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TREE-LIKE CONTINUA WITH INVARIANT COMPOSANTS

UNDER FIXED-POINT-FREE HOMEOMORPHISMS

C. L. HAGOPIAN, M. M. MARSH, AND J. R. PRAJS

(Communicated by Alexander N. Dranishnikov)

Abstract. Using an example of D. P. Bellamy, we define a 3-composant tree-
like continuum admitting a fixed-point-free homeomorphism that sends each
composant onto itself. This continuum is used to define an indecomposable
tree-like continuum that admits a composant-preserving fixed-point-free home-
omorphism. A map extension theorem is proved and applied in this construc-
tion.

Suppose X is a plane continuum and f is a map of X that sends each arc-
component of X into itself. In 1988, Hagopian [3] proved that f has a fixed point
if X is tree-like or indecomposable. Solenoids show this is not true for nonplanar
indecomposable continua. However, in 1998 Hagopian [4] proved every tree-like con-
tinuum has the fixed-point property for arc-component-preserving maps. Recently,
Hagopian [5] proved that every composant-preserving map of an indecomposable
k-junctioned tree-like continuum has a fixed point. He used tree-chain covers to
get his results. Question 1 of [5] asks if this theorem can be generalized to every
indecomposable tree-like continuum. We use an example of Bellamy [1] to answer
this question in the negative. In fact, we define an indecomposable tree-like con-
tinuum that admits a composant-preserving fixed-point-free homeomorphism. It is
not known if there exists a tree-like plane continuum or an indecomposable plane
continuum that admits a composant-preserving fixed-point-free map.

A continuum is a nonempty compact connected metric space. A continuum is
indecomposable if it is not the union of two proper subcontinua. Let x be a point
of a nondegenerate continuum X. The x-composant of X is the union of all proper
subcontinua of X that contain x. If X is indecomposable, then X is the union of
uncountably many dense disjoint composants. Given ε > 0, a mapping f : X → Y
is an ε-mapping if diam(f−1(y)) < ε for each y ∈ Y . A continuum X is tree-like if
for each ε > 0, there exist a tree Y and an ε-mapping of X onto Y . A continuum
X is tree-like if and only if for each ε > 0 there is an ε-tree-chain covering X. A
tree-like continuum X is k-junctioned if k is the least integer such that for every
positive number ε there is an ε-tree-chain covering X with k junction links.

We refer to a locally compact noncompact metric space P as a parameter space
and denote by P ∪ {∞} the one-point compactification of P . A map α : P → P
of a parameter space to itself is called infinity preserving provided that whenever
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a sequence {pn} ⊂ P converges to ∞ in P ∪ {∞} (denoted by pn → ∞), it follows
that α(pn) → ∞ in P ∪ {∞}.

Our first result is a general map extension theorem. We need a special case of
this theorem, namely Corollary 1, to construct our example. It may be helpful for
the reader to note the statement of Corollary 1 before proceeding with Theorem 1
and its proof.

Theorem 1. Let P be a parameter space and X a compact metric space with
metric d. Suppose that g : P → X, f : X → X, and α : P → P are maps such that
α is infinity preserving and lim d(fg(pn), gα(pn)) = 0 whenever pn → ∞. Then

there exist a compact metric space X̂, with metric μ, containing X, an embedding

h : P → X̂ with h(P ) = X̂ −X, and a map f̂ : X̂ → X̂ such that

(a) limμ(h(pn), g(pn)) = 0 whenever pn → ∞,

(b) f̂ |X = f and f̂(X̂ −X) ⊂ X̂ −X, and

(c) f̂h(p) = hα(p) for each p ∈ P .

Moreover, if f and α are homeomorphisms, then f̂ is also. If P and X are
connected, then so is X̂.

Proof. Let ρ be a metric on P ∪ {∞} with diam (P ∪ {∞}) < 1. In the product
X× (P ∪{∞})× [0, 1], let μ denote the product metric and define two disjoint sets,
topological copies X1 = X × {∞} × {0} and P1 = {(g(p), p, ρ(p,∞)) : p ∈ P} of

X and P , respectively. We show that X̂ = X1 ∪ P1 is the desired space, where,
in the final conclusion, we identify X1 with its projection X. For the sake of the
proof we use distinct symbols, X1 and X. Let f1 : X1 → X1 and g1 : P → X1

be the maps corresponding to f : X → X and g : P → X, respectively. That is,
f1(x,∞, 0) = (f(x),∞, 0) for x ∈ X, and g1(p) = (g(p),∞, 0) for p ∈ P . The map

h(p) = (g(p), p, ρ(p,∞)) defines an embedding h : P → X̂ with h(P ) = P1. If pn →
∞ for {pn} ⊂ P , we have h(pn) = (g(pn), pn, ρ(pn,∞)) and g1(pn) = (g(pn),∞, 0)),
and thus (a) clearly holds.

