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ABSTRACT. We develop techniques for determining cer-
tain structural properties of inverse limits on compacta. In
particular, we show if easily observable properties of the
bonding mappings are present, then one can identify (1)
nested sequences of subcompacta of the inverse limit space
whose members are copies of subcompacta of the factor
spaces, and (2) a sequence of retractions of the inverse limit
space onto members of this nested sequence that converges
uniformly to the identity mapping. Applications to inverse
limits on continua are discussed. In the special case of a
continuum X that admits such a sequence of retractions
onto arcs, we establish properties that describe the nature of
proper subcontinua of X.

1. Introduction and Definitions. A compactum is a compact
metric space. A continuum is a connected compactum. If each
proper subcontinuum of a continuum X is an arc, we call X an arc
continuum. A mapping or map is a continuous function. Let {Xi}i≥1
be a sequence of compacta, and {gi+1

i : Xi+1 → Xi}i≥1 be a sequence

of mappings. We refer to {Xi, g
i+1
i }i≥1 as an inverse sequence, and its

inverse limit X, denoted lim
←−
{Xi, g

i+1
i }, is the subset of

∏
i≥1Xi given

by X = {(x1, x2, . . .)| xi = gi+1
i (xi+1) for all i ≥ 1}. We use inverse

sequences and inverse limits throughout the paper. General properties
of these notions can be found in [13, p.7-14], [19, Sections 2.1-2.3], or
[30, Part One, Sec.II].

The study of continua expressed as inverse limits has been a central
theme in continuum theory for around 60 years. Since inverse limits
on intervals can be used to represent complicated continua in a simple
way, and since they can appear as attractors in dynamical systems
[29], one dimensional inverse limits have been of particular interest. In
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fact, R. F. Williams [32] showed that all hyperbolic one-dimensional
attractors are inverse limits of maps on branched one-manifolds. Many
remarkable examples have been constructed using inverse limits. A few
are the R. D. Anderson and G. Choquet [1] tree-like continuum that
contains no chainable subcontinua, H. Cook’s [7] continuum that, other
than the identity mapping, only admits constant self-mappings, W. T.
Ingram’s [12] simple-triod-like arc continuum with positive span, R.M.
Schori’s [31] arclike continuum that contains a copy of every arclike
continuum, and J.H. Case and R.E. Chamberlin’s [6] figure-eight-like
continuum that admits no essential map to the unit circle, but does
admit an essential map to the figure eight. Ingram discusses the first
four of these examples, as well as some others, in Sections 3 and 5 in
[13].

Also, understanding the structure of continua, that are expressed
as inverse limits on relatively simple continua, such as intervals, trees,
graphs, disks, and other locally connected continua, by investigating
properties of the bonding mappings has been a standard practice.
Particularly, for inverse limits on intervals, there are some very detailed
and thorough investigations that involve certain families of unimodal
bonding mappings, see [3], [4], [5], [10], [13], [14], and [15]. The
results in these references demonstrate that there is a remarkable
abundance of diversity among inverse limit spaces, even when bonding
maps are chosen from a rather restrictive family of maps. The proof
of Ingram’s Conjecture [2] that no two inverse limits on [0, 1] using
bonding maps from the “tent map” family that have unequal slopes
between 1 and 2, are homeomorphic highlights this fact.

Many techniques, particularly in the one-dimensional setting, have
been developed to help determine the structure of inverse limits. These
include identifying certain subcontinua of the inverse limit space, de-
termining folding patterns and asymptotic behavior of arc components,
and determining if the inverse limit space can be approximated from
within by simple locally connected subcontinua. The first two methods
can be found among the references listed in the preceding paragraph.
The third method is considered in [8], [9], [16], [20], [25], [26], [27],
and [28].

We develop general theorems for inverse sequences on compacta
that facilitate investigations of the structure of the associated inverse
limits. In some cases, the techniques implied by our theorems may be
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reminiscent of tools used in some of the references cited for the one-
dimensional investigations, but we emphasize that our results apply to
the much larger class of inverse limits on compacta. Given an inverse
sequence on compacta, easily observable properties of the bonding
maps restricted to certain subsequences of subcompacta of the factor
spaces, can immediately produce nested sequences of copies of these
subcompacta in the inverse limit space. The unions of these nested
sequences are typically dense in the inverse limit space or in some
identifiable subcompactum of the inverse limit space. Furthermore,
in some cases, the nested sequences can approximate the inverse limit
X in a strong manner, namely by having retractions, arbitrarily close
to the identity mapping, from X onto members of the nested sequences.

Let X and Y be compacta. A map f : X → Y is an r-map if there
exists a map g : Y → X such that f ◦g is the identity map on Y . Given
ε > 0, a mapping f : X → Y is an ε-mapping if for each point y ∈ Y ,
diam (f−1(y)) < ε. If K is a closed subset of X, a mapping f : X → K
is a retraction if f(x) = x for each x ∈ K. An ε-retraction r : X → K
is a retraction that is also an ε-mapping.

For a class of compacta G, a compactum X is G-like if for each
ε > 0, X admits an ε-mapping onto a member of G. The teminology
suggests that X is, in some manner, like the compacta in G. It is not
unreasonable to think of a compactum X as being even more G-like
if the ε-maps are retractions onto copies of members of G that lie in
X. Perhaps even most G-like if for each x in X there are members of
G containing x onto which X admits ε-retractions. Interestingly, we
show in Theorem 6 that if X is everywhere retractably arclike (defined
below), then X is either an arc or an arc continuum. If X is an arclike,
arc continuum that is not an arc, then X is indecomposable. So, the
continua that are most arclike are at positions in the spectrum of arclike
continua that we sometimes think of as being far apart.

Perhaps some of the tools developed herein can be used to distin-
guish between inverse limits on compacta or continua outside of the
well-understood families of inverse limits on intervals with unimodal
bonding maps, and also outside of the one-dimensional setting. We
provide examples in Section 6 that illustrate this.

Let G be a class of compacta. Let X be a compactum with metric d.
We say that X is internally G-like if for each ε > 0, there is a subset M
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of X with M ∈ G, and a map f : X →M such that d(f(x), x) < ε for all
x ∈ X. If X is internally G-like and, additionally, the mappings f are
retractions, we say that X is retractably G-like. The compactum X is
retractable G-like onto a nested sequence {Ki}i≥1 of compacta if for each
i ≥ 1, Ki ∈ G, Ki ⊂ Ki+1, and there is a retraction fi : X → Ki where
the sequence {fi}i≥1 converges uniformly to the identity mapping on
X. Discussion and results related to these notions can be found in [25]
and [26].

Hereafter, we denote sequences M1,M2,M3, . . . by {Mi} or {Mn}.
For sequences Mk,Mk+1,Mk+2, . . ., we use the notation {Mi}k or
{Mn}k. Next, we offer some variations of the definitions above. We
say that X is internally G-like at the point x ∈ X if for each ε > 0,
there exists a subcompactum M of X that is in G and contains x, and
there exists a mapping f : X → M with d(f(y), y) < ε for all y ∈ X.
We say that X is everywhere internally G-like if X is internally G-like
at each point of X. We say that X is retractably G-like at the point
x ∈ X if for each ε > 0, there exists a subcompactum M of X that
is in G and contains x, and there exists a retraction r : X → M with
d(r(y), y) < ε for all y ∈ X. We say that X is everywhere retractably
G-like if X is retractably G-like at each point of X. Note that if X is
retractable G-like onto a nested sequence {Ki} of compacta, then X is
retractably G-like at each point of ∪i≥1Ki.

We note the following obvious implications.

X is everywhere retractably G−like ⇒

X is retractably G−like at a point x ∈ X ⇒

X is retractably G−like ⇒ X is internally G−like ⇒ X is G−like

A continuum X has the fixed point property if every self map f of
X has a fixed point; that is, a point x ∈ X such that f(x) = x.
Throughout, we let G be an arbitrary class of compacta, and we let F
be the class of continua with the fixed point property. The notation

X
T
≈ Y will indicate that X is homeomorphic to Y .

Each of the various forms of internally G-like and retractably G-like
is considerably stronger than simply being G-like. For example, each
arclike continuum X with no dense arc component is not retractably
arclike at a point x ∈ X, see Lemma 4 and Observation 7 in §5. Even



RETRACTIONS CLOSE TO THE IDENTITY MAP 5

the standard topologist’s sin(1/x)-curve can be modified so that the
modified version is not internally arclike. Also, in reference to Theorem
3 below, there are many continua that are F-like and admit fixed-point-
free mappings.

