M} folder, which we denote
simply by M folder, is a continuum folder where each fiber is either a
point or is homeomorphic to M .

Definition 3. If the decomposition of a continuum folder X into its fibers
is a continuous decomposition, we call X a continuous continuum folder.

A familiar, simple example of a continuous M folder is [0, 1]×M , which
is sometimes called an M cylinder.

There are arc folders, tree folders, disk folders, folders of absolute re-
tracts, folders of chainable continua, etc. Our particular interest is arc
folders.

In Section 2, we establish general properties of continuum folders. Sub-
sections 3.1 and 3.2 provide general methods for constructing examples.
Section 4 contains results specific to arc folders.
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2. Continuum folders

For X a compact metric space, and B ⊂ X, we let cl(B) and dim(B)
denote, respectively, the closure of B, and the inductive dimension of B
as defined in [24] and [42]. If continua X and Y are homeomorphic, we

write X
T
≈ Y .

Lemma 1. If X is a folder of continua and t ∈ (0, 1), then cl(η−1([0, t)))∩
η−1(t) and cl(η−1((t, 1])) ∩ η−1(t) are continua. For t = 0, the latter set
is a continuum, and for t = 1, the former set is a continuum.

Proof. Let 0 < t ≤ 1. The set cl(η−1([0, t))) ∩ η−1(t) is closed, so we will
show that it is also connected. Assume the contrary. Let cl(η−1([0, t)))∩
η−1(t) be the union of two disjoint, non-empty, closed sets A and B. Let C
and D be disjoint open sets in X such that A ⊂ C and B ⊂ D. Since each
fiber ofX is a continuum, there exists r ∈ [0, t) such that for each s ∈ [r, t),
either η−1(s) ⊂ C or η−1(s) ⊂ D. Let s ∈ [r, t) such that η−1(s) ⊂ C.
Since η−1(s) separates X, it follows that η−1([0, s]) ∪ cl(η−1([s, t)) ∩ C)
and cl(η−1([s, t))∩D) are non-empty, disjoint, closed sets whose union is
cl(η−1([0, t))). However, since η is monotone, η−1([0, t)) is connected and
cl(η−1([0, t))) is a continuum, which is a contradiction.

A similar argument holds when 0 ≤ t < 1. �

A continuum X is acyclic if for each n ≥ 1, the nth Čech cohomology
group of X, Hn(X;Z), is trivial. A continuum X is unicoherent if when-
ever X is the union of two subcontinua H and K, we have that H ∩K is
connected.

Proposition 1. If X is a folder of acyclic continua, then X is acyclic.
Also, X is unicoherent.

Proof. That X is acyclic follows from the Vietoris-Begle theorem, see [48,
Theorem 15, page 344]. Since H1(X;Z) is trivial, by Bruschlinsky’s the-
orem [13, Theorem 8.1], each map from X to S1 is inessential (homotopic
to a constant map). So, X is unicoherent. �

Proposition 2. If X is a folder of continua with trivial shape and dim(X)
is finite, then X has trivial shape.

Proof. This follows from R.B Sher [47, Theorem 11]. Or, see Theorem
9.3 on page 352 in [6]. �

Proposition 3. If X is a folder of continua, each with dimension less
than or equal n, then dim(X) ≤ n+ 1.

Proof. This follows from [42, Theorem 22.1, page 139]. �
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Proposition 4. If X is a hereditarily unicoherent folder of continua, then
each indecomposable subcontinuum of X is contained in some fiber of X.

Proof. Suppose X contains an indecomposable subcontinuum Y that is
not contained in a fiber of X. Then Y must meet two fibers η−1(r) and
η−1(s), where 0 ≤ r < s ≤ 1. We can choose a, b with r ≤ a < b ≤ s
so that two distinct composants H and L of Y meet both η−1(a) and
η−1(b). Let E and F be continua in H and L, respectively, such that
η−1(a) ∩ E 6= ∅ 6= η−1(b) ∩ E, and η−1(a) ∩ F 6= ∅ 6= η−1(b) ∩ F . Note
that η−1(a)∪E ∪ η−1(b) and η−1(a)∪F ∪ η−1(b) are two subcontinua of
X whose intersection η−1(a) ∪ η−1(b) is not connected. So, X contains a
non-unicoherent subcontinuum, which is a contradiction. �

A continuum X is irreducible if there exist points p and q in X such
that no proper subcontinuum of X contains both p and q. In this case,
we say that X is irreducible between the points p and q. We note that if
a continuum folder X is irreducible, then it is irreducible between points
p ∈ η−1(0) and q ∈ η−1(1).

Proposition 5. Each irreducible folder of 1-dimensional continua is 1-
dimensional.

Proof. This proposition follows almost immediately from Theorem 1 in
[28]. One only needs to check that the “fibres” in Theorem 1 are subsets
of the 1-dimensional fibers in our folder decomposition. The A. Lelek and
D. Zaremba fibres are “layers” of the minimal decomposition discussed by
K. Kuratowski in §48(IV) of [27], called “tranches” in an earlier edition of
his book. See specifically Theorem 3 on page 200 in [27], or see Theorem
3 on page 8 in [49].

To complete the proof, let X be an irreducible folder of 1-dimensional
continua, and let G be the minimal decomposition of X. Since each
element of G is contained in a fiber of X, and each fiber of X is 1-
dimensional, it follows from [28, Theorem 1] that X is 1-dimensional. �

Proposition 6. A folder of chainable continua is chainable if and only
if it is atriodic.

Proof. Let X be a folder of chainable continua. If X is chainable, it is
known that X is atriodic. So, we prove the converse.

Suppose X is atriodic. Then, in particular, X is not a triod. By
Proposition 1, X is unicoherent. By Sorgenfrey’s theorem (see [43, 11.34,
page 216]), it follows that X is irreducible.

