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INTERNAL INVERSE LIMITS AND RETRACTIONS

M.M. MARSH AND J.R. PRAJS

ABSTRACT. We establish equivalences between com-
pacta that admit a sequence of retractions that converge
uniformly to the identity map and compacta that are in-
verse limits on subcompacta with retractions for bonding
maps. We give partial answers to questions of Charatonik
and Prajs, and of Krasinkiewicz. Our results are related to
and use results from another paper of the authors [11].

1. Introduction and definitions. Given a compactum X with
retractions rn : X → Xn converging uniformly to the identity map
on X, under what conditions can X be represented as an inverse limit
of copies of some (or all) of the Xn’s with retractions as bonding maps?
This is a central question to this investigation. More precisely, we want
to find an internal inverse limit structure onX (definition follows), with
some or all of theXn’s as factor spaces and retractions as bonding maps.
Our results are presented in three cases.

Case 1, presented in Section 2, shows that, if the compacta Xn are
nested and the retractions rn commute, then all of the Xn’s, with the
corresponding restrictions of the rn’s, form the desired inverse limit
structure.

Case 2, also presented in Section 2, shows that, if the compacta Xn

are nested but the retractions rn do not necessarily commute, then
there is an internal inverse limit structure on X with a subsequence
{Xnk

} of {Xn} as factor spaces and the corresponding restrictions of
rnk

’s as the bonding maps.

Case 3, presented in Section 3, shows that, if the compacta Xn are
not nested, then we have a positive result under the additional assump-
tion that the Xn’s are graphs of order at most three. Specifically, for
such Xn’s, we find a desired internal inverse limit structure on X made
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of copies of a subsequence {Xnk
} of {Xn} as factor spaces, and retrac-

tions, “nearly congruent” to the restrictions of the rnk
’s, as bonding

maps.

To better understand the motivation for this study, notice that many
important examples in topology and continuum theory are, or can be
represented as, inverse limits of some simple spaces with retractions as
bonding maps. For instance, inverse limits of arcs with open bonding
maps, also called Knaster continua, are inverse limits of arcs with open
r-maps as bonding maps. From our results in Section 2 it follows
that Knaster continua have internal inverse limit structures of arcs
with open retractions for bonding maps. Moreover, replacing arcs with
trees, this result can be generalized to a similar one for all inverse
limits of trees with open bonding maps, which is a much larger class
of spaces still having very regular properties. One of these properties
is that all the members of this class are absolute retracts for tree-like
continua [4]. Having retractions as bonding maps creates a special
form of convergence of the factor spaces to the inverse limit space. This
convergence was used in the construction of the following examples of
Bellamy.

(i) A planar dendroid M with a connected set of endpoints E, where
only endpoints are accessible from R2−M , and no single point of
E separates E but each pair of points of E does separate E [1].

(ii) A Hausdorff indecomposable continuum with exactly one com-
posant and a Hausdorff indecomposable continuum with exactly
two composants [2].

Our results are related to a recent study by Mańka [9, Theorem 1.1],
in which he has shown that locally connected curves admit ϵ-retractions
onto graphs. Additionally, Mańka states [9, page 650] that he has
proved, in a paper presently in preparation, that these graphs can be
chosen to form a nested increasing sequence. Assuming this last result,
it follows from our Corollary 2.3 that each locally connected curve
admits an internal inverse limit structure on graphs with retractions
for bonding maps. This provides a partial answer to a question of
Krasinkiewicz (see [9, pages 650, 651]).

A compactum is a compact metric space. A continuum is a connected
compactum. A mapping (or map) is a continuous function. If A is a
closed subset of X, a surjective mapping f : X → A is a retraction if
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f(x) = x for each x ∈ A. A map f : X → Y of topological spaces is
an r-map if there is a map g : Y → X such that f ◦ g : Y → Y is the
identity map on Y (see [3, page 7]). The class of r-maps coincides with
the class of maps of the form h ◦ r, where h is a homeomorphism and
r is a retraction [3, 2.1, page 10]. For the composition of functions f
after g, we will use both notations f ◦ g and fg.

For the convenience of the reader in the remaining part of this section
we state some definitions and results from [11].