If ε > 0, f : X → X is a mapping, and d(f(x), x) < ε for all x ∈ X,
we write d(f, id) < ε, where id is the identity mapping on X. Note
that having a subcompactum M of X and a retraction r : X →M with
d(r, id) < ε for each ε > 0 is equivalent to having a subcompactum M
of X and an ε-retraction r : X →M for each ε > 0.

We begin by noting three theorems from [25] and [26]. See these two
references for definitions of internally and retractaby G-representable,
which involve expressing X as an inverse limit on subcompacta. The
first two theorems characterize certain inverse limit representations
of compacta with being internally or retractably G-like. The third
theorem shows that continua that are internally F-like must have the
fixed point property.

Theorem 1. [25, Theorem 3] A compactum X is internally G-like if
and only if it is internally G-representable.

Theorem 2. [26, Corollary 3.1] A compactum X is retractably G-
like onto a nested sequence of compacta if and only if it is retractably
G-representable.

Theorem 3. [25, Theorem 1] If a continuum X is internally F-like,
then X has the fixed point property.

The definitions and some of the results below were established in the
more general setting of inverse limits with set-valued bonding functions
in [24]. It is helpful and convenient to have the terminology and nota-
tion in a more specialized form for ordinary inverse limits. In particular,
in [24], we defined a k-tail sequence as a certain sequence formed from
an inverse sequence on compacta with upper semi-continuous set-valued
bonding functions. The partial graph (Mahavier product) through the
first k factors, and certain properties of the bonding functions for i ≥ k,
were shown to produce subcompacta of the inverse limit space that are
homeomorphic to subcompacta of the partial graphs. For ordinary
inverse sequences, the underlying idea is to use these special k-tail
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sequences to produce a nested sequence of subcompacta of the inverse
limit space, each member of which is homeomorphic to a subcompactum
of the kth factor space.

Let {Xi, g
i+1
i } denote an inverse sequence on compacta with surjec-

tive bonding mappings gi+1
i : Xi+1 → Xi for i ∈ N. For i < j, we let

gji : Xj → Xi denote the composition mapping gi+1
i ◦. . .◦gjj−1. It is cus-

tomary to let gii : Xi → Xi denote the identity mapping id: Xi → Xi.

For X = lim
←−
{Xi, g

i+1
i }, we assume that diam (Xi) = 1 for each i ≥ 1,

and let d denote the usual metric on
∏

i≥1Xi. So, each projection map

gi : X → Xi is a 1
2i -map.

Definition 1. Let {Xi, g
i+1
i } be an inverse sequence on compacta with

surjective bonding mappings. Fix k ≥ 1. Suppose {Yi}k is a sequence
of non-degenerate compacta such that for each i ≥ k,

(i) Yi ⊂ gi+1
i (Yi+1), and

(ii) gi+1
i |Yi+1

is a homeomorphism onto its image.

We call {Yi}k a k-tail sequence of homeomorphically-covered compacta
in the inverse sequence {Xi, g

i+1
i }. For simplicity of terminology, we

say that {Yi}k is an hc-sequence, and the notation makes it clear in
which factor the hc-sequence begins. If k = 1, we say that {Yi} is a
complete hc-sequence.

As mentioned, we use hc-sequences to generate nested sequences of
subcompacta of the inverse limit space, as defined in Definition 2 below.

Definition 2. Let X = lim
←−
{Xi, g

i+1
i }, and let {Yi}k be an hc-

sequence in the inverse sequence {Xi, g
i+1
i }. Fix n ≥ k, and let

An
n = gn+1

n (Yn+1). For 1 ≤ i < n, let An
i = gni (An

n), and for

i > n, let An
i =

(
gii−1

∣∣
Yi

)−1
(An

i−1). Note that An
n+1 = Yn+1, and

by hypothesis, An
n+1 is homeomophic to An

n. In fact, for i > n, An
i is

homeomophic to An
i−1 and, through finitely many compositions, to An

n.

Let Ln = lim
←−
{An

i , g
i+1
i |An

i+1
}. It is useful to note that gn(Ln) = An

n, and

gn+1(Ln) = Yn+1. We call {Ln}k the nested sequence of subcompacta
of X generated by the hc-sequence {Yi}k.
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Definition 3. Let {Yi}k be an hc-sequence in the inverse sequence
{Xi, g

i+1
i }. If for each i ≥ k, gi+1

i (Yi+1) = Xi, then we call {Yi}k a
surjective hc-sequence.

Let X = lim
←−
{Xi, g

i+1
i }. Suppose {Yi}k is an hc-sequence in

{Xi, g
i+1
i }, and {Ln}k is the nested sequence of subcompacta of X

generated by {Yi}k. We make the following observations. Observation
1 follows easily from Definitions 1 and 2. We provide short proofs for
Observations 2 and 3.

Observation 1. The sequence {Ln}k is nested increasing in X. That
is, Ln ⊂ Ln+1 for n ≥ k. Also, by the definition of Ln, for a given n ≥ k,
if x ∈ Ln, we note that all coordinates of x are uniquely determined by
the nth coordinate of x.

Observation 2. Concerning the relationship between {Yi}k and
{Ln}k, we observe the following.

(a) If Yi = gi+1
i (Yi+1) for each i ≥ k, then {Ln}k is a constant

sequence with Ln
T
≈ Yk for each n ≥ k.

(b) If there exists n ≥ k such that gn+2
n+1(Yn+2) 6= Yn+1, then Ln is

a proper subset of Ln+1. So, if gi+2
i+1(Yi+2) 6= Yi+1 for all i ≥ k,

it follows that {Ln}k is strictly increasing.

Proof. (a) Under our assumption, we note from Definition 2 that,
for n ≥ k, Ln is the limit of the inverse sequence

gk1 (Yk)←− . . .←− gkk−1(Yk)←− Yk ←− Yk+1 ←− . . . ,

where the bonding maps are g restricted to the factor spaces indicated.
So, clearly {Ln}k is a constant sequence. Since for each i ≥ k, gi+1

i |Yi+1

is a homeomorphism, we have that Ln
T
≈ Yk for each n ≥ k.

(b) Suppose there exists n ≥ k such that An+1
n+1 6= Yn+1 . Let

x ∈ Ln+1 with gn+1(x) ∈ An+1
n+1 \ Yn+1. Since gn+1(Ln) = Yn+1 as

noted in Definition 2, x 6∈ Ln. So, by Observation 1, the proof of (b) is
complete. �
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Observation 3. The inverse sequence {Xi, g
i+1
i } contains a surjective

hc-sequence if and only if for some k ≥ 1, gi+1
i is an r-map for each

i ≥ k.

Proof. Suppose {Yi}k is a surjective hc-sequence in {Xi, g
i+1
i }. Then

we simply note that, for i ≥ k, gi+1
i ◦ (gi+1

i |Yi+1)−1 : Xi → Xi is the

identity map. That is, gi+1
i is an r-map for each i ≥ k. The opposite

implication is clear. �

We provide the familiar example below to illustrate the definitions
in this section.

Example 1. Let X = lim
←−
{[0, 1], g}, where g is the “tent map”. That

is, g : [0, 1] → [0, 1] is the open mapping whose graph consists of the
two line segments with endpoints (0, 0) and (1

2 , 1), and ( 1
2 , 1) and (1, 0).

The arclike continuum X is commonly referred to as the Buckethandle
or Horseshoe continuum. A picture of X can be found in [17, page 205].
Below are three complete surjective hc-sequences and their respective
generated nested sequences of subcontinua (arcs in this case) in X.
In each inverse sequence, the right-most [0, 1] is the nth factor in the
sequence, and is also An

n for the associated inverse sequence. In the

notation for this example, if we write [c, d]
g←− [a, b], we are indicating

that [a, b] and [c, d] are subintervals of [0, 1], and that the restriction of
g to [a, b] has image [c, d].

The constant hc-sequence {[0, 12 ]} generates, for each n ≥ 1, an arc
Ln ⊂ X. The arc Ln is the inverse limit of the sequence

[0, 1]
g←− . . . g←− [0, 1]

g←− [0,
1

2
]

g←− [0,
1

4
]

g←− [0,
1

8
]←− . . . .

The constant hc-sequence {[ 12 , 1]} generates, for each n ≥ 1, an arc
Kn ⊂ X, which is the inverse limit of the sequence

[0, 1]
g←− . . . g←− [0, 1]

g←− [
1

2
, 1]

g←− [
1

2
,

3

4
]

g←− [
5

8
,

3

4
]←− . . . .

The alternating hc-sequence [0, 12 ], [ 12 , 1], [0, 12 ], . . . generates, for each
even n ≥ 1, an arc Jn ⊂ X, which is the inverse limit of the sequence

[0, 1]
g←− . . . g←− [0, 1]

g←− [0,
1

2
]

g←− [
3

4
, 1]

g←− [
3

8
,

1

2
]←− . . . .
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The reader should note the inverse sequence for Jn when n is odd.