By Proposition 5, the dimension of X is one. By Proposition 2, X has
trivial shape. Thus, we have that X is tree-like. So, X is hereditarily
unicoherent. By Proposition 4, each indecomposable subcontinuum of X
is in some fiber of X. Hence, by [14, Theorem 2], X is chainable. �
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Question 2. Is each irreducible arc folder embeddable in the plane?

A continuum X is a λ-dendroid if it is hereditarily unicoherent and
hereditarily decomposable. H. Cook [11] has shown that all λ-dendroids
are tree-like.

Proposition 7. If X is a 1-dimensional folder of λ-dendroids, then X is
a λ-dendroid.

Proof. Since tree-likeness is equivalent to trivial shape in the case of 1-
dimensional continua, it follows from Proposition 2 that X is tree-like.
Hence, X is hereditarily unicoherent. Since λ-dendroids are hereditarily
decomposable, it follows from Proposition 4 that X contains no indecom-
posable subcontinuum; that is, X is hereditarily decomposable. We have
that X is a λ-dendroid. �

A continuum X has the fixed point property (fpp) if each mapping
f : X → X has a fixed point; that is, a point x ∈ X such that f(x) = x.

Corollary 1. If X is a 1-dimensional folder of λ-dendroids, then X has
the fpp.

Proof. This follows from Proposition 7 and R. Mańka’s result in [32] that
λ-dendroids have the fpp. �

A 1-dimensional continuum folder may fail to have the fpp, even when
it is irreducible and all of its fibers have the fpp (see [19], [21], and [37]).

Let X and A be continua with A ⊂ X. If r : X → A is a mapping such
that r|A is the identity mapping on A, then r is called a retraction and
A is called a retract of X. The continuum A is an absolute retract (AR)
if whenever A is embedded as a subset of the Hilbert cube Q, there is a
retraction r of Q onto the embedded copy of A.

Below we give an example of an AR folder without the fpp, where all
fibers are arcs, except η−1(1) which is a disk.

Example 1. Let X be the cone over a simple spiral to the unit circle in the
plane. Then X is an AR folder that does not have the fpp. Furthermore,
the fiber η−1(1) is a disk and all other fibers of X are arcs.

Proof. R.J. Knill showed in [26] that X admits a fixed-point-free mapping.
We show that X is an AR folder.

First, we embed X in R3. Let C be the unit circle in the xy-plane,
and let S be a simple spiral in the xy-plane such that q = (2, 0, 0) is the
endpoint of S, S ∩ C = ∅, and S ∪ C is a compactification of S. Let
v = (0, 0, 1).

For each point p in the xy-plane, let `p = {tv+(1−t)p | 0 ≤ t ≤ 1}. For
convenience, we let t · p denote the point tv + (1− t)p for each 0 ≤ t ≤ 1.
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Note that the third coordinate of t · p is t for all points p in the xy-plane.
So, for all such p, 0·p = p and 1·p = v. For each subset B of the xy-plane,
let cone(B) =

⋃
p∈B `p.

Let X = cone(S ∪ C). To see that X is an AR folder, we decompose
cone(S) into a union of arcs; and let cone(C), which is topologically a
disk, be a single member of the decomposition. Let Aq = {q}. For
p ∈ S \ {q}, let Ap be the arc in S with endpoints q and p. For 0 < t < 1,
let t · Ap = {t · z | z ∈ Ap}. Let g : S → [0, 1) be a homeomorphism.
Finally, for p ∈ S, let Lp = {t · p | 0 ≤ t ≤ g(p)} ∪ g(p) · Ap. Note
that Lq = {q}, and otherwise, Lp is a nondegenerate arc. Also, it is easy
to see that the collection {Lp | p ∈ S} ∪ {cone(C)} is an upper semi-
continuous decomposition of X. Letting η : X → [0, 1] be the mapping
such that η(Lp) = g(p) and η(cone(C)) = {1}, we see that X is an AR
folder. Although we have one degenerate fiber, namely Lq, it is clear that
the decomposition of cone(S) could be modified to have no degenerate
fibers. �

A compactum X is weakly aposyndetic if, for each point x ∈ X, there
exist a continuum K in X \ {x} such that K has nonempty interior. A
point x in a compactum X is a cofilament point if X \ {x} contains only
continua with empty interior. Dendroids that do not contain a cofilament
point are weakly aposyndetic.

Proposition 8. If X is a 1-dimensional continuous folder of dendroids
that do not contain cofilament points, then X is an arc.

Proof. By Proposition 7, X is a λ-dendroid. Since the decomposition of
X into fibers is continuous, the monotone mapping η : X → [0, 1] is open.
Each fiber that is nondegenerate is weakly aposydetic. So, it follows from
Theorem 2.3 in [45], that η is a homeomorphism. Hence, X is an arc. �

Corollary 2. Each 1-dimensional continuous folder of dendrites is an
arc.

Question 3. Can Proposition 8 be generalized to include all dendroids?

The next section provides methods for constructing continuum folders.

3. Examples of threaded continuum folders

Definition 4. A thread in a continuum folder X is a continuous selector
of η : X → [0, 1]; that is, an arc A in X such that A∩η−1(t) is degenerate
for each t ∈ [0, 1]. The folder X is called threaded if each point x ∈ X
belongs to a thread in X.

Proposition 9. Each threaded continuum folder is continuous.
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Proof. Let X be a threaded continuum folder. It suffices to show that
η : X → [0, 1] is an open mapping. Let U be an open set in X, and let
x ∈ U . Since X is threaded, there exists an arc A in X such that x ∈ A
and A ∩ η−1(t) is degenerate for each t ∈ [0, 1]. We see that η(x) is in
the interior of η(U ∩ A), which is a subset of η(U). It follows that η(U)
is open. Hence, η is an open mapping, and the decomposition of X into
fibers η−1(t), for t ∈ [0, 1], is continuous. �

Proposition 10. An arc is the only one-dimensional threaded arc folder.