We use inverse sequences and inverse limits throughout this paper.
Definitions and general properties of these notions can be found in [6,
page 7–14], [8, subsections 2.1–2.3], or [12, Section II, part One]. Two
inverse sequences {Xn, f

n+1
n } and {Yn, g

n+1
n } are said to be topologically

equivalent if, for each n ≥ 1, there exists a homeomorphism hn : Xn →
Yn such that gn+1

n ◦ hn+1 = hn ◦ fn+1
n .

If An is a sequence of non-empty subsets of X converging with
respect to the Hausdorff distance, then LimAn denotes the Hausdorff
limit of the An’s.

In the spirit of the Anderson-Choquet embedding theorem (see [12,
Theorem 2.10]), the following definition was introduced in [13, page
104].

Let {Xn} be a sequence of closed sets in a metric space (X, d) and
{fn : Xn+1 → Xn} a sequence of maps. We say the inverse sequence
{Xn, fn} converges in X provided that:

(i) Each thread (x1, x2, . . .) of the inverse sequence is a convergent
sequence in X,

(ii) the assignment f defined by (x1, x2, . . . ) 7→ limxn is a continuous
map from lim

←−
{Xn, fn} to X, and

(iii) the projections πn : lim
←−

{Xn, fn} → Xn converge uniformly to

f : lim
←−

{Xn, fn} → LimXn.

If, additionally, f is an embedding, we say that {Xn, fn} converges
exactly in X.

If {Xn, fn} converges exactly in X and f(lim
←−

{Xn, fn}) = X, that

is, f is a homeomorphism onto the entire space X, we call {Xn, fn} an
internal inverse limit structure on X. Identifying lim

←−
{Xn, fn} with X
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by f , in this case, we have the projection maps in (iii) converging to
the identity map on X.

We note that this terminology is slightly different from that used in
[13]. What we call here an exactly convergent inverse sequence in [13]
was referred to as a convergent inverse sequence.

Let X be a space and A a non-empty subspace of X. For any map

f : A → X, we write d̃(f) = sup{d(x, f(x)) | x ∈ A}.
Let K be a class of compacta. We say that X is internally K-like if,

for each ϵ > 0, there is a K ∈ K with K ⊂ X, and a map f : X → K

such that d̃(f) < ϵ. We say that X is internally K-representable if
X has an internal inverse limit structure with factor spaces in K. We
investigated these ideas in our previous paper [11]. If X is internally
K-like and, additionally, the mappings f are retractions, we say that X
is retractably K-like. If X is internally K-representable and the bonding
maps are retractions, we say that X is retractably K-representable.

A collection S of convergent sequences in a space X is called
uniformly convergent provided, for every ϵ > 0, there is an N such
that d(sm, limn→∞ sn) < ϵ for each m > N and {sn} ∈ S. In a similar
way, we define uniformly Cauchy collections of sequences. Clearly, in a
complete metric space, a collection of sequences is uniformly convergent
if and only if it is uniformly Cauchy.

Proposition 1.1. For each n ≥ 1, let Xn be a compact non-empty
subset of a complete metric space X, and let fn : Xn+1 → Xn be a
map. The inverse sequence {Xn, fn} converges in X if and only if the
threads of {Xn, fn} form a uniformly convergent collection of sequences
in X.

Proposition 1.2. For each n ≥ 1, let Xn be a compact non-empty
subset of a complete metric space X, and let fn : Xn+1 → Xn be a
map. The inverse sequence {Xn, fn} converges exactly in X if and
only if it converges in X and the function (x1, x2, . . . ) 7→ limxn from
lim
←−

{Xn, fn} to X is one-to-one.

Proposition 1.3. Let {Xn, fn} be an inverse sequence converging in
a compact space X. If LimXn = X, then the map f in the definition
of the convergence of inverse sequences is surjective.
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A set {fα : Xα → Yα | α ∈ Γ} of maps is uniformly equicontinuous
if, for each ϵ > 0, there exists a δ > 0 such that d(fα(x), fα(y)) < ϵ for
all α ∈ Γ and all x, y ∈ Xα such that d(x, y) < δ.