2. Homeomorphically-covered sequences. We begin this sec-
tion with an addition to Theorem 2 that establishes an equivalence
between a compactum being retractably G-like and being representable
as the inverse limit of an inverse sequence on compacta in G that con-
tains a surjective hc-sequence. The theorem follows immediately from
Observation 3 and Corollary 3.1 in [26].

Theorem 4. Let X be a compactum and G a class of compacta. The
following statements are equivalent.

(i) X is retractably G-like onto a nested sequence of subcompacta.
(ii) X is retractably G-representable.

(iii) X
T
≈ lim
←−
{Xi, g

i+1
i }, whereXi ∈ G for each i ≥ 1, and {Xi, g

i+1
i }

contains a surjective hc-sequence.

The focus of this section is to determine how to “spot” subcompacta
of a compactum X that are retractably G-like, when X has a given
inverse limit representation, say X = lim

←−
{Xi, g

i+1
i } with factor spaces

that may or may not be members of G. We show that finding hc-
sequences in {Xi, g

i+1
i } is important to this endeavor. For example, we

may have a continuum X expressed as an inverse limit on trees, but if
we find an hc-sequence of arcs in the inverse sequence with appropriate
properties, we can identify subcontinua of X that are retractably
arclike, and perhaps even discover that X itself is retractably arclike.
The second example in Example 5 of Section 6 illustrates this.

Lemma 1. Let X = lim
←−
{Xi, g

i+1
i }. Suppose {Yi}k is an hc-sequence,

and {Ln}k is the nested sequence of subcompacta of X generated by
{Yi}k. Then, for each n ≥ k, the projection map gn|Ln

: Ln → An
n =

gn+1
n (Yn+1) is a homeomorphism.

Proof. Fix n ≥ k. Suppose x, y ∈ Ln and gn(x) = gn(y). By
definition of Ln, gn(x) ∈ An

n. Also, gi(x) = gni gn(x) = gni gn(y) = gi(y)
for 1 ≤ i ≤ n. By construction of Ln, each gi(x) for i > n is uniquely
determined by gn(x), and similarly for gi(y) for i > n. Thus, since
gn(x) = gn(y), it follows that gi(x) = gi(y) for i > n. Hence, we have
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that x = y. Therefore, gn|Ln
is one-to-one into An

n. By construction of
Ln, it is clear that for a ∈ An

n, we can pick x ∈ Ln where gn(x) = a. �

(∗) Hereafter, when {Ln}k is the nested sequence of subcompacta of an
inverse limit X generated by an hc-sequence {Yi}k, we let γn : An

n → Ln

denote the inverse homeomorphism of gn|Ln for each n ≥ k.

Lemma 2 is a partial generalization of R. Bennett’s theorem, see [13,
Theorem 2.16] or [15, Theorem 3.4]. The “monotone (increasing)”
assumption in Bennett’s theorem has been generalized to the existence
of an hc-sequence, and the inverse sequence on intervals has been
generalized to an arbitrary inverse sequence on compacta. We give
a complete generalization of Bennett’s theorem for inverse limits with
a single bonding mapping in Theorem 6, parts (1) and (2), in §3.

Lemma 2. Let X = lim
←−
{Xi, g

i+1
i }. Suppose {Yi}k is an hc-sequence,

and {Ln}k is the nested sequence of subcompacta of X generated by
{Yi}k. Suppose Z is a subcompactum of X, and there exist an integer
m ≥ 0 and an increasing sequence {ni} of integers such that, for each

i ≥ 1, gni
ni−m(Ani

ni
) = gni−m(Z). Then

⋃
n≥k Ln = Z. In particular, if

for each i ≥ 1, gni
ni−m(Ani

ni
) = Xni−m, then

⋃
n≥k Ln = X.

Proof. Since An
n is only defined for n ≥ k, it follows, by hypothesis,

that n1 ≥ k.

⊂ : Let x ∈
⋃

n≥k Ln. We first show that gj(x) ∈ gj(Z) for each

j ≥ 1. Fix j ≥ 1. Since x ∈
⋃

n≥k Ln and {Ln}k is a nested increasing
sequence, there exists n ≥ k such that for all i ≥ n, x ∈ Li. Pick ni
so that ni −m > max{j, n}. So, x ∈ Lni

. Since j < ni −m, using the
definition of Lni and our hypothesis, we get that

gj(Lni
) = Ani

j = gni
j (Ani

ni
)

= gni−m
j (gni

ni−m(Ani
ni

))

= gni−m
j (gni−m(Z)) = gj(Z).

Since x ∈ Lni
, gj(x) ∈ gj(Lni

) = gj(Z). Now, using a well-known
inverse limit theorem (see [13, Theorem 1.9] or [19, Proposition
2.1.20]), we have that

⋃
n≥k Ln ⊂ Z. Since Z is a compactum, we

have that
⋃

n≥k Ln ⊂ Z.
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⊃ : Let x ∈ Z and ε > 0. Let ni be large enough so that gni−m
is an ε-map. By hypothesis, there is a point yni ∈ Ani

ni
such that

gni
ni−m(yni) = gni−m(x). Let y = γni(yni) ∈ Lni . So, gni(y) = yni

by definition of γni
. Then gni−m(y) = gni

ni−mgni
(y) = gni

ni−m(yni
) =

gni−m(x). Since gni−m is an ε-map, the distance from x to y is less

than ε. Thus, x is a limit point of
⋃

n≥k Ln. That is, x ∈
⋃

n≥k Ln.

The proof is complete. �

Theorem 5. Let X = lim
←−
{Xi, g

i+1
i }. Suppose {Yi}k is an hc-sequence,

and {Ln}k is the nested sequence of subcompacta of X generated by
{Yi}k. Then, for each n ≥ k, rn = γngn|g−1

n (An
n)

: g−1n (An
n) → Ln is a

retraction such that d(rn, id|g−1
n (An

n)
) < 1

2n . In particular, if An
n = Xn

for some n ≥ k, then rn = γngn : X → Ln is a retraction such that
d(rn, id) < 1

2n .

Proof. Fix n ≥ k. If x ∈ Ln, then rn(x) = γngn(x) = x by definition
of γn and Ln. So, rn is a retraction onto Ln.

Let x ∈ g−1n (An
n). Then, gnrn(x) = gnγngn(x) = gn(x). So,

d(x, rn(x)) < 1
2n .

If An
n = Xn for some n ≥ k, then g−1n (An

n) = X and the remaining
statement in Theorem 5 is clear. �

Corollary 1. Let X = lim
←−
{Xi, g

i+1
i }, and let Z be a subcompactum

of X. Suppose {Yi}k is an hc-sequence with each Yi ∈ G, {Ln}k is the
nested sequence of subcompacta generated by {Yi}k, and there exists an
increasing sequence {ni} of positive integers such that, for each i ≥ 1,
Ani

ni
= gni

(Z). Then Z is retractably G-like onto the nested sequence
of subcompacta {Lni

}. Furthermore, Z is retractably G-like at each
point of ∪n≥kLn. In particular, if Ani

ni
= Xni

for each i ≥ 1, then X
is retractably G-like onto the nested sequence of subcompacta {Lni

},
and X is retractably G-like at each point of ∪n≥kLn.

Proof. Since for each n ≥ k, Yn ∈ G, and An
n is the homeomorphic

image of Yn+1, it follows that each An
n

T
≈ Ln ∈ G. By Lemma 2, we have

that ∪n≥kLn = Z. For each i ≥ 1, Z ⊂ g−1ni
(Ani

ni
) since gni(Z) = Ani

ni
.

So, by Theorem 5, we have that for each i ≥ 1, there exists a retraction



12 M. M. MARSH

rni
: Z → Lni

with d(rni
, id|Z) < 1

2ni
. It follows that Z is retractably

G-like onto {Lni}. That Z is retractably G-like at each point of ∪n≥kLn

is clear. The last statement of Corollary 1 is also clear. �

Remark 1. We note an important difference between Lemma 2
and Corollary 1 when m 6= 0. Let the dyadic solenoid be given by
Σ = lim

←−
{S1, s}, where S1 is the unit circle in R2, and s is the squaring

map in the group structure on S1. So, s is a 2-to-1 covering map of
S1. Let N be the shortest arc in S1 with endpoints (1, 0) and (0, 1),
and notice that the constant sequence {N} is a complete hc-sequence,
with s(N) = An

n (the top half of S1), and s(An
n) = S1 for n ≥ 2. So,

by Lemma 2, the union of the nested sequence of arcs in Σ generated
by {N} is dense in Σ, but, of course, Σ is not retractably arclike.