Proof. Let X be a one-dimensional threaded arc folder. By Proposition
9, X is a continuous arc folder. By Corollary 2, X is an arc. �

X

Figure 1. A non-locally connected threaded arc folder

Example 2. Not all threaded arc folders are locally connected.

Proof. Let W be the Warsaw circle together with its bounded comple-
mentary domain as in Figure 1. The darker arc is a thread that contains
the given point x and whose intersection with every fiber is degenerate.
Clearly, W is not locally connected.
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There is a second embedding of the Warsaw circle in the plane that
defines a different continuum when its bounded complementary domain
is added. Although this continuum admits an arc folder decomposition,
it does not admit one that is threaded. �

Question 4. Do all locally connected threaded arc folders have the fpp?

Subsection 3.1 introduces a class of continuum folders constructed from
mappings between continua. If the mappings are surjective, then these
examples are threaded continuum folders. Subsection 3.2 introduces a
class of threaded continuum folders that are constructed from inverse
limits of continua.

3.1. Mapping cylinders.

Definition 5. Let f : M → N be a mapping between continua. The
mapping cylinder C(f) of f is the adjunction space ([0, 1]×M)∪f N with
quotient map p : ([0, 1]×M)∪N → C(f) that identifies each point (0, x)
in [0, 1]×M with f(x) in N . Otherwise, p embeds (0, 1]×M as an open
set in C(f).

Discussion of adjunction spaces and mapping cylinders can be found,
respectively, in Chapter VI (Section 6) and Chapter XVIII (Section 4) in
[12].

Definition 6. If M
T
≈ N , we refer to C(f) as an M mapping cylinder.

In particular, if M
T
≈ N

T
≈ [0, 1], we refer to C(f) as an arc mapping

cylinder.

Proposition 11. Let f : M → N be a mapping between continua. The

mapping cylinder of f is a continuum folder. Furthermore, if M
T
≈ N ,

then C(f) is an M folder. If f is surjective, C(f) is a threaded continuum
folder.

Proof. Define the map η : C(f) → [0, 1] as follows. Let η(p(t, x)) = t
for 0 < t ≤ 1, and let η(p(y)) = 0 for y ∈ N . It is clear that η is a
monotone map with fibers that are homeomorphic to M for t > 0, and
with η−1(0) homeomorphic to N . So, C(f) is a continuum folder, and

clearly, if M
T
≈ N , then C(f) is an M folder.

For surjective mappings f : M → N , the collection of threads {p([0, 1]×
{x}) | x ∈M} makes C(f) a threaded continuum folder. �

Definition 7. Given f : M → N , and quotient map η : C(f)→ [0, 1], we
call η−1(0) and η−1(1), which are, respectively, homeomorphic to N and
M , the left side of C(f) and the right side of C(f).
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Let X and A be continua with A ⊂ X, and let j : A ↪→ X be the
inclusion mapping. A deformation retraction of X into A is a homotopy
H : X × [0, 1] → X from the identity mapping on X to j ◦ r : X → X,
where r is a retraction of X onto A. In this case, A is called a deformation
retract of X. If H(a, t) = a for all a ∈ A and all t ∈ [0, 1], then H is a
strong deformation retraction, and A is called a strong deformation retract
of X.

Proposition 12. Let f : M → N be a mapping between continua. Then
N and C(f) have the same fundamental group.

Proof. It is easy to see that N is a strong deformation retract of C(f)
(see [12, 4.2, page 369]). Hence, C(f) has the same fundamental group
as N , see [41, Theorem 58.3, page 361]. �

Proposition 13. Each arc mapping cylinder is 2-dimensional and em-
beddable in R3.

Proof. Let X = C(f) be an arc mapping cylinder. Since X contains a
copy of (0, 1]× [0, 1], it is clear that X is 2-dimensional. We embed a copy
of X in R3.

Let I0 = {0} × {0} × [0, 1] in R3, and let I1 = {(1, s, f(s)) | s ∈ [0, 1]}.
For each t ∈ [0, 1], let At be the union of the line intervals in R3 from the
point (0, 0, t) in I0 to all points in the set {(1, s, t) | s ∈ f−1(t)} ⊂ I1. It
is easy to see that the defining intervals in At all lie in the plane R2×{t},
all have the point (0, 0, t) in common, and otherwise do not intersect. Let

Y = ∪t∈[0,1]At. Clearly, Y
T
≈ X. �

Proposition 14. Let f : M → N be a mapping between finite dimensional
ARs. Then C(f) is an AR, and hence, has the fpp.

Proof. By [4, Corollary 10.5, page 122], a finite dimensional compactum
is an AR if and only if it is locally contractible and contractible in itself.
We first show that C(f) is locally contractible.

If (t, x) ∈ C(f) for t > 0, then (t, x) lies in [s, 1]×M for some 0 < s < t.
Since [s, 1]×M is an AR and ARs are locally contractible, it follows that
C(f) is locally contractible at (t, x).

Let (0, x) = f(x) ∈ N be a point of the base of C(f). Let V be a
neighborhood of (0, x) in C(f). Let U be a neighborhood of (0, x) in
V ∩N and let U0 be a connected open set in N such that (0, x) ∈ U0 ⊂ U ,
U0 is contractible to (0, x) in U , and L = C(f |f−1(U0)) ∩ η−1([0, s)) ⊂
V for some s > 0. Now, L is open in C(f) and contains (0, x). Let
H : C(f) × [0, 1] → N be the natural deformation retraction. Applying
H to L and thereafter contracting U0 to (0, x) in U gives us that L is
contractible to (0, x) in V .
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Since N is an AR, it is contractible in itself. So, we use the deformation
retraction H from C(f) into N , and follow it with a contraction of N to
a point. Hence, C(f) is contractible in itself and, thus, is an AR. �

Although Proposition 14 gives us that every AR mapping cylinder has
the fpp, it is not the case that all AR folders have the fpp (recall Example
1).