If a sequence pn in P has no convergent subsequence, that is, pn → ∞, then
g1(pn) has a subsequence converging in X1, and thus h(pn) has a convergent sub-

sequence in X̂ by (a). This shows that X̂ is compact. Since P1 has a limit point in

X1, in the case when X and P are connected, it follows that X̂ is connected.

Define f̂ : X̂ → X̂ by f̂(x) = f1(x) for x ∈ X1, and f̂(x) = hαh−1(x) for x ∈ P1.

By definition f̂ |X1 = f1, f̂(X̂ −X1) = f̂(P1) ⊂ P1 = X̂ −X1, and f̂h(p) = hα(p)
for p ∈ P .

To verify the continuity of f̂ we note that X1 is closed in X̂ and show that

lim f̂(xn) = f̂(x0) for every sequence {xn} ⊂ P1 converging to some x0 ∈ X1. For
such a sequence xn, let pn = h−1(xn) and note that xn = (g(pn), pn, ρ(pn,∞)) and
x0 = (y0,∞, 0), where y0 = lim g(pn). We have pn → ∞. The map α is infinity
preserving, and thus α(pn) → ∞. By the continuity of f , lim fg(pn) = f(y0). Since
lim d(fg(pn), gα(pn)) = 0, it follows that

lim f̂(xn) = limhαh−1(xn) = limhα(pn) = lim(gα(pn), α(pn), ρ(α(pn),∞))

= lim(fg(pn),∞, 0) = (f(y0),∞, 0) = f̂(x0) .

We note in the definition of f̂ that if f and α are homeomorphisms, then f̂ is
also. �
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A set S in a topological space X is said to be uniquely arcwise connected provided
that for every two distinct points p, q ∈ S there is a unique arc in S having p and
q as its endpoints. Let X be a continuum with metric d. A topological ray (or a
ray) in X is a uniquely arcwise connected subset R of X for which there exists a
one-to-one surjective mapping α : [0,∞) → R. A topological line (or a line) in X
is a uniquely arcwise connected subset L of X for which there exists a one-to-one
surjective mapping β : R → L. The maps α and β in these definitions are called
parametrizations of R and L, respectively. The assumption of the unique arcwise
connectivity on a ray R (or a line L) ensures a unique arc order structure on R
(or L). Thus, for example, we avoid calling simple closed curves (and some other
continua) rays. This order agrees with the order structure of [0,∞) as the domain
of any parametrization of R.

Rays R1 and R2 in a spaceX are called asymptotic if there exist parametrizations
α1 : [0,∞) → R1 and α2 : [0,∞) → R2 such that d(α1(t), α2(t)) → 0 as t → ∞.

We now state a special case of Theorem 1, which reflects the form of this theorem
that will be used in our construction.

Corollary 1. Let R1 be a ray in a continuum X and let f : X → X be a homeo-
morphism such that f(R1) is a ray asymptotic to R1. Then there exist a continuum

X̂ = X ∪ R, where R is a ray in X̂ asymptotic to R1 and satisfying R ∩ X = ∅,
and a homeomorphism f̂ : X̂ → X̂ such that f̂ |X = f and f̂(R) = R.

Proof. Let α1 : [0,∞) → R1 and α2 : [0,∞) → f(R1) be parametrizations such
that d(α1(t), α2(t)) → 0 as t → ∞. We apply Theorem 1 to the parameter space
P = [0,∞). Let g = α1 : P → X. Note that α = α−1

2 fα1 : P → P is
a homeomorphism and α is infinity preserving. We have that d(fg(t), gα(t)) =
d(fα1(t), α1α

−1
2 fα1(t)) = d(α2α

−1
2 fα1(t), α1α

−1
2 fα1(t)) → 0 as t → ∞. The exis-

tence of X̂ and f̂ : X̂ → X̂ follows from Theorem 1. �

If X and Z are continua with X ⊂ Z, then X is terminal in Z provided that
for each continuum K ⊂ Z intersecting X either K ⊂ X or X ⊂ K. Notice in
Corollary 1 that if R1 limits on X, then X is terminal in X̂. This structure will be
common throughout the paper.

Proposition 1. Let f : X → X be a fixed-point-free homeomorphism on a contin-
uum X and Y = X∪R, where R is a ray with endpoint e limiting on X but disjoint

with X; that is, R ∩X = ∅ and R ∩X = X. Let f̂ : Y → Y be a homeomorphism

such that f̂ |X = f . Then the wedge sum Z (at the point e) of two disjoint copies
of Y admits a fixed-point-free homeomorphism h. Furthermore, Z has exactly three
composants, each of which is invariant under h.