Corollary 2. Let X = lim
←−
{Xi, g

i+1
i } with each Xi ∈ G. Suppose that

for each i ≥ k and each x ∈ Xi+1, there exists a copy Yi+1 of Xi in Xi+1

for which x ∈ Yi+1 and gi+1
i

∣∣
Yi+1

: Yi+1 → Xi is a homeomorphism.

Then X is everywhere retractably G-like onto a nested sequence of
subcompacta.

Proof. Let x ∈ X, and for each i ≥ k, let Yi+1 be a copy of Xi in
Xi+1 that contains xi = gi(x), and so that gi+1

i

∣∣
Yi+1

: Yi+1 → Xi is

a homeomorphism. We note that {Yi}k is a surjective hc-sequence.
Also, by definition of the nested sequence {Ln}k of subcompacta
generated by {Yi}k, we have that x ∈ Lk. To see this, recall that
Lk = lim

←−
{Ak

i , g
i+1
i |Ak

i+1
}. We have that xk ∈ Ak

k = Xk. So, for i ≤ k,

xi ∈ Ak
i = Xi. Also, the point in Lk with kth coordinate xk is uniquely

determined by xk, as was observed in Observation 1. Since for each
i ≥ k, xi ∈ Yi and gik(xi) = xk, it follows that x is the unique point
of Lk with kth coordinate xk. So, X is retractably G-like at x onto
the nested sequence {Ln}k. Hence, X is everywhere retractably G-like
onto a nested sequence of subcompacta. �

Each inverse limit on [0, 1] with open bonding mappings is a simple
example to which Corollary 2 applies. Such continua are called Knaster
continua. We show later, in Theorem 11, that each member of a
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certain family of unimodal maps on [0, 1] is everywhere retractably arc-
like. This family includes the well-known 3-endpoint indecomposable
chainable continuum, see [30, Example 1.10, page 8]. Theorem 11 also
demonstrates that the converse of Corollary 2 does not hold.

Corollary 3. Let X = lim
←−
{Xi, g

i+1
i }. Suppose {Yi}k is an hc-sequence

with each Yi ∈ G, and {Ln}k is the nested sequence of subcompacta
generated by {Yi}k. Suppose there exists m ∈ N such that for each
δ > 0 and each n ≥ m + 1, there is a retraction ρn : Xn → An

n such
that d(gnn−mρn(x), gnn−m(x)) < δ for each x ∈ Xn. Then for each ε > 0,
there exists n ∈ N and a retraction rn : X → Ln such that d(rn, id) < ε.
Thus, X is retractably G-like, at each point of ∪n≥kLn, onto a nested
subsequence of {Ln}k.

Proof. Let m be given as in the hypothesis and let ε > 0. Let n be
large enough so that n > m and gn−m is an ε-map. Pick δ > 0 so that
d(x, y) ≥ ε in X implies that d(gn−m(x), gn−m(y)) ≥ δ in Xn−m. Let
ρn : Xn → An

n be a retraction such that d(gnn−mρn(x), gnn−m(x)) < δ
for each x ∈ Xn. Let rn : X → Ln be given by rn = γnρngn. For
x ∈ X, gnrn(x) = gnγnρngn(x) = ρngn(x). Now, by choice of ρn,
d(gnn−mρngn(x), gnn−m(gn(x))) = d(gnn−mρn(gn(x)), gn−m(x)) < δ. So,
we get that gnn−mρngn(x) = gnn−mgnrn(x) = gn−mrn(x), and it follows
that d(gn−mrn(x), gn−m(x)) < δ. Hence, d(x, rn(x)) < ε.

It follows that X is retractably G-like, at each point of ∪n≥kLn,
onto a nested subsequence of {Ln}k. �

Remark 2. If ρn is simply a mapping in the hypothesis of Corollary 3,
then a completely analogous proof gives that for ε > 0, rn is a mapping
ε-close to the identity. So, it follows, in this case, that X is internally
G-like at each point of ∪n≥kLn.

3. Expanding pairs. We now look at a special case of the ideas
associated with an hc-sequence in a given inverse sequence. Specifically,
we will be interested in inverse sequences on a single compactum with
a single bonding mapping. The terminology in the next paragraph was
first introduced in [23].

Let M be a compactum, and let g : M →M be a surjective mapping.
If N ′ and N are subcompacta of M where N ′ ⊂ N , and g|N ′ : N ′ → N
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is a homeomorphism, we say that (N ′, N) is an expanding pair (with
respect to g). If N = M , we say that (N ′,M) is a surjective expanding
pair. Note that an expanding pair generates a complete sequence of
homeomorphically-covered compacta in the inverse sequence {M, g},
namely the constant sequence {N ′}. Recall that, by definition, for each
n ≥ 1, An

n = N . So, by Lemma 1 and the discussion that precedes it,
the existence of an expanding pair of subcompacta (N ′, N) in M with
respect to g, gives rise to a nested increasing sequence of homeomorphic
copies of N , namely {Ln}, in the inverse limit space X = lim

←−
{M, g}. In

Theorem 6 and Corollary 4, we restrict our attention to those complete
hc-sequences that are generated by an expanding pair.

By Lemma 2, if either N = M or the m-fold composition gm(N)
is equal to M for some m ≥ 1, then the closure of the union of the
sequence {Ln} is the inverse limit space.

If, in addition, either N = M or there are retractions of M onto
N that behave nicely with respect to g as in Corollary 3, then the
inverse limit will be retractably N -like. We formalize these comments
in Theorem 6 below. As mentioned earlier, Theorem 6, parts (1) and
(2), generalize Bennett’s theorem for an inverse sequence on a single
compactum with a single bonding mapping.

Theorem 6. Let X = lim
←−
{M, g}, where M is a compactum and g

is a surjective map. Suppose that (N ′, N) is an expanding pair of
subcompacta with respect to g. Then we have the following.

(1) X contains a nested increasing sequence of subcompacta {Ln},
each member of which is homeomorphic to N under the re-
striction to Ln of the projection mapping gn. For n ≥ 1, we let
γn = (gn|Ln)−1.

(2) Suppose there exists a subcompactum K of M and an integer
m ≥ 1 such that for each n ≥ m, gn(N) = K.

(a) Then K̂ = lim
←−
{K, g|K} =

⋃
n≥1 Ln. Furthermore,⋃

n≥1 Ln = X if and only if K = M .

(b) Let P = K \N ′, and suppose that g(P ) ⊂ P . Then

P̂ = lim
←−
{P, g|P } = K̂ \

⋃
n≥1 Ln.

(3) For each n ≥ 1, rn = γngn|g−1
n (N) : g−1n (N)→ Ln is a retraction

such that d(rn|g−1
n (N), id|g−1

n (N)) <
1
2n . So, if N = M , then for
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each n ≥ 1, rn = γngn : X → Ln is a retraction such that
d(rn, id) < 1

2n .
(4) Suppose there exists m ∈ N such that for each ε > 0, there

is a retraction ρ : M → N such that d(gmρ(x), gm(x)) < ε for
each x ∈ M . Then for each ε > 0, there exists n ∈ N and
a retraction rn : X → Ln such that d(rn, id) < ε. Thus, X
is retractably N -like, at each point of ∪i≥1Li, onto a nested
sequence of copies of N .

Proof. (1) We note that the constant sequence {N ′} is an hc-
sequence, and for each n ≥ 1, An

n = N . So (1) follows from Lemma 1
and our definitions.

(2)(a) Since K = gm+1(N) = g(gm(N)) = g(K), we have that

K̂ = lim
←−
{K, g|K} is a subcompactum of X. Also, for each n ≥ m+ 1,

we have that gnn−m(An
n) = gm(N) = K. Hence, the first statement of

(2)(a) follows from Lemma 2. The second statement is clear.

(2)(b) ⊂: Let p = (p1, p2, . . .) ∈ P̂ . Since P̂ ⊂ K̂, p ∈ K̂. Suppose
that p ∈ Ln for some n ≥ 1. Then by definition of Ln, pi ∈ N ′ for all
i > n. So, by assumption, pi 6∈ P for all i > n, which contradicts that
p ∈ P̂ .

⊃: Let x = (x1, x2, . . .) ∈ K̂ \
⋃

n≥1 Ln. So, x is not in Ln for all

n ≥ 1. Hence, xn+1 6∈ N ′ \ P for all n ≥ 1. For if xn+1 ∈ N ′ \ P for
some n ≥ 1, then xi ∈ N ′ \P for all i ≥ n+ 1, putting x ∈ Ln. Hence,

xn+1 ∈ P for all n ≥ 1. So, x ∈ P̂ .

(3) Let x ∈ Ln. Since gn(x) ∈ N , we get that rn(x) = γngn(x) = x.
So, rn is a retraction onto Ln.