3.2. Mapping cylinders of inverse sequences. We use inverse se-
quences and inverse limits throughout this section. Definitions and gen-
eral properties of these notions can be found in [29, Subsections 2.1 –
2.3].

For an inverse sequence {Xi, g
i+1
i } with surjective bonding maps, we

combine the mapping cylinders C(gi+1
i ) as follows. We assume that all of

the C(gi+1
i )’s are embedded in a single space, and C(gi+1

i )∩C(gj+1
j ) = ∅

if j > i+ 1. If j = i+ 1, we assume the intersection C(gi+1
i )∩C(gj+1

j ) is

the right side of C(gi+1
i ) identified with the left side of C(gj+1

j ).

Definition 8. Let X = lim
←−
{Xi, g

i+1
i } be an inverse limit of continua

with surjective bonding maps. For each n ≥ 1, let An+1 = ∪ni=1C(gi+1
i ).

Note that the sequence {An} is nested. Also, for each n ≥ 2, since Xn

is a strong deformation retract of C(gn+1
n ), there is a natural retraction

rn+1
n : An+1 → An. Let C({Xi, g

i+1
i }) = lim

←−
{Ai, ri+1

i , i ≥ 2}. We call

C({Xi, g
i+1
i }) the mapping cylinder of the inverse sequence {Xi, g

i+1
i }.

Remarks. In the terminology introduced by Marsh and Prajs [35, 36], by
its definition, C({Xi, g

i+1
i }) has an internal inverse limit structure with

retractions for bonding maps (see specifically the definitions on pages
1211 and 1212, and Theorem 2.1). Furthermore, X is topologically a
subset of C({Xi, g

i+1
i }). To see this, let x = (x1, x2, . . .) be a point of X.

Identify xi ∈ Xi with x̂i = (gi1(xi), g
i
2(xi), . . . , xi, xi, . . .) in C({Xi, g

i+1
i }).

Then we have that x = limi≥1 x̂i. So, x ∈ C({Xi, g
i+1
i }). Under this

identification C({Xi, g
i+1
i }) =

⋃
i≥1 C(gi+1

i )∪X, and each Xi is contained

in C({Xi, g
i+1
i }) as the left side of C(gi+1

i ).

By compressing the images of the quotient maps ηi : C(gi+1
i )→ [0, 1] to

a null sequence of amalgamated intervals, and mappingX to 1, we see that
C({Xi, g

i+1
i }) is a continuum folder. Specifically, let η : C({Xi, g

i+1
i }) \

X → [0, 1) be defined by

η(x) =
1

i(i+ 1)
ηi(x) +

i− 1

i
, for x ∈ C(gi+1

i ). Let η(X) = 1.
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By definition, each point x ∈ X = lim
←−
{Xi, g

i+1
i } is a thread (x1, x2, ...)

in X1 × X2 × ... of the inverse sequence {Xi, g
i+1
i }. Under our identi-

fication, X, each Xi, and each C(gi+1
i ) are contained in C({Xi, g

i+1
i })

and limi≥1 xi = x in C({Xi, g
i+1
i }). For each i ≥ 1, we have xi, xi+1 ∈

C(gi+1
i ), and there is an arc pi([0, 1] × {xi+1}) in C(gi+1

i ) from xi to
xi+1 (see Definition 5), which we denote by [xi, xi+1]. For n ≥ 2, let
[x1, xn] = ∪ni=1[xi, xi+1], and let [x1, xn) = [x1, xn] \ {xn}. The union
α(x) = {x} ∪

⋃∞
i=1[xi, xi+1] becomes a thread in the continuum folder

C({Xi, g
i+1
i }) from x1 to x. The collection {α(x) | x ∈ X} of threads

makes C({Xi, g
i+1
i }) a threaded continuum folder. We note that for

n ≥ 2, η(α(x) \ [x1, xn)) = [n−1n , 1]. So, the lengths of the right end
segments of the threads α(x) limit to zero as n approaches infinity.

Proposition 15. Let C({Xi, g
i+1
i }) be a mapping cylinder of an inverse

sequence, where each Ai has the fpp, then C({Xi, g
i+1
i }) has the fpp. So,

in particular, if the factor spaces Xi are ARs, then C({Xi, g
i+1
i }) has the

fpp.

Proof. This result follows from the first paragraph of the Remarks above,
and from Theorems 1 and 3 in [35]. Also, it is straightforward to prove
this theorem, since the projection mappings from C({Xi, g

i+1
i }), as an

internal inverse limit, to the Ai’s are 1
2i -retractions. �

Definition 9. Let X = lim
←−
{Xi, g

i+1
i }, and suppose X admits a mapping

f : X → Z. We let X̂ denote the copy of X in C({Xi, g
i+1
i }), and we

let f̂ : X̂ → Z denote the mapping that is conjugate to f : X → Z.
We modify the mapping cylinder of {Xi, g

i+1
i } by identifying the point

inverses f̂−1(z), for z ∈ Z, to points, and taking the quotient topology
on C({Xi, g

i+1
i })/f̂ . This has the effect of giving a compactification of

∪i≥1C(gi+1
i ) that has remainder Z rather than X. We will call such a

space a modified mapping cylinder of {Xi, g
i+1
i } (with right-end fiber Z),

denoted by C({Xi, g
i+1
i })/f̂ . We let γ : C({Xi, g

i+1
i })→ C({Xi, g

i+1
i })/f̂

be the quotient mapping.