Given a compact space X and a collection of maps {fα : Xα → X |
Xα ∈ 2X , α ∈ Γ}, Theorem 1.4 below provides a general condition
under which X admits an internal inverse limit structure. Proofs of
this theorem and the subsequent two corollaries can be found in [11].

Theorem 1.4. Let X be a compact space and {Yn} a sequence of
closed subsets of X with LimYn = X, and let F be a collection of
maps. Suppose for each ϵ > 0 there is an N(ϵ) ∈ N such that for each
n > N(ϵ), there exists a uniformly equicontinuous sequence of maps

fm
n : Ym → Yn in F , for m > n, with d̃(fm

n ) < ϵ. Then there are a
subsequence {Ynk

} of {Yn} and maps gk : Ynk+1
→ Ynk

in F such that
the inverse sequence {Ynk

, gk} is an internal inverse limit structure on
X.

Corollary 1.5. Let X be a compactum. Each sequence of maps
{fn : X → X} converging uniformly to the identity map on X has
a subsequence {gk = fnk

} such that {gk(X), gk|gk+1(X)} is an internal
inverse limit structure on X.

Corollary 1.6. Let K be any class of compacta and X any compactum.
The compactum X is internally K-like if and only if X is internally K-
representable.

2. r-maps, retractions, and internal inverse limit structures.
We begin with a theorem for which special versions have been noted by
others, typically with comments about a proof. For example, Bellamy
notes and uses part (i) of this theorem in the construction of his
examples mentioned earlier. Also, note the implication 5.2.1 =⇒ 5.2.2
in [5, page 889]. For completeness, we supply details of a more general
version of these related theorems. We also use this theorem later in the
paper. As an easy application of Theorem 2.1 below, we note that the
“tent map” on [0, 1], or any surjective open map on [0, 1], is an r-map.
Hence, each Knaster continuum is retractably arc-representable.
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Theorem 2.1. Suppose X = lim
←−

{Xn, r
n+1
n }, where each Xn is a

compactum and each rn+1
n : Xn+1 → Xn is an r-map. Then there exists

a monotone increasing sequence of compacta {X̂n} in X and retractions

r̂n+1
n : X̂n+1 → X̂n such that :

(i) the inverse sequence {X̂n, r̂
n+1
n } is topologically equivalent to the

inverse sequence {Xn, r
n+1
n },

(ii) {X̂n, r̂
n+1
n } is an internal inverse limit structure on X, and

(iii) identifying X with its internal inverse limit structure, the projec-

tion mappings r̂n : X → X̂n are retractions satisfying r̂n◦ r̂m = r̂n
for all n < m.

Proof. For each r-map rn+1
n : Xn+1 → Xn, let gn : Xn → Xn+1 be

the embedding satisfying rn+1
n ◦ gn = id |Xn . Define gmn = gn−1 ◦

. . . ◦ gm+1 ◦ gm for m < n, and note that each gmn : Xm → Xn is an
embedding. Given a p in Xn, we let

hn(p) = (rn1 (p), r
n
2 (p), . . . , r

n
n−1(p), p, g

n
n+1(p), g

n
n+2(p), . . .)

and note that hn(p) is a thread in X, and hn : Xn → X is an
embedding. Moreover, for q = gn(p), we note

hn(p) = hn+1(q)

= (rn+1
1 (q), rn+1

2 (q), . . . , rn+1
n (q), q, gn+1

n+2(q), g
n+1
n+3(q), . . .).

So, hn(p) ∈ hn+1(Xn+1). Therefore, letting X̂n = hn(Xn), we have

X̂n ⊂ X̂n+1 for each n ≥ 1.

Given x ∈ X̂n+1, there is a unique q ∈ Xn+1 such that hn+1(q) = x.

The assignment x 7→ hn(r
n+1
n (q)) defines a map r̂n+1

n : X̂n+1 → X̂n.
Moreover, for each q ∈ Xn+1, we have hn(r

n+1
n (q)) = r̂n+1

n (hn+1(q)).
By this last commutativity, the one-to-one maps hn define an equiva-

lence between the inverse systems {Xn, r
n+1
n } and {X̂n, r̂

n+1
n }.