Suppose x ∈ g−1n (N). Then gnrn(x) = gnγngn(x) = gn(x). So,
d(x, rn(x)) < 1

2n .

(4) This follows immediately from Corollary 3. �

Corollary 4. Let X = lim
←−
{M, g} and suppose (N ′,M) is a surjec-

tive expanding pair of subcompacta with respect to g. Then X is
retractably M -like, at each point of ∪n≥1Ln, onto a nested sequence
of copies of M .

Proof. Since M is the second member of the expanding pair, it
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follows from Theorem 6(3) that for each retraction rn = γngn : X →
Ln, we have d(rn, id) < 1

2n . So, the result follows. �

For inverse limits X of inverse sequences on a single compactum with
a single surjective bonding mapping, we are often interested in how the
shift homeomorphism behaves on X. While dynamics is not the focus
of this paper, we make some observations about the behavior of the
shift homeomorphism on nested sequences in X that are generated by
expanding pairs or by hc-sequences.

Let M be a compactum, and let g : M → M be a surjective
mapping. Let X = lim

←−
{M, g}, and let σ : X → X be the right

shift homeomorphism. That is, for x = (x1, x2, . . .) ∈ X, let σ(x) =
(g(x1), x1, x2, . . .). Let n ≥ 2. We say that an hc-sequence {Yi} is
n-cyclic if Yi = Yj whenever i ≡ j (mod n), and {Yi} is not m-cyclic
for 1 ≤ m < n. If {Yi} is 2-cyclic, we say that {Yi} is an alternating
hc-sequence.

Each of the observations below is readily apparent from the definition
of σ and Definitions 1 and 2. Also, the two constant sequences
generated by expanding pairs in Example 1 relate to Observation 4,
and the alternating hc-sequence in Example 1 relates to Observation 6.

Observation 4. If {Ln} is the nested sequence of compacta generated
by the constant hc-sequence {N ′} that arises from an expanding pair
(N ′, N), then for each n ≥ 1, σ(Ln) = Ln+1. So, σ maps

⋃
n≥1 Ln

homeomorphically onto itself.

Observation 5. Let Y1, . . . , Yn, Y1, . . . , Yn, . . . be an n-cyclic hc-
sequence in {M, g}. Referring back to Definition 1, we note that

g(Y1), Y1, Y2, . . . , Yn, Y1, Y2, . . . contains a 2−tail hc−sequence,

since the n-cyclic hc-sequence starts in the second coordinate, and

g2(Y1), g(Y1), Y1, Y2, . . . , Yn, Y1, Y2, . . . contains a 3−tail hc−sequence,

since the n-cyclic hc-sequence starts in the third coordinate, and so
forth.

From the cyclic nature of the first hc-sequence, we have that the
second sequence above is, in fact, a 1-tail sequence since g|Y1 is a
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homeomorphism. However, the third sequence may not be a 1-tail
sequence since we do not know if g|g(Y1) is a homeomorphism.

The first hc-sequence generates a nested sequence of compacta
{L1

n}. The second hc-sequence generates a nested sequence of com-
pacta {L2

n}2. The third hc-sequence generates a nested sequence of
compacta {L3

n}3, and so on. It follows that for each i ≥ 1 and

n ≥ 1, σ(Li
n) = L

(i+1)(mod n)
n+1 . So, σ cycles through the sets

⋃
n≥1 L

1
n,⋃

n≥2 L
2
n, . . . . . .,

⋃
n≥n L

n
n.

Observation 6. Let Y1, Y2, Y1, Y2, . . . be an alternating hc-sequence
in {M, g}. Then if we define the generated nested sequences {L1

n}
and {L2

n}2 as in Observation 5, we see that σ(L1
1) = L2

2, σ(L2
2) = L1

3,
σ(L1

3) = L2
4, and so on. Hence, σ maps

⋃
n≥1 L

1
n onto

⋃
n≥2 L

2
n, and

vice versa.

4. Indecomposability of tree-like continua. A continuum X is
decomposable if it is the union of two nonempty proper subcontinua.
Otherwise, X is indecomposable. A continuum T is a triod if there exists
subcontinua A1, A2, A3, and K of T such that T = A1 ∪ A2 ∪ A3, K
is a proper subcontinuum of Ai for i ∈ {1, 2, 3}, and K = A1 ∩ A2 =
A1 ∩ A3 = A2 ∩ A3. We refer to K as a core of T . A simple triod is a
triod with each Ai an arc and K an endpoint of each Ai. A continuum
T is a tree if it is a finite union of arcs, each pair of which is either
disjoint or meets in a common endpoint, and it contains no simple
closed curve.

If {Ti, gi+1
i } is an inverse sequence on trees, and we can find a

subsequence of pairs of distinct arcs in the factor spaces that “expand”
to a previous factor space under the bonding mappings, then the inverse
limit space will be indecomposable. This subsequence of arcs, if it
exists, should be easy to “spot” while looking for hc-sequences of arcs
in {Ti, gi+1

i }, since the hc-sequences of interest “expand” at each i ≥ k.

Lemma 3 below is straightforward to verify. Theorem 7 is a direct
consequence of D.P. Kuykendall’s theorem for indecomposability of an
inverse limit space, see [18] or [13, Theorem 6.4].

Lemma 3. Let A and B be arcs, whose interiors are disjoint, in a tree
T . Then the following are equivalent.
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(i) A ∪B is contained in either an arc or a simple triod in T .
(ii) Three of the endpoints of A and B have the property that if a

and b are two of them, then the arc [a, b] in T contains one of
A or B.

Theorem 7. Let X = lim
←−
{Ti, gi+1

i }, where each Ti is a tree, and each

bonding mapping gi+1
i is surjective. Suppose there exist m ≥ 1, and

an increasing subsequence {ni} of N such that for each i ≥ 1, Yni
and

Zni
are arcs in Tni

, where the interiors of Yni
and Zni

are disjoint,
Yni
∪ Zni

is contained in either an arc or a simple triod in Tni
, and

gni
ni−m(Yni) = Tni−m = gni

ni−m(Zni). Then X is indecomposable.

Proof. We show that Kuykendall’s criteria for indecomposability of
an inverse limit applies. Let ε > 0 and n ∈ N. Let ni be large enough
so that ni −m > n and 1

2ni−m < ε.

By Lemma 3, we can pick three endpoints p, v, and q of Yni and
Zni

having the property in (ii). Suppose that K is a subcontinuum of
Tni

containing two of the points p, v, and q. Then K must contain
either Yni

or Zni
, and hence gni

ni−m(K) = Tni−m. So, gni
n (K) =

gni−m
n gni

ni−m(K) = Tn. Clearly, d(x, gni
n (K)) = 0 < ε for each x ∈ Tn.

Hence, X is indecomposable. �

Corollary 5. Let X = lim
←−
{T, g}, where T is a tree, and g is surjective.

Suppose that J ′, J and N ′, N are expanding pairs of arcs where J ′

and N ′ have disjoint interiors, and J ′ ∪ N ′ is contained in either
an arc or a simple triod in T . If there exists m ≥ 1 such that
gm(J ′) = T = gm(N ′), then X is indecomposable.

Remark 3. We point out that Ingram’s triod-like arc continuum with
positive span is an example that illustrates Corollary 5. On pages 29
and 30 in [13], Ingram describes the example. In Ingram’s notation,
the arc from A/4 to A/2 and the [OA]-arm form an expanding pair, as
do the arc from A/2 to 3A/4 and the [OA]-arm. These two expanding
pairs satisfy the hypothesis of Corollary 5 with m = 2.

We will apply Corollary 5 several times in the examples in Section
6.
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5. Retractably arclike continua and their proper subcon-
tinua. In this section, we shift our focus to arclike continua. We in-
vestigate, in this setting, what may be considered the converse of our
investigation thus far. That is, given a continuum X that is retractably
arclike onto a nested sequence of arcs, we are interested in what struc-
tural properties of X, other than the equivalences given in Theorem 4,
can be deduced.

Given a nested sequence of arcs {Ln}, we observe that for m ≥
1,
⋃

n≥1 Ln =
⋃

n≥m Ln. Hence, for convenience and simplicity of

notation, throughout this section we let
⋃
Ln denote

⋃
n≥1 Ln for a

nested sequence of arcs. For a continuum X and a point p ∈ X, the
composant of p in X is the union of all proper subcontinua of X that
contain p. A topological ray in X is a uniquely arcwise connected subset
R of X for which there exists a one-to-one mapping from [0,∞) onto
R. A topological line in X is a uniquely arcwise connected subset L of
X for which there exists a one-to-one mapping from R onto L.