By defining η : C({Xi, g
i+1
i })/f̂ → [0, 1] to be the natural mapping

making the diagram below commute, we see that C({Xi, g
i+1
i })/f̂ is also

a continuum folder.
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C({Xi, g
i+1
i }) C({Xi, g

i+1
i })/f̂-

γ

[0, 1]

A
AAU

η �
���
η

If Z and allXi are in the same class G of continua, then C({Xi, g
i+1
i })/f̂

is a G folder. The collection {γ(α(x̂)) | x̂ ∈ X̂} makes C({Xi, g
i+1
i })/f̂ a

threaded continuum folder. We note that, for x̂ ∈ X̂, the sequence of arcs
{γ(α(x̂))\ [x1, xn)}n≥2 forms a null sequence since η(γ(α(x̂))\ [x1, xn)) =
[n−1n , 1] for n ≥ 2. This follows from the diagram above and the last few
sentences at the end of the Remarks after Definition 8.

Proposition 16. Each modified mapping cylinder of an inverse sequence
on ARs with right-end fiber an AR is a locally connected, threaded, con-
tinuous AR folder. In particular, each modified mapping cylinder of an
inverse sequence on [0, 1] with right-end fiber an arc is a locally connected,
threaded, continuous arc folder.

Proof. Let Y = C({Xi, g
i+1
i })/f̂ be a modified mapping cylinder of an

inverse sequence of ARs. We noted above that Y is threaded. Proposition
9 gives us that Y is a continuous AR folder. To see that Y is locally
connected, let y ∈ Y . If y ∈ An for some n ≥ 2, then Y is locally
connected at y since Ai is an AR for all i ≥ 2. Suppose y = γ(x̂) ∈ Z for

some x̂ ∈ X̂. We note that if {yn} is a sequence of points in Y converging
to y, there exists a null sequence of arcs {βn} such that for each n ≥ 1,
both yn and y are in βn. This follows from the fact that Z is an AR, and
from the remarks previous to this proposition about the right end arcs
in threads of Y . It follows that Y is connected im kleinen at y = γ(x̂).
Hence, Y is locally connected since Y is connected im kleinen at every
point (see pages 47-49 in [29]). �

In the remainder of this section, the reader may find it helpful to have
reference [36] at hand, paying particular attention to Theorem 2.1 and its
proof, and to Corollary 3.1.

We now consider the special case of mapping cylinders on inverse se-
quences where the inverse limit X = lim

←−
{Xi, g

i+1
i } is retractably AR-like.

This case arises when X can be expressed as an inverse limit on ARs with
bonding maps that are r-maps (see page 1211 in [36]), and it includes
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all Knaster continua (inverse limits on [0, 1] with open bonding maps) as
examples.

Let X = lim
←−
{Xi, g

i+1
i } with surjective r-maps for bonding maps. By

Theorem 2.1 and its proof in [36], there is a nested increasing sequence

{X̂i} in X, where for each i ≥ 1, X̂i
T
≈ Xi, and hi ◦ gi : X → X̂i is a

1
2i -retraction, where hi : Xi → X̂i is the embedding defined in Theorem
2.1 and gi is the projection mapping of X onto Xi. Furthermore, for each
i ≥ 1, we have that gi◦hi is the identity mapping on Xi. For convenience,
we let ĝi = hi ◦ gi. It follows from this construction, or from Corollary
3.1 in [36], that X is retractable AR-like.

Whenever X is an inverse limit on ARs, it follows from Definition 8 and
Corollary 3.1 in [36] that C({Xi, g

i+1
i }) is retractably AR-like, specifically,

onto the nested sequence {Ai}. For k ≥ 1, recall that gk denotes the
projection mapping of X onto Xk. We show that, if additionally the
bonding maps gi+1

i are r-maps, then we can construct a different internal

structure on C({Xi, g
i+1
i }) so that, for all k ≥ 1, the modified inverse

sequence mapping cylinders C({Xi, g
i+1
i })/ĝk will also be retractably AR-

like. It follows that all of these types of modified inverse sequence mapping
cylinders will have the fpp. We verify these claims in Propositions 17 and
18, and Corollary 3 below.

Proposition 17. Let X = lim
←−
{Xi, g

i+1
i }, where for each i ≥ 1, Xi is an

AR, and gi+1
i is an r-mapping. Then C({Xi, g

i+1
i }) is retractably AR-like

onto a nested sequence of ARs different from the sequence {Ai}.

Proof. By definition of an r-mapping, for each i ≥ 1, there exists an
embedding ji : Xi → Xi+1 such that gi+1

i ◦ ji is the identity mapping

on Xi. We will show that C({Xi, g
i+1
i }) is retractably AR-like onto a

sequence determined by the internal inverse limit structure of X. From
the discussion preceding this proposition, we assume that X̂ is a copy of
X in C({Xi, g

i+1
i }), each X̂i = hi(Xi) is a copy of Xi in X̂, and we denote

points hi(z) in X̂i by ẑ.
Let C({Xi, g

i+1
i }) and the sequence {An} be given as in Definition 8.

For each n ≥ 2, let Cn = ∪{α(x̂) | x̂ ∈ X̂n}. We note that for each n ≥ 2,

cl(Cn \ An)
T
≈ Xn × [n−1n , 1]. So, each Cn is an AR since both An and

cl(Cn \An) are ARs and their intersection Xn is an AR. Also, {Cn} is a
nested increasing sequence lying in C({Xi, g

i+1
i }).