If x ∈ X̂n ⊂ X̂n+1, there is a unique p ∈ Xn such that hn(p) = x.
Letting q = gn(p), we have hn(p) = hn+1(q) as above. Consequently
x = hn+1(q), and r̂n+1

n (x) = hn(r
n+1
n (q)) = hn(r

n+1
n (gn(p))) =

hn(p) = x. Thus, r̂n+1
n is a retraction for each n ≥ 1.

Let x = (p1, p2, . . .) ∈ X. Thus (p1, p2, . . .) is a thread in
{Xn, r

n+1
n }, that uniquely defines a thread h(x) = (x1,x2, . . .) =
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(h1(p1), h2(p2), . . .) in {X̂n, r̂
n+1
n }, where h is the equivalence estab-

lished above. For each n ≥ 1, by definition,

xn = hn(pn)

= (rn1 (pn), . . . , r
n
n−1(pn), pn, g

n
n+1(pn), g

n
n+2(pn), . . .)

= (p1, . . . , pn−1, pn, g
n
n+1(pn), g

n
n+2(pn), . . .).

Thus, identifying X with lim
←−

{X̂n, r̂
n+1
n } by the equivalence homeomor-

phism h, the projection on the nth-coordinate, which we denote by r̂n,
leaves the first n coordinates invariant. Therefore, these projections
converge uniformly to the identity. It is also clear that limxn = x. If

x ∈ X̂n, there is a p ∈ Xn such that

x = hn(p) = (rn1 (p), r
n
2 (p), . . . , r

n
n−1(p), p, g

n
n+1(p), g

n
n+2(p), . . .).

Since the nth-coordinate of x is p, for h(x) = (x1,x2, . . .), the nth-
coordinate, xn, is hn(p) = x. Hence, the projections r̂n are retractions,
and it is clear that r̂n◦r̂m = r̂n for all n < m. The proof is complete. �

Theorem 2.2. Let X be a compactum, and let {fn : X → X} be a
sequence of retractions converging uniformly to the identity map on X.
Suppose also that :

(i) for each n ≥ 1, fn(X) ⊂ fn+1(X), and
(ii) for all pairs m,n ∈ N with m > n, fn ◦ fm = fn = fm ◦ fn.

Then the inverse sequence {fn(X), fn|fn+1(X)} is an internal inverse
limit structure on X.

Proof. Note that the right-side equality in (ii) is immediate for a
nested sequence {fn(X)}. So, the left-side equality is the essential
assumption. We begin with an observation that is straightforward to
verify. Namely,

fn ◦ fm = fn for all m > n

if and only if

fn ◦ fn+1 ◦ · · · ◦ fm = fn for all m > n.

For n ≥ 1, let Xn = fn(X), and let fn+1
n = fn|Xn+1 . Since {Xn}

is nested, each fn+1
n is a retraction onto Xn. Let fm

n : Xm → Xn be
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defined by fm
n = fn+1

n ◦ fn+2
n+1 ◦ · · · ◦ fm

m−1. So, by assumption (ii) and
the observation above,

fm
n = fn|Xn+1 ◦ fn+1|Xn+2 ◦ · · · ◦ fm−1|Xm = fn|Xm .

Consider M = lim
←−

{Xn, f
n+1
n }. We show that the conditions of

Propositions 1.1 and 1.2 are satisfied for M interpreted as a collection
of sequences in X.

Let (x1, x2, . . .) ∈ M . From above, we have that, for n < m,

xn = fm
n (xm) = fn(xm).

Since {fn : X → X} converges uniformly to the identity map on X,
given ϵ > 0, for large N and m > n > N , we have that

d(xn, xm) = d(fm
n (xm), xm) = d(fn(xm), xm) < ϵ.

Thus, {xn} is a Cauchy sequence and, hence, limxn exists. Let
x = limxn. For fixed n, it follows from the displayed equation above
that the sequence {fn(xm)}m>n is the constant sequence {xn}. So,
lim fn(xm) = fn(x), that is, fn(x) = xn.

So if, for points (x1, x2, . . .) ∈ M and (y1, y2, . . .) ∈ M , we have that
x = limxn = lim yn = y, it follows that, for n ≥ 1, xn = fn(x) =
fn(y) = yn, that is, the assignment (x1, x2, . . .) 7→ limxn is one-to-one.