Suppose X is arclike, x ∈ X, and {Mi} is a sequence of arcs in X,
each member of which contains x. Since X is hereditarily unicoherent
and atriodic, we note that

⋃
Mi is either an arc, a topological ray, or a

topological line. So, for
⋃
Mi, we choose an order < on

⋃
Mi, induced

by the order on R, and we use standard interval and ray notation for
subcontinua of

⋃
Mi.

Observation 7. If X is retractably arclike onto a sequence of arcs
{Ln}, then

⋃
Ln = X.

Proof. By definition, for each n ≥ 1, there is a retraction rn : X →
Ln, and the sequence {rn} converges uniformly to id: X → X. The
observation follows. �

Lemma 4. If the continuum X is retractably arclike at a point x in
X, then X is retractably arclike onto a nested sequence of arcs, each
member of which contains x.

Proof. Let {Ln} and {rn : X → Ln} be given as in the definition. We
assume that X is not an arc, since arcs trivially satisfy the conclusion.

Suppose there exists m ≥ 1 such that Lm 6⊂ Ln for n ≥ m. If
there is no such m, then clearly we can pick a nested subsequence of
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{Ln} having the desired properties. We let Lm = [a, b], with a < b in
the induced order on

⋃
Ln. For n > m, one of a or b is not in Ln.

So, one of a or b, say a, is not in infinitely many of the Ln’s. Since
for any subsequence {Lni

}, the sequence of retractions {rni
} converges

uniformly to id, we have, by Observation 7, that
⋃
Lni

= X, in which

case it follows that
⋃
Lni is a topological ray with endpoint a. Hence,

we assume, without loss of generality, that a 6∈ Ln for all n > m, and
that

⋃
n>m Ln is a topological ray with endpoint a.

We pick n1 > m so that Ln1 ∩ (X \ [a, b]) 6= ∅. By hypothesis,
x ∈ Ln1

. Let Ln1
= [a1, b1]. We have that a < a1 < x < b < b1.

We claim that there exists n2 > n1 such that Ln1
is a subset of the

interior of Ln2
. Since

⋃
n>m Ln 6= [a, b1], there exists j > n1 such that

Lj contains a point y > b1. If for all such Lj , a1 6∈ Lj , then as we

saw above
⋃

n≥j Ln would be a topological ray with endpoint a1, and
thus a 6∈ X, a contradiction. So, there must be an integer n2 > n1 as
claimed. Now, it is clear that we can choose a nested sequence {Lni

}
of {Ln} so that X is retractably arclike onto {Lni

}. �

Observation 8. If X is retractably arclike onto a sequence of arcs
{Ln}, N is a subcontinuum of X, and q ∈

⋃
Ln \N , then there exists

an integer m such that q 6∈ rn(N) for all n ≥ m.

Proof. Suppose there is no such m. Note that d(q,N) > 0. Pick
n large enough so that d(rn, id) < d(q,N), and so that q ∈ rn(N).
Let u ∈ N such that rn(u) = q. We get that d(q, u) = d(rn(u), u) <
d(q,N), which is a contradiction. �

Theorem 8. SupposeX is retractably arclike onto a nested sequence of
arcs {Ln}. If y ∈ X \

⋃
Ln, and K is a proper subcontinuum containing

y, then either K ∩ (
⋃
Ln) is empty, or K ∩ (

⋃
Ln) is a topological ray

not equal to
⋃
Ln. Furthermore, K = K ∩ (

⋃
Ln).

Proof. By definition, for each n ≥ 1, there is a retraction rn : X →
Ln with the sequence {rn} converging uniformly to id: X → X.
Suppose K ∩ (

⋃
Ln) 6= ∅. If

⋃
Ln ⊂ K, then by Observation 7,

X =
⋃
Ln = K = K. So, K is not a proper subcontinuum,

contradicting our assumption. Let x ∈ (
⋃
Ln) \K.
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Suppose that [a, b] is an arc in
⋃
Ln containing a point p with

a, b ∈ K and p 6∈ K. Then K ∪ [a, b] is not unicoherent, which is a
contradiction. So, whenever two points of

⋃
Ln belong to K, the arc

in
⋃
Ln between them is a subset of K. Hence, we may choose a linear

order < on
⋃
Ln where x < w = glb(K ∩ (

⋃
Ln)).

Suppose z ≥ w and the possibly degenerate arc [w, z] = K ∩ (
⋃
Ln).

Then for some j ≥ 1, [x, z] ⊂ Lj , and K ∩ Lj = [w, z]. We note that
z is an endpoint of Ln for all n ≥ j, for otherwise, for some n ≥ j,
K ∪ Ln would be a triod in X. By Observation 8, there exists an
integer m such that x 6∈ rn(K) for all n ≥ m. So, for n > max{j,m},
rn(K) ⊂ (x, z]. Pick n > max{j,m} so that d(rn, id) < d(y, [x, z]). But
then we have that d(y, rn(y)) < d(y, [x, z]) with rn(y) ∈ (x, z], which is
a contradiction. It follows that for all t > w, the arc [w, t] ⊂ K. We
write K ∩ (

⋃
Ln) = [w,∞).

It remains to show that K = [w,∞). The right-to-left inclusion
is clear. By Observation 8, for large n, rn(K) ⊂ (x,∞). Since {rn}
converges uniformly to the identity mapping on X, it follows that each
point of K not in [w,∞) is a limit point of [w,∞). So, the left-to-right
inclusion holds, and the equality is established. �

Theorem 9. Suppose X is retractably arclike onto a nested sequence
of arcs {Ln}, y ∈ X \

⋃
Ln, and K is a proper subcontinuum containing

y that meets
⋃
Ln. By Theorem 8, we may assume that K ∩ (

⋃
Ln) =

[w,∞) for some w ∈
⋃
Ln, and thatK = [w,∞). Let x ∈

⋃
Ln\[w,∞),

[x,w] be the unique arc in
⋃
Ln from x to w, and K ′ =

⋂
t≥w [t,∞).

Then we have the following.

(1) If N is a subcontinuum of X \ [x,w] that contains y, then
N ⊂ K. Hence, X is not retractably arclike at y.

(2) Either K is the compactification of [w,∞) with remainder K ′,
or K ′ is indecomposable and K = [w, v] ∪K ′ for some v ≥ w
in
⋃
Ln.

Proof. We let {rn : X → Ln} be the sequence of retractions given
by the definition.

(1) Suppose N 6⊂ K. Let z ∈ N \ K. Since [w,∞) ⊂
⋃
Ln,

by Observation 8, we can pick an integer m such that for n ≥ m,
x 6∈ rn(K), and Ln ∩ [w,∞) 6= ∅. For n ≥ m, rn|[w,∞)∩Ln

= id, and
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[w,∞) ∩ Ln ⊂ K; so, it follows that rn(K) ⊂ (x,∞). Now choose
n ≥ m such that d(rn, id) < min(d(x,K ∪ N), d(z,K ∪ [x,w]). It
follows that rn(z) 6∈ K ∪ [x,w]. So, rn(z) ∈ (−∞, x). Since y ∈ N ∩K,
rn(y) ∈ (x,∞). We have that x ∈ rn(N). Let u ∈ N such that
rn(u) = x. So, u ∈ K ∪ N , and d(u, rn(u)) = d(u, x) < d(x,K ∪ N),
which is a contradiction.

Now suppose that N is an arc containing y. By Theorem 8,
N ∩ [x,w] = ∅. So, N ⊂ K. Hence, X is not retractably arclike
at y.

(2) We note that K ′, defined in the hypothesis, is a nonempty

subcontinuum of K = [w,∞). We consider two cases.

Case 1. Suppose K ′ ∩ (
⋃
Ln) = ∅. Then K ′ ∩ [w,∞) = ∅, and

it follows that K = K ′ ∪ [w,∞) is a compactification of [w,∞) with
remainder K ′.

Case 2. SupposeK ′∩(
⋃
Ln) 6= ∅. Then by Theorem 8, K ′∩(

⋃
Ln) =

[v,∞) for some v ≥ w, and [v,∞) = K ′ =
⋂

t≥v [t,∞). It follows that

[t,∞) = K ′ for each t ≥ v. Hence, by Theorem 8, if a subcontinuum N
of K ′ meets [v,∞) and its complement in K ′, then N = K ′. We have
that each proper subcontinuum of K ′ is either a subset of [v,∞) or a
subset of K ′ \ [v,∞).

Suppose that N is a proper subcontinuum of K ′ lying in [v,∞).

Then N is an arc, say N = [a, b]. For t > b, N ⊂ [t,∞). So,
N has empty interior. Suppose that N is a proper subcontinuum of
K ′ \ [v,∞). From the previous paragraph, we have that K ′ = [v,∞).
So, again N has empty interior. It follows that K ′ is indecomposable
and K = [w, v] ∪K ′. �

Theorem 10. Suppose X is retractably arclike onto a nested sequence
of arcs {Ln}, and X is also retractably arclike at a point not in

⋃
Ln.