Proof. We note that f̂(X) = X and f̂(R) = R. Since R has unique endpoint e,

we have f̂(e) = e. Let Y1 = X1 ∪ R1 and Y2 = X2 ∪ R2 be disjoint copies of Y .
Let Z = Y1 ∨ Y2 be the wedge sum of Y1 and Y2 such that the endpoints of R1

and R2 are identified to the single point e0. Let fi : Xi → Xi and f̂i : Yi → Yi

for i ∈ {1, 2} be the corresponding homeomorphisms as given in the hypothesis.

Define g : Z → Z so that g(x) = f̂−1
1 (x) for x ∈ Y1 and g(x) = f̂2(x) for x ∈ Y2.

Thus g : Z → Z is a homeomorphism, g(e0) = e0, g(Xi) = Xi, and g(Ri) = Ri for
i ∈ {1, 2}.
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For notational convenience, since R1∨R2 is a topological line, we identify R1∨R2

with R in such a way that e0 = 0, R1 = (−∞, 0] and R2 = [0,∞). Since g(R) = R,
g(X2) = X2, and g is fixed-point-free on X2, it follows that either g(x) > x for all
sufficiently large x or g(x) < x for all sufficiently large x. Assume g(x) > x for all
x ∈ [N,∞), where N is some positive number. (The other case is similar.)

Thus f̂2, which coincides with g on R2, moves sufficiently large numbers toward

X2. The maps f̂1, f̂2 are both congruent to f̂ : Y → Y , and f̂−1
1 coincides with

g on R1. Thus g moves all numbers less than or equal to some M ∈ (−∞, 0]
outward away from X1. In other words, g(x) > x for x ∈ (−∞,M ]. We have
x < g(x) < 0 < y < g(y) for all x ∈ (−∞,M ] and y ∈ [N,∞). Define h(x) = g(x)
for x ∈ X1 ∪ (−∞,M ] ∪ [N,∞) ∪X2 and extend h linearly on [M,N ]. Then h is
strictly increasing on R, moving points away from X1 and toward X2. Note that
Z has exactly three composants, X1 ∪ (R1 ∨ R2), X2 ∪ (R1 ∨ R2), and Z itself.
Also, h : Z → Z is a fixed-point-free homeomorphism such that h(X1) = X1,
h(X2) = X2, and h(R) = R. �

We now construct an example of a 3-composant tree-like continuum that admits
a fixed-point-free homeomorphism that leaves composants invariant. To begin the
construction, we need

1. an indecomposable tree-like continuum Y in which one composant S is
topologically the union of a fan F and a topological ray R that meet only
at the point v, which is the branchpoint of F and the endpoint of R, and

2. a fixed-point-free map g on Y such that
a. g(E) = E, where E is the endpoint set of F , and
b. if c ∈ E, then g restricted to [c, v] ∪ R is a homeomorphism onto

[g(c), v] ∪R.

Examples satisfying these conditions have been described in [1, 8, 9]. We will
use Bellamy’s tree-like continuum [1].

Example 1. There is a tree-like continuum with exactly three composants that
admits a fixed-point-free homeomorphism h leaving each composant invariant.

Proof. Let B be Bellamy’s continuum and let X be Bellamy’s second indecompos-
able tree-like continuum after applying the Fugate-Mohler technique [2]. That is,
X = lim

←−
{B, g}, where g is the fixed-point-free map on B. We recall that each com-

posant of X is either a ray or a line. Let S be the composant of B that contains
a fan F with endpoint set E, and let v be the branchpoint of F . We have the
properties listed above. Additionally, since g is fixed-point-free, g(v) is in R \ {v}.

For p, q ∈ B, let [p, q] be the unique arc in B from p to q, if it exists. Let α
be a homeomorphism from [1, 2] to [v, g(v)] with α(1) = v. For 1 ≤ t ≤ 2 and
n ∈ N∪{0}, extend α to [1,∞) letting α(t+n) = gn(x) whenever x ∈ [v, g(v)] and
α(t) = x. Note that α(t+n) = gn(α(t)) for all t ≥ 1 and n ∈ N∪{0}. If c ∈ E ⊂ B,
let Rc = [c, v] ∪ R. Take a homeomorphism fc from [0, 1] to [c, v] with fc(0) = c,
and extend it to [0,∞) letting fc(t+ 1) = α(t+ 1). Observe that fc : [0,∞) → Rc

parametrizes Rc, fc(1) = v, fc(t+ 2) = g(fc(t+ 1)), and fc(t+ 1) = fc′(t+ 1) for
all t ∈ [0,∞) and c, c′ ∈ E.