For ϵ > 0, let N be large enough so that, for n > N , d(fn, id) < ϵ.
Then, for (x1, x2, . . .) ∈ M and x = limxi, we have that, for n > N ,
d(xn, limxi) = d(fn(x), x) < ϵ, that is, the threads of M form a
uniformly convergent collection of sequences in X. It follows from
Propositions 1.1, 1.2 and 1.3 that {Xn, f

n+1
n } is an internal inverse

limit structure on X. �

We end this section with the result discussed in Case 2 of the
introduction, the case in which the images under the retractions are
nested but the retractions do not have to commute.

Theorem 2.3. Let X be a compactum, and let {fn : X → X} be a
sequence of retractions converging uniformly to the identity map on X.
Suppose also that, for each n ≥ 1, fn(X) ⊂ fn+1(X). Then there are a
subsequence {Ynk

} of {fn(X)} and retractions gk : Ynk+1
→ Ynk

such
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that the inverse sequence {Ynk
, gk} is an internal inverse limit structure

on X.

Proof. This result is a consequence of Corollary 1.5. Indeed, let
Xn = fn(X) and gk = fnk

be the subsequence guaranteed by Corol-
lary 1.5. We note that, since the sequence {Xn} is nested, the restric-
tions gk|Xnk+1

are retractions. Thus, the inverse system {gk(X), gk |
Xnk+1

} guaranteed by Corollary 1.5 is a desired internal inverse limit
structure on X. �

3. Retractably K-like and retractably K-representable com-
pacta. In this section, we investigate compacta with near-identity re-
tractions to subspaces belonging to some restricted classes of spaces.
We begin with the following result, which is a corollary to Theorem 2.3
from the previous section.

Corollary 3.1. Let X be a compactum and K a class of compacta.
The following are equivalent :

(i) X is retractably K-like onto a nested sequence of compacta.
(ii) X is retractably K-representable.

(iii) X
T
≈ lim
←−

{Xn, r
n+1
n }, where each Xn is in K and each rn+1

n is an
r-map.

Corollary 3.1 provides a partial answer to Question 5.3 in [5].
Namely, if the images rk(X), for a decreasing sequence {ϵk} → 0, can
be chosen to be nested, then 5.2.2 implies 5.2.1.

In the remainder of the paper, we show that the nested assumption
in Corollary 3.1 can be removed for the class of graphs that have order
at most three. This is Case 3 as discussed in the introduction. It is
known that each graph-like continuum can be represented as an inverse
limit on graphs with order at most three.

In the proof of the next result we use the notation ab for an arc from
a to b. It may be helpful to draw pictures while reading the proof.

Theorem 3.2. Let G be a graph of order at most three contained in a
space X. For every ϵ > 0, there is a δ > 0 such that, if f : G → X is
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a map with d̃(f) < δ, then there is an embedding h : G → f(G) with

d̃(h) < ϵ.

Proof. Let G be a graph of order at most three in a space X, and let
E be a finite collection of arcs in G such that

∪
E = G, and each two

different members of E either are disjoint, or have a common end point
as their intersection. Thus, E is the collection of edges of a simplicial
complex on G.

Given ϵ > 0, let n be an even positive integer such that each E ∈ E
can be divided by n non-end points into n+1 arcs each having diameter
less than ϵ/6. Fix such a set of division points for each E ∈ E .
We group the resulting division arcs into two categories. Namely,
suppose a and b are the end points of an E ∈ E , and p1, . . . , pn are
the division points of E listed in the ordering from a to b. We call the
arcs ap1, p2p3, . . . , pn−2pn−1, pnb category A division arcs, and the arcs
p1p2, p3p4, . . . , pn−1pn, category B division arcs. Thus division arcs of
category A and category B alternate on E, and at the end points of E
we only have category A arcs.

Let A and B be the collections of all category A and category B
arcs, respectively, for all E ∈ E . Thus, each two different members of
B are disjoint. Two different members of A are either disjoint, or they
may intersect at a common end point, if they are end division arcs of
adjacent edges in E . At most three different members of A may meet
at a point because G has order three, and each of them is disjoint from
any other member of A. If two or three members of A meet, we call
them a cluster of A. If A ∈ A contains an end point of G, we call it
an end member of A, and, if A ∈ A neither contains an end point of
G nor is a member of a cluster, we call it a regular member of A.