Then X is indecomposable.

Proof. Let {rn : X → Ln} be the sequence of retractions given by the
definition. By assumption and Lemma 4, there is also a second nested
sequence of arcs {Jn} containing a point not in

⋃
Ln, and a sequence of

retractions {ρn : X → Jn} with the sequence {ρn} converging uniformly

to id: X → X. By Observation 7, we have that
⋃
Ln = X =

⋃
Jn. It
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follows from Theorem 8 that (
⋃
Ln) ∩ (

⋃
Jn) = ∅.

Suppose X is decomposable. Let X = H ∪ K, where H and K
are proper subcontinua of X. Since H is a proper subcontinuum
of X, we have that

⋃
Ln 6⊂ H. Similarly,

⋃
Ln 6⊂ K. We have

analogous statements for
⋃
Jn. It follows thatH 6⊂

⋃
Ln, for otherwise,⋃

Jn ⊂ K. Similarly, H 6⊂
⋃
Jn, and analogous statements hold for K.

Hence, we have that each of H and K meet each of
⋃
Ln and

⋃
Jn.

By Theorem 8, H intersects
⋃
Ln in a ray [w,∞) for some w ∈

⋃
Ln.

Since
⋃
Ln ⊂ H ∪K, it follows that (−∞, w] ⊂ K. So, there exists a

point v ≥ w in
⋃
Ln such that K∩

⋃
Ln = (−∞, v], and H∩K∩

⋃
Ln =

[w, v]. Similarly, and without loss of generality, we can choose an order
on
⋃
Jn so that H ∩

⋃
Jn = [w′,∞), K ∩

⋃
Jn = (−∞, v′], and w′ ≤ v′

in
⋃
Jn. So, H ∩ K ∩

⋃
Jn = [w′, v′]. By unicoherence, H ∩ K is a

proper subcontinuum of X that meets both
⋃
Ln and its complement.

This is a contradiction to Theorem 8 since H ∩ K meets
⋃
Ln in an

arc. �

We recall from the first paragraph of the paper that a continuum X
is an arc continuum if every proper subcontinuum of X is an arc.

Corollary 6. If X is everywhere retractably arclike, then X is either
an arc, or an indecomposable arc continuum.

Proof. Let K be a proper subcontinuum of X. Let x ∈ K. Since
X is retractably arclike at x, X is retractably arclike onto a nested
sequence of arcs {Ln}, each member of which contains x. So, K meets⋃
Ln. Suppose K meets the complement of

⋃
Ln. Let y ∈ K \

⋃
Ln.

By Theorem 9(1), X is not retractably arclike at y, contradicting our
hypothesis. So, K ⊂

⋃
Ln. Hence, K is an arc.

So, X is an arc continuum, and it follows that either X is an arc or
X is indecomposable. �

We note, from Remark 1, that Σ is an indecomposable arc continuum
that is nowhere retractably arclike. So, the converse of Corollary 6 does
not hold in general.

Question 1. Is every indecomposable arclike, arc continuum every-
where retractably arclike?
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Example 2 illustrates that although a continuum X that is re-
tractably arclike onto two distinct nested sequences of arcs is inde-
composable, X must be everywhere retractably arclike to ensure that
X is an arc continuum.

Example 2. We modify the Horseshoe continuum X of Example 1 so
that it becomes retractably arclike everywhere except at points in the
composant that contains an endpoint, and that composant will contain
a topologist’s sin(1/x)-curve. So, the resulting continuum is not an arc
continuum.

It should be intuitively clear that this construction can be done, but
for the interested reader, we offer more detail. Let R be the composant
of X that has an endpoint q. Let x ∈ R \ {q}. Let U be an open set
contianing x such that q 6∈ U , and U is homeomorphic to the product

of a Cantor set C and the open segment (0, 1). So, U
T
≈ C × [0, 1].

Let p be the endpoint of R ∩ U that separates q from x in R. Now,
we replace the arc {p} × [0, 1] with a continuum L that contains a
sin(1/x)-curve with limit interval, and has endpoints (p, 0) and (p, 1).
All other arcs {t} × [0, 1], for t ∈ C \ {p}, remain arcs, but “limit
to” L in such a way that if d(t, p) < ε, then there exists a retraction
f : L∪ ({t}× [0, 1])→ {t}× [0, 1], where the endpoints of L are mapped
to the endpoints of {t} × [0, 1], and d(x, f(x)) < ε for x ∈ L. For
exact details of how to accomplish this construction, see Section 3 in
[11]. Specifically, we are replacing U with the Sp-mbox (or the −Sp-

mbox) described in that reference. Let X̂ be the continuum that results
from this replacement for U . Since X is everywhere retractably arclike
(recall Corollary 2 and the remark after its proof), it follows that X̂

is retractably arclike at each point x ∈ X̂ that is not in the “new
composant” R̂ that contains q. However, by Theorems 8 and 9(1), X̂ is

not retractably arclike at points in R̂. Also, X̂ is not an arc continuum.

We end this section by showing that inverse limits on [0, 1] with a
single bonding mapping chosen from a certain family of unimodal maps
on [0, 1] are everywhere retractably arclike onto a nested sequence of
arcs. The family of mappings in Theorem 11 are contained in the
larger family of mappings on [0, 1] considered, in detail, by Ingram
and Mahavier in [15]. Ingram summarizes properties of this family of
mappings in [13, pages 45 & 46], although he does not discuss which
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members admit retractions to arcs that are close to the identity. The
two pictured examples on page 37, and the examples discussed in the
Remark at the bottom of page 37 in [13], are included in the family
in Theorem 11 below. To the author’s knowledge, heretofore it was
not known that continua satisfying the conditions of Theorem 11 are
everywhere retractably arclike, or even that the familiar three endpoint
indecomposable arclike continuum is everywhere retractably arclike.

Theorem 11. Let 0 < v1 < v2 < . . . < vn < 1. Let g : [0, 1] → [0, 1]
be the piecewise linear, unimodal map whose graph contains the points
(0, v1), (vn, 1), and (1, 0) with gi(0) = vi, for 1 ≤ i ≤ n. Then
X = lim

←−
{[0, 1], g} is everywhere retractably arclike onto a nested

sequence of arcs.

Proof. We prove the result for n = 1 and n = 2. Thereafter, the
result will be clear.

For n = 1, we let v1 = v for simplicity of notation. We have that
g(0) = v, g(v) = 1, and g(1) = 0. We note that

(a) ([v, 1], [0, 1]) is a surjective expanding pair,
(b) [0, v] is homeomorphically covered by [v, 1],
(c) [v, 1] is homeomorphically covered by both [0, v] and [v, 1], and
(d) g−1([0, v)) ⊂ [v, 1].

Let x = (x1, x2, . . .) ∈ X. We define an hc-sequence containing the
coordinates of x. Each term of the sequence will be either [0, v] or [v, 1].
Furthermore, [v, 1] will occur at least once in every two terms of the
constructed sequence.

Suppose x1 ∈ [0, v). Let Y1 = [0, v], and note that by (d), Y2 must
be chosen to be [v, 1] in this case.

Suppose x1 ∈ [v, 1]. Let Y1 = [v, 1]. If x2 ∈ [0, v), let Y2 = [0, v],
and if x2 ∈ [v, 1], let Y2 = [v, 1] .

We may, for n ≥ 3, continue the same procedure for choosing Yn
so that it is one of [0, v] or [v, 1] and contains xn. Clearly, by this
procedure, [v, 1] will occur at least once in every two terms of the
constructed sequence.

It follows that {Yn} is an hc-sequence with the properties claimed.
It follows from properties (a) through (d), and Corollary 1 that X is
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retractably arclike onto a nested sequence of arcs containing x. The
proof for n = 1 is complete.

For n = 2, we have that g(0) = v1, g(v1) = v2, g(v2) = 1, and
g(1) = 0. We note that

(a) ([v2, 1], [0, 1]) is a surjective expanding pair,
(b) [v1, v2] is homeomorphically covered by [0, v1],
(c) [v2, 1] is homeomorphically covered by [v1, v2], and
(d) g−1([0, v1)) ⊂ [v2, 1].

Let x = (x1, x2, . . .) ∈ X. We define an hc-sequence containing
the coordinates of x. Each term of the sequence will be either [0, v1],
[v1, v2] or [v2, 1]. Furthermore, [v2, 1] will occur in every three terms of
the constructed sequence.

Suppose x1 ∈ [0, v1). Let Y1 = [0, v1], and Y2 = [v2, 1].