For each n ≥ 1, we define the retraction ρn : C({Xi, g
i+1
i }) → Cn

as follows. For each point x̂ ∈ X̂, and each point z ∈ α(x̂), we let
ρn(z) = (η|α(ĝn(x̂)))−1 ◦ η(z). We see that ρn is well-defined since η is

one-to-one on threads. Since, for each n ≥ 2, ĝn is a 1
2n -retraction, it
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follows that ρn is a 1
2n -retraction. Hence, C({Xi, g

i+1
i }) is retractably

AR-like onto the nested sequence {Ci}. �

Our main purpose, for the internal constructions on C({Xi, g
i+1
i }) in

the proof of Proposition 17 above, is to see that we can maintain the
retractably AR-likeness for any modified C({Xi, g

i+1
i })/f̂ , where f is one

of the projection maps gk : X → Xk. We first introduce notation that will
be helpful for transitioning between C({Xi, g

i+1
i }) and C({Xi, g

i+1
i })/ĝk .

Fix k ≥ 1. Let Y = C({Xi, g
i+1
i }), Yk = C({Xi, g

i+1
i })/ĝk , and let

γ : Y → Yk be the quotient mapping. Since Y \ X̂ and Yk \ η−1(1) are
homeomorphic open subsets of, respectively, Y and Yk, we will not distin-
guish notationally between points of these two sets. So, for setsD ⊂ Y \X̂,

D will also denote its copy in Yk \ η−1(1). If a set D ⊂ Y meets X̂, then
we let D = γ(D). Thus, η−1(1) is denoted by Xk, distinguishing it in Yk
from the copy of Xk that is the left side of C(gk+1

k ).

Note that for x̂ ∈ X̂, the thread α(x̂) in Y becomes α(x̂) in Yk, which

is an arc in Yk with endpoints g1(x) ∈ X1 and gk(x) ∈ Xk. Furthermore,

we have that α(x̂) = cl(∪n≥1[gn(x), gn+1(x)]) in Yk. We observed earlier

that α(x̂) is a thread in Yk.

Proposition 18. Let X = lim
←−
{Xi, g

i+1
i }, where for each i ≥ 1, Xi is an

AR, and gi+1
i is an r-mapping. Then, for each k ≥ 1, C({Xi, g

i+1
i })/ĝk

is retractably AR-like.

Proof. We adopt the notation and terminology in the paragraphs imme-

diately above. In Yk, for n ≥ k, note that cl(Cn \ An)
T
≈ C(gk|Xn

). So,

for n ≥ k, Cn is an AR in Yk. For each point x̂ ∈ X̂, and each point
z ∈ α(x̂) \ {x̂}, we let ρn(z) = ρn(z), and let ρn(γ(x̂)) = ĝk(x̂). Since

gk = gnk ◦ gn, we have that, for x̂ ∈ X̂, ĝk(ĝn(x̂)) = ĝk(x̂), establishing
the continuity of ρn. It is clear that each ρn for n ≥ k is a 1

2n -retraction.

Hence, Yk is retractably AR-like onto the nested sequence {Cn}. �

If X is a compactum and there exists an embedding of X into a com-
pactum Y , we will denote the embedded copy of X by X ′. A compactum
X is an approximate absolute retract (AAR) if whenever X is embedded
in a compactum Y , for each ε > 0, there is a mapping f : Y → X ′ such
that d(x, f(x)) < ε for all x ∈ X ′. A compactum X is an approximate
absolute neighborhood retract (AANR) if whenever X is embedded in a
compactum Y , for each ε > 0, there exists a neighborhood U of X ′ and a
mapping f : U → X ′ such that d(x, f(x)) < ε for all x ∈ X ′. AARs and
AANRs have been studied extensively, see for example [5], [7], [9], [15],
[16], [17], and [44].
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Corollary 3. Let X = lim
←−
{Xi, g

i+1
i }, where for each i ≥ 1, Xi is an

AR, and gi+1
i is an r-map. Then, for each k ≥ 1, C({Xi, g

i+1
i })/ĝk is an

approximate absolute retract and has the fpp.

Proof. That C({Xi, g
i+1
i })/ĝk is an approximate absolute retract follows

from Proposition 18 and Theorem 2.3 in [10]. That C({Xi, g
i+1
i })/ĝk has

the fpp follows from Theorems 1 and 3 in [35]. �

Corollary 4. Let X = lim
←−
{[0, 1], gi+1

i } be a Knaster continuum. That

is, for each i ≥ 1, gi+1
i is an open mapping. Then, for each k ≥ 1,

C({[0, 1], gi+1
i })/ĝk has the fpp.

Proof. This follows from the fact that the open bonding maps gi+1
i are

r-maps. �

The following questions are special cases of Question 4.

Question 5. Do all modified mapping cylinders of inverse sequences on
[0, 1] with right-end fiber an arc have the fpp?

The authors have found the following more specific open question par-
ticularly interesting. A proof in this special case may provide insight for
a general approach to answering Gordh’s Question 1.

Question 6. If the pseudo arc P is expressed as an inverse limit on
[0, 1], does each of its modified mapping cylinders with right-end fiber an
arc have the fpp?

4. Arc folders

The first two propositions of this section list, respectively, properties
of arc folders and arc mapping cylinders that follow immediately from
propositions established in Sections 2 and 3. For the reader’s convenience,
we list the appropriate propositions in parenthesis at the beginning of each
statement.

Proposition 19. Let X be an arc folder.

(1) (Prop.1) X is acyclic and unicoherent.
(2) (Prop.3) X has either dimension one or dimension two.
(3) (Prop.2) X has trivial shape.
(4) (Prop.5) If X is irreducible, then dim(X) = 1.
(5) (Prop.6) X is atriodic if and only if X is chainable.
(6) (Prop.7) If dim(X) = 1, then X is a λ-dendroid.
(7) (Prop.8) If X is continuous and dim(X) = 1, then X is an arc.

Proposition 20. Let X be an arc mapping cylinder. Then X is an arc
folder that has the following additional properties.