Define σ : X → X to be the shift homeomorphism (x1, x2, . . . ) �→ (x2, x3, . . . ),
which is fixed-point-free [2]. Let {an} ⊂ E be such that g(an+1) = an. Letting
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a = (a1, a2, . . . ), bn = an+1 for n ≥ 1, and b = (b1, b2, . . . ), we notice that a,b ∈ X
and σ(a) = b. Moreover, g(Ran+1

) = Ran
and g|Ran+1

: Ran+1
→ Ran

is a bijection
by Property 2b above.

Let Ra = lim
←−

{Ran
, g|Ran

} and Rb = lim
←−

{Rbn , g|Rbn}. Notice that both Ra and

Rb are subspaces of X and σ(Ra) = Rb. In fact they are rays, and we define their
corresponding parametrizations fa : [0,∞) → Ra and fb : [0,∞) → Rb as follows.
Let fa(t) and fb(t) be the unique points in Ra and Rb having their first coordinates
equal to fa1

(t) and fb1(t), respectively. Given ε > 0 we choose a natural number n
such that each two points in X having their first n coordinates equal are within a
distance less than ε. For t > n the first n coordinates of both fa(t) and fb(t) are
fa1

(t) = fb1(t), fa2
(t − 1) = fb2(t − 1), . . . , fan

(t − n + 1) = fbn(t − n + 1), and
thus Ra and Rb are asymptotic. Since the projections Ran

and Rbn of Ra and Rb,
respectively, are dense in B, the rays Ra and Rb are dense in X.

Hence, by Corollary 1, we let R be a ray limiting on Ra and let σ̂ : X ∪ R →
X ∪R be a homeomorphic extension of σ : X → X such that σ̂(R) = R. Applying
Proposition 1, the result follows. �

A map f : X → Y is atomic if f−1(y) is a terminal continuum in X for each y ∈
Y . Note that an atomic map must be surjective. The following known proposition
is easy to prove.

Proposition 2. Let f : X → Y be a nonconstant atomic map between continua X
and Y . Then X is indecomposable if and only if Y is indecomposable.

Example 2. There is an indecomposable tree-like continuum that admits a fixed-
point-free homeomorphism leaving each composant invariant.

Proof. Let Z be the continuum guaranteed by Proposition 1 with X being the
second Bellamy continuum, as defined in the proof of Example 1. Thus Z is a
compactification of the real line with two copies of X, X1 and X2, as the remainder
of this compactification, and with the real line limiting on X1 when x → −∞, and
on X2 when x → ∞. Let h : Z → Z be the fixed-point-free homeomorphism as
in Proposition 1 with h(x) > x for each number x. Consider the product C × Z,
where C is the Cantor set defined in [0, 1] as usual. In this product we identify each
pair of points (c1, y1) and (c2, y2) whenever either

(1) y1 = y2, y1 ∈ X2 and c1 + c2 = 1 or
(2) y1 = y2, y1 ∈ X1 and 3nc1 + 3nc2 = 5 for some n ∈ {1, 2, . . . }.
Let q : C × Z → T be the quotient map of this identification with the quotient

space T . Figure 1 shows a schematic picture of the fourth approximation of this

construction. The homeomorphism h : Z → Z induces a homeomorphism ĥ : T →
T that leaves invariant each copy of X in T , that is, the continua q(c × X1) and
q(c ×X2). These copies are terminal in T because X1 and X2 are terminal in Y .
If we apply another quotient map and identify these copies to points, the quotient
space is the “simplest indecomposable continuum”, the bucket handle BH , which is
indecomposable. This last quotient map is atomic, and thus T is indecomposable
by Proposition 2. Since dimT = 1, the bucket handle continuum BH is tree-like,
and the fibers of this atomic map are tree-like, it follows that T is tree-like [7,

(6.14), p. 18]. Clearly, ĥ preserves the composants of T . �
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Figure 1

Comments. In Example 2 we note that T admits an atomic map onto Knaster’s
simplest indecomposable chainable continuum BH [6, page 107] with the preimage
of each point of BH being either a point of T or a copy of Bellamy’s continuum
X. In our example, each copy of Bellamy’s continuum is left invariant by the

homeomorphism ĥ.

Question 1. Must every fixed-point-free composant-preserving map (homeomor-
phism) of an indecomposable tree-like continuum leave some proper subcontinuum
invariant?

It is not known if Bellamy’s continuum X is embeddable in the plane. The open
question below, with the tree-like assumption included, was raised in [5]. It was
answered in the case when composants are arcwise connected in [3].

Question 2. Must every composant-preserving map of an indecomposable (tree-
like) plane continuum have a fixed point?
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