Suppose x1 ∈ [v1, v2). Let Y1 = [v1, v2]. If x2 ∈ [0, v1), let
Y2 = [0, v1], and if x2 ∈ [v2, 1], let Y2 = [v2, 1].

Suppose x1 ∈ [v2, 1]. Let Y1 = [v2, 1]. If x2 ∈ [v1, v2), let
Y2 = [v1, v2], and if x2 ∈ [v2, 1], let Y2 = [v2, 1].

We may, for n ≥ 3, continue the same procedure for choosing Yn.

To see that [v2, 1] occurs in every three terms of the constructed
sequence, suppose for some n ≥ 1, Yn = [0, v1] or Yn = [v1, v2]. If
Yn = [0, v1], then by our chosing procedure, xn < v1, so Yn+1 = [v2, 1].
So, we assume that Yn = [v1, v2]. Again, by our procedure, it follows
that v1 ≤ xn < v2, and either Yn+1 = [v2, 1], or 0 ≤ xn+1 < v1, in
which case Yn+1 = [0, v1], and Yn+2 must be [v2, 1].

We have that {Yn} is an hc-sequence with the properties claimed.
It follows as in the first case that X is retractably arclike onto a nested
sequence of arcs containing x. �

6. More examples. In this section, we provide examples, some of
which are standard, well known continua, that illustrate the utilility
of theorems and techniques developed herein. They show how certain
structural properties of inverse limits and their subcontinua can be
ascertained by readily observable properties of the bonding mappings
in the inverse sequence.
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In the first three examples, we revisit examples from [23], [21] and
[22] to see how theorems in this paper give alternative ways to quickly
establish the fixed point property for the inverse limits considered, and
to observe some other properties of these continua. It will aid the reader
to have a copy of the three references, which give definitions, details,
and figures.

Example 3. In [23, Theorem 4.1], it is shown that the inverse limit
X of an inverse sequence on the 2-sphere S2 with a single bonding map
g is retractably disk-like onto a nested sequence of disks; see the proof
of Theorem 4.1 beginning with the definition of r, or the first sentence
after the proof. The bonding map g, which is defined in the first few
lines of §4 in [23], is a 2-to-1 covering map on the longitudinal circles
of S2 with the south pole as its fixed point. The proof uses the idea
of Theorem 6(4), although the theorem is not explicitly stated there.
It is observed in [23] that the bottom quarter of S2 and the southern
hemisphere form an expanding pair. From there, the nested sequence
of disks in X is generated by this expanding pair, and for ε > 0 it is
shown that there is a retraction r of S2 onto the southern hemisphere
such that d(g(x), gr(x)) < ε for each x ∈ S2. So, Theorem 6(4) applies.
As a consequence of being retractably disk-like, X has the fixed point
property (recall Theorem 3).

It is of interest to note that X can also be represented as an inverse
limit on the projective plane with a single essential (not homotopic to
a constant) bonding map.

Example 4. Let X be the inverse limit of the inverse sequence
on a simple triod with alternating bonding mappings b1 and b2 as
defined on page 141 in [21]. See Figure 1 for a diagram of b1 and
b2; the smaller labeled edges are the images of the associated edges.
We adopt the same notation used in [21], and additionally, we let
[s, t]i = {(r, θ) ∈ Li | s ≤ r ≤ t} for i = 0, 2, 4. LetN ′ = [0, 13 ]0∪L2∪L4.
We note that (N ′, T ) is a surjective expanding pair of simple triods for
each of b1 and b2. So, the constant sequence {N ′} is a surjective hc-
sequence in the inverse sequence. It follows from Corollary 1 that X is
retractably simple-triod-like onto the nested sequence of simple triods
in X generated by {N ′}. So, by Theorem 3, X has the fixed point
property.
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We further note that ([0, 13 ]0, L0) and ([ 13 ,
2
3 ]0, L0) are expanding

pairs of arcs for each of b1 and b2, and that b1b2b1([0, 13 ]0) = T and

b1b2b1([ 13 ,
2
3 ]0) = T . Also, [0, 13 ]0∪ [ 13 ,

2
3 ]0 is contained in an arc. So, for

each even n ≥ 4, three compositions of the bonding mappings applied
to the arcs [0, 13 ]0 and [ 13 ,

2
3 ]0 give T . Hence, by Theorem 7, X is

indecomposable.

L2

L4

L0

L4

L2

L0

b1
L2

L4

L0

L4

L2

L0

b2

Figure 1. Schematic indications of the alternating bonding maps

b1 and b2 in the inverse limit in Example 4.

Example 5. Let X and Y be, respectively, the inverse limits defined
in Examples 1 and 2 in [22]. In both examples, the simple triod T
is defined analogously as in [21]. So, we use notation as we did in
Example 4. See Figure 2 for a diagram of the single bonding maps
used in each of the two inverse limits X and Y ; the smaller labeled
edges are the images of the associated edges.

In the first example, let N ′ = [0, 13 ]0 ∪ [0, 13 ]2 ∪ L4, and observe
that (N ′, T ) is a surjective expanding pair. Also, the constant se-
quences {[0, 13 ]2} and {[ 13 ,

2
3 ]2} are hc-sequences with b3([0, 13 ]2) = T =

b3([ 13 ,
2
3 ]2). So, a similar analysis as in Example 4, gives us that X is

indecomposable, retractably simple-triod-like, and has the fixed point
property.

In the second example of [22], we have the same triod, but a different
bonding mapping b. We note that letting N ′ = [ 12 , 1]2, (N ′, L0 ∪L2) is

an expanding pair of arcs with b2([ 12 , 1]2) = T . So, by Theorem 6(2)(a),
the union of the nested sequence of arcs in Y generated by the constant
sequence {N ′} is dense in X. But, since {N ′} is not a surjective hc-
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sequence, which in fact it cannot be since N ′ is an arc and T is a triod,
we do not know that X is retractably arclike. Nevertheless, we define
the retraction ρ : T → L0 ∪ L2 by letting ρ(r, 43π) = (1

4r, 0) for points

(r, 43π) ∈ L4, and observe that b◦ρ = b. Hence, it follows from Theorem
6(4), that, in fact, Y is retractably arclike onto the nested sequence of
arcs mentioned above. For the two constant sequences generated by
the two expanding pairs (N ′, L0 ∪ L2) and ([ 14 ,

1
2 ]2, L2), we have that

b3 applied to the first member of each expanding pair gives T . So, as
we have seen, this implies that Y is indecomposable.

One can readily get a representation of Y as an inverse limit on arcs
by determining the composition mapping g : L0∪L2 → L0∪L2 defined
by g = ρ◦ b|L0∪L2 . That the two inverse limit representations of Y give
homeomorphic continua follows from Theorem 2.1.38 in [19]. Similar
analyses can be considered for certain proper subcontinua of Y , e.g. the

subcontinua lim
←−
{L0 ∪ L4, g|L0∪L4} and lim

←−
{L0 ∪ [0,

1

3
]2, g|L0∪[0, 13 ]2

}.

L2

L4

L0

L4

L0

L2

b (for X)

L2

L4

L0

L4

L0

L2

b (for Y )

Figure 2. Schematic indications of the bonding map b

in the two inverse limits in Example 5.

Example 6. In Remark 1, we commented on the dyadic solenoid
Σ = lim

←−
{S1, s}, where s is the 2-to-1 covering mapping on S1. Let

A be the arc in S1 with endpoints (0,−1) and (0, 1) and containing
(1, 0). Let p : S1 → S1 be reflection across the x-axis. We consider
X = lim

←−
{S1, g}, where g is the 2-to-1 mapping on S1 such that g = s

on the arc A, and g = p ◦ s on S1 \A. Now, letting A′ be the subarc of

A with endpoints (
√
2
2 ,−

√
2
2 ) and (

√
2
2 ,
√
2
2 ), we note that (A′, A) is an
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expanding pair with g2(A′) = S1. So, the constant hc-sequence {A′}
generates a nested sequence {Ln} of arcs with

⋃
n≥1 Ln = X. If we let

r : S1 → A be the retraction that reflects the left side of S1 across the
y-axis onto A, we see that g ◦ r = g. So, in fact, by Theorem 6(4), X
is retractably arclike at each point of

⋃
n≥1 Ln.

As in the second example of Example 5, X
T
≈ lim
←−
{A, f}, where

f = r ◦ g|A. The graph of f is given in Figure 3, where it is easy to
see that X is the union of two “tent map” Horseshoe continua (recall
Example 1) with a common endpoint.

A
A
A
A�
�
�
�
�
�
�
�A
A
A
A

(0,−1)

(1, 0)

A

(0, 1)

(0,−1) (1, 0) A (0, 1)

Figure 3. The graph of f
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