16 C.L. HAGOPIAN, M.M. MARSH, AND J.R. PRAJS

(1) (Prop.12) X has trivial fundamental group.
(2) (Prop.13) X is 2-dimensional and embeddable in R3.

Proposition 21. For an arc folder X, the following conditions are equiv-
alent.

(a) X is one-dimensional.
(b) X is a λ-dendroid.
(c) X is tree-like.
(d) X is hereditarily unicoherent.
(e) X is hereditarily decomposable.

Proof. That (a), (b), and (c) are equivalent follows from Proposition
19(6), and well-known facts about tree-like continua and λ-dendroids.

S. Mazurkiewicz [38] has shown that 2-dimensional continua contain
nondegenerate indecomposable subcontinua (also see [27, Remark 2]). So,
if X is hereditarily decomposable, then dim(X) = 1. That is, (e) implies
(a). Since (a) is equivalent to (b), we have that (a) implies (d) and (e).
So, (a) and (e) are equivalent. If X is hereditarily unicoherent, then by
Proposition 4, X is hereditarily decomposable. So, (d) implies (e), and
the proof is complete. �

Example 3. There exist arc folders that are neither planar nor disk-like.

Proof. Consider the open map f : [0, 1] → [0, 1] that linearly maps [0, 13 ]

to [0, 1], [ 13 ,
2
3 ] to [1, 0], and [ 23 , 1] to [0, 1]. Note that C(f) contains a

“thumbtack”. That is, the wedge of a disk and an arc, where an endpoint
of the arc is an interior point of the disk. It follows that C(f) is neither
disk-like nor embeddable in the plane. By Proposition 11, C(f) is an arc
folder. �

Example 3 is 2-dimensional. In the example below, we define a tree-like
arc folder in R3 that cannot be embedded in the plane.

Example 4. A non-planar tree-like arc folder.

Proof. For each pair of points p and q in R3, let [p, q] denote the straight-
line interval from p to q. Let C be the Cantor ternary set in [0, 1].

Let H = [(−1/2, 0, 1), (−1/2, 0, 0)], I = [(−1, 0, 0), (0, 0, 0)], and J =
[(0, 0, 0), (1, 0, 0)].

For each x ∈ C \ {0}, let

Kx = [(x, 0, 0), (−1, x, 0)] and Lx = [(x, 0, 0), (−1,−x, 0)].

Let M = H ∪ I ∪ J ∪
⋃
{Kx ∪ Lx| x ∈ C \ {0}}.

Since M is arcwise connected and hereditarily unicoherent, M is a
tree-like continuum [11]. In fact, M is a dendroid. To see that M is an
arc-folder, define a map η : M → [0, 1] such that
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(1) η sends H \ {(−1/2, 0, 0)} homeomorphically onto [0, 1/2),
(2) η(I) = 1/2,
(3) if (x, 0, 0) ∈ J and x /∈ C, then η((x, 0, 0)) = 1/2 + x/2, and
(4) if (x, 0, 0) ∈ J and x ∈ C \ {0}, then η(Kx ∪ Lx) = 1/2 + x/2.
To see that M cannot be embedded in R2, assume the contrary. Let h

be a homeomorphism of M into R2. Let G be an open disk in R2 contain-
ing h(0,−1/2, 0) whose closure misses h(J) ∪ {h(−1/2, 0, 1), h(−1, 0, 0)}.

Let A be the closure of the h(−1/2, 0, 0)-component of G∩h(H). Note
that Kx and Lx limit on I as x in C approaches 0. Hence there is a
positive number r such that for each s ∈ C ∩ (0, r]

(5) both h(Ks) and h(Ls) intersect G, and
(6) neither h(Ks) nor h(Ls) abut h(I ∪J) from the same side as A (see

page 180 of [40]).
Let s be a point of C ∩ (0, r) that is inaccessible from J \ C such that

both h(Ks) and h(Ls) intersect G.
Let U be the arc in h(I ∪ J) that is irreducible between h(s) and

h(cl(G)).
Let V be the arc in h(Ks) that is irreducible between h(s) and h(cl(G)).
LetW be the arc in h(Ls) that is irreducible between h(s) and h(cl(G)).
Let u, v, and w be the endpoints of U , V , and W , respectively, that

are opposite h(s).
Let B be the arc in the boundary of G that misses A and is irreducible

about {u, v, w}.
Assume without loss of generality that {h(s), v} separates u from w

in the simple closed curve ∆ = U ∪ B ∪W . Let Ω denote the bounded
complementary domain of ∆. Let t be a point of C ∩ (0, s) such that the
arc X in h(Lt)∩ cl(Ω) irreducible between h(t) and B has an endpoint in
B between v and w. Since X and V are disjoint, this contradicts Theorem
28 on page 156 of [40]. Hence M is not embeddable in the plane. �

Question 7. Can every arc folder be embedded in R3?

We finish this section with results and questions that relate to the fpp
for arc folders. Every tree-like arc folder has the fpp (by Proposition 21
and Mańka [32]). We show in Proposition 22 below that every planar arc
folder has the fpp, but first we prove a reduction theorem for fixed-point-
free maps on arc folders.

A mapping f : X → Y is universal if for each mapping g : X → Y ,
there exists a point x ∈ X such that f(x) = g(x).

Theorem 1. Suppose (X, η) is an arc folder that admits a fixed-point-free
mapping f . Then there exists a subfolder X1 = η−1([a, b]) of X and a
fixed-point-free mapping f1 : X1 → X1, where
(1) X1 is arcwise connected.
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Moreover, if X is continuous, the subfolder X1 and the fixed-point-
free mapping f1 can be chosen so that we have the following additional
property.
(2) For each t ∈ [a, b], t is in the interior of η(f1(η−1(t))) relative to [a, b].