Let α = min{d(x, y) | x and y are in disjoint members of A ∪ B}.
Define δ = min{α/3, ϵ/6}. Let f : G → X be a map with d̃(f) < δ. By
the choice of α and δ, and by the triangle inequality, if x and y are in
two non-intersecting members of A ∪ B, then f(x) ̸= f(y). Thus, two
members of A∪B intersect if and only if their images under f intersect.

Let B ∈ B. There are exactly two different members, A1 and A2, of
A intersecting B at its endpoints. The set f(B) is a locally connected
continuum intersecting both f(A1) and f(A2), and f(A1) ∩ f(A2) = ∅
because A1 and A2 are disjoint. Thus, there is an irreducible arc B̂
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in f(B) connecting f(A1) and f(A2). Fix a point pB ∈ B \ (A1 ∪ A2)

such that f(pB) ∈ B̂ \ f(A1 ∪ A2). Choose such B̂ and pB for each

B ∈ B. Let H =
∪
{f(A) | A ∈ A} ∪

∪
{B̂ | B ∈ B} and note that

H ⊂ f(G). We write h(pB) = f(pB) for each B ∈ B. We will extend
this last notation to define the desired embedding h.

If A is an end member of A, with an end point q ∈ A of G, there

is exactly one member B of B intersecting A. The arc B̂ contains a

unique irreducible arc B̂∗ connecting f(pB) with f(A). The continuum

B̂∗∪f(A), being the union of two locally connected continua, is locally
connected. Thus, it contains an arc L(A) from f(pB) to f(q). We fix
a homeomorphism from the arc pBq in G to L(A) that sends pB to
f(pB) and q to f(q), and we denote by h(x) the image of any x ∈ pBq
under this homeomorphism. If x ∈ pBq, then h(x) = f(y) for some
y ∈ A∪B. Thus, d(x, h(x)) ≤ d(x, y)+d(y, f(y)) < diam (A∪B)+δ <
ϵ/6 + ϵ/6 + ϵ/6 < ϵ.

Let A1 and A2 form a cluster of exactly two members ofA. There are
exactly two members, B1 and B2, of B intersecting the union A1 ∪A2.
Assume A1 ∩ B1 ̸= ∅ ≠ A2 ∩ B2 (the other case is similar). The

arcs B̂1 and B̂2 contain irreducible arcs B̂1∗ and B̂2∗, respectively,
connecting f(pB1) with f(A1), and f(pB2) with f(A2), correspondingly.

The continuum B̂1∗ ∪ f(A1) ∪ f(A2) ∪ B̂2∗, being the union of four
locally connected continua, contains an arc L(A1, A2) from f(pB1)
to f(pB2). We fix a homeomorphism from the unique arc pB1pB2 in
B1∪A1∪A2∪B2 to L(A1, A2) that sends pB1 to f(pB1), and we denote
by h(x) the image of any x ∈ pB1pB2 under this homeomorphism. If
x ∈ pB1pB2 , then h(x) = f(y) for some y ∈ B1 ∪ A1 ∪ A2 ∪ B2. Thus,
d(x, h(x)) ≤ d(x, y) + d(y, f(y)) < diam (B1 ∪ A1 ∪ A2 ∪ B2) + δ <
4ϵ/6 + ϵ/6 < ϵ.

The case of a regular member A of A is similar to the case of a
cluster of two members of A but simpler. The role of A1 ∪ A2 from
the previous case is played by A. Again, we have members B1 and
B2 of B on both sides of A. The definition of h on the arc pB1pB2 is
almost identical as in the previous case, and so is an estimation of the
supremum of d(x, h(x)). We leave the details to the reader.

Let A1, A2 and A3 form a cluster of exactly three members of A.
There are exactly three members, B1, B2 and B3, of B intersecting the
union A1 ∪ A2 ∪ A3. Without loss of generality, assume A1 ∩ B1 ̸=
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∅ ≠ A2 ∩ B2 and A3 ∩ B3 ̸= ∅. The arcs B̂1, B̂2 and B̂3 contain

irreducible arcs B̂1∗, B̂2∗ and B̂3∗, respectively, connecting f(pB1) with
f(A1), f(pB2) with f(A2), and f(pB3) with f(A3), correspondingly.