Proof. (1) Let f : X → X be a fixed-point-free mapping. Since η is
universal, there exists a point z in X where η(z) = ηf(z). Let A be
the arc component of X that contains B = η−1(η(z)). We note that B
is nondegenerate since {z, f(z)} ⊂ B. Also, B ∪ f(B) ⊂ A, f(A) ⊂ A,
and A 6= B. Furthermore, if A ∩ η−1(t) 6= ∅ for some 0 ≤ t ≤ 1, then
η−1(t) ⊂ A. That is, A = η−1η(A).

Since A is connected, η(A) has one of the following forms [r, s), [r, s],
(r, s), or (r, s], for some 0 ≤ r < s ≤ 1. We consider three cases.

Case 1. Suppose η(A) = [r, s]. Then A = η−1([r, s]), and since f(A) ⊂ A,
A is the desired subfolder and f |A is the desired fixed-point-free mapping.

Case 2. Suppose η(A) = [r, s). Let K = cl(A) ∩ η−1(s). By Lemma 1,
K is connected.

Since f(A) ⊂ A, it follows from the continuity of f that f(K) ⊂ cl(A).
So, if some point x in K maps into η−1(s), we have that f(K) ⊂ K.
But then, since K is an arc, f has a fixed point in K, a contradiction.
So, f(K) ∩ η−1(s) = ∅. It follows in this case that f(K) ⊂ A. In fact,
f(η−1(s)) ⊂ A. Hence, by continuity and compactness, there exists some
b with r < b < s such that f(η−1(b)) ⊂ η−1([r, b)). Let ` : η−1([r, s]) →
η−1([r, b]) be a retraction, where `(η−1([b, s])) = η−1(b), and consider the
map f1 = ` ◦ f |η−1([r,b]). We note that f1(η−1([r, b])) ⊂ η−1([r, b]), and f1
is fixed point free by choice of b. So, we have the desired closed subfolder
of X.

Case 3. Suppose η(A) = (r, s). Let J = cl(A) ∩ η−1(r), and, as in Case
2, K = cl(A) ∩ η−1(s). As in Case 2, we can deduce that f(J) ∪ f(K) ⊂
cl(A) ⊂ η−1([r, s])and f(J) ∩ η−1(r) = ∅ = f(K) ∩ η−1(s). It follows
that we can pick a and b, with r < a < b < s, so that f(η−1(a)) ⊂
η−1((a, s]) and f(η−1(b)) ⊂ η−1([r, b)). Let g : η−1([r, s])→ η−1([a, b]) be
a retraction, where g(η−1([r, a])) = η−1(a) and g(η−1([b, s])) = η−1(b).
Define f2 = g ◦ f |η−1([a,b]). As in Case 2, we have the desired result for

the closed subfolder η−1([a, b]) and the map f2.

(2) We now assume that (X, η) is a continuous arc folder, and f : X → X is
a fixed-point-free mapping. By (1), we may also assume that X is arcwise
connected. By the continuity of (X, η) there exists the largest number a ∈
[0, 1] such that η(f(η−1(a)))) ⊂ [a, 1]. Similarly, there exists the smallest
number b ∈ [a, 1] such that η(f(η−1(b))) ⊂ [0, b]. Let X1 = η−1([a, b]),
and r : X → X1 be a retraction such that r(η−1([0, a)) = η−1(a) and
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r(η−1((b, 1]) = η−1(b). The map f1 : X1 → X1 defined by f1(x) = r(f(x))
is fixed-point-free. By the definition of a and b, t is an interior point of
η(f1(η−1(t))) relative to [a, b] for each t ∈ [a, b]. Since X is arcwise
connected and each fiber of X separates X, it is easy to see that the
subfolder X1 is arcwise connected.

�

Proposition 22. If X is a planar arc folder, then X has the fpp.

Proof. By Theorem 1, we may assume that X is an arcwise connected,
planar arc folder. Suppose there exists a simple closed curve S in X that
does not bound a disk in X. Then the bounded complementary domain
of S contains a point that is not in X. Via the Schoenflies theorem,
we can retract X to S. It follows that X admits an essential map to

S
T
≈ S1, contradicting, via Bruschlinsky’s theorem [13, Theorem 8.1],

that X is acyclic. Hence, each simple closed curve S in X bounds a disk,
and therefore, the fundamental group of X is trivial. We have that X
is simply connected. Hagopian [18, Theorem 9.1] has shown that simply
connected planar continua have the fpp. �

In [8], K. Borsuk introduced the notions of nearly extendable maps
and NE-sets, which are related to the notions of AARs and AANRs. He
showed that for a continuum X with trivial shape, X is an NE-set if and
only if X is an AANR. He also showed that NE-sets with trivial shape
have the fpp. So, we have the following fixed point result.

Proposition 23. If an arc folder X is an AANR, then X has the fpp.

Question 8. Is each modified mapping cylinder of an inverse sequence
on [0, 1] with right-end fiber an arc an AANR?

If Question 8 has an affirmative answer, then so does Question 5.
We end the paper with five questions that are typical in continuum

fixed point theory. Variants of these questions have received considerable
interest for over sixty years. For specific results and related questions, see
the survey articles [2], [20], and [33].

Question 9. Does every disk-like arc folder have the fpp?

Question 10. Suppose X is an arc folder where each of η−1([0, 12 ]) and

η−1([ 12 , 1]) has the fpp. Does X have the fpp?

Question 11. Suppose X is an arc folder where η−1([0, 12 ]) is topologi-

cally a disk and η−1([ 12 , 1]) has the fpp. Does X have the fpp?
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Question 12. Suppose X is an arc folder where each proper subfolder
η−1([a, b]) has the fpp. Does X have the fpp?

Question 13. Do all arc folders have the fpp for homeomorphisms?
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