The continuum B̂1∗∪f(A1)∪f(A2)∪B̂2∗, being the union of four locally
connected continua, contains an arc K from f(pB1) to f(pB2). This arc

intersects f(A1)∪ f(A2). The continuum B̂3∗ ∪ f(A1)∪ f(A2)∪ f(A3)
is also locally connected. Thus, it contains an irreducible arc L
connecting f(pB3) with K. The junction point with K may be neither
f(pB1) nor f(pB2). Thus, the union T = K ∪ L is a simple triod in

f(A1) ∪ f(A2) ∪ f(A3) ∪ B̂1∗ ∪ B̂2∗ ∪ B̂3∗ having f(pB1), f(pB2) and
f(pB3) as its end points.

Let T0 be the simple triod in A1∪A2∪A3∪B1∪B2∪B3 having pB1 ,
pB2 and pB3 as its end points. We fix a homeomorphism from T0 to T
that sends pB1 to f(pB1), pB2 to f(pB2) and pB3 to f(pB3). We denote
by h(x) the image of any x ∈ T0 under this homeomorphism. If x ∈ T0,
then h(x) = f(y) for some y ∈ A1 ∪ A2 ∪ A3 ∪ B1 ∪ B2 ∪ B3. Thus,
d(x, h(x)) ≤ d(x, y)+d(y, f(y)) < diam (A1∪A2∪A3∪B1∪B2∪B3)+δ <
4ϵ/6 + ϵ/6 < ϵ.

Combining together this construction for all members and clusters of
A, a homeomorphism h : G → h(G) is defined with h(G) ⊂ H ⊂ f(G)

and d̃(h) < ϵ, as needed. �

Below, we apply this theorem to the study of internal inverse limits.
However, this result seems to be of interest in its own right. What
other spaces may have the property concluded in the above theorem?
First, notice that G cannot be a graph having order greater than or
equal 4. Indeed, a 4-od in the plane admits, for each ϵ > 0, a map onto
a graph homeomorphic to the letter H such that each point is moved
to the ϵ-neighborhood of itself. Obviously, this last graph contains no
4-od, and thus the conclusion of the theorem does not hold for a 4-od.

Question 3.3. Suppose G is a graph satisfying the conclusion of the
above theorem. That is, for every copy G′ embedded in a space X, and
for every ϵ > 0, there is a δ > 0 such that if f : G′ → X is a map with

d̃(f) < δ, then there is an embedding h : G′ → f(G′) with d̃(h) < ϵ. Is
G a graph of order at most 3?



INTERNAL INVERSE LIMITS AND RETRACTIONS 1221

Theorem 3.4. Suppose X is a continuum and G = {G1, G2, . . .} is a
sequence of graphs in X, each having order at most three. Suppose also
that {rk : X → Gk} is a sequence of retractions converging uniformly
to the identity map on X. Then X can be represented as an inverse
limit of members of G with retractions as bonding maps.

Proof. Given positive integers m and n, let gmn : Gm → Gn be
the restriction rn|Gm

. Given an n, the maps gnm : Gn → Gm, for

m > n, satisfy limm→∞ d̃(gnm) = 0. By Theorem 3.2, for fixed
n and sufficiently large m, there are embeddings hn

m : Gn → Gm

such that limm→∞ d̃(hn
m) = 0. Note that it suffices to prove the

conclusion for a subsequence of {Gn}. Thus, by replacing {Gn} with an
inductively selected subsequence, without loss of generality, we assume
the embeddings hn

m : Gn → Gm are defined for all n and m > n. Using
the embeddings hn

m, for each n, we want to slightly modify maps gmn
to r-maps fm

n : Gm → Gn, and then apply Theorem 2 to complete the
proof.

Consider the product X̂ = X × {0, 1
1 ,

1
2 , . . .} with X0 = X × {0}

and the projection π0 to X. To define fm
n ’s, we fix an n. For m > n,

let Um,n be a sequence of open ϵm-neighborhoods of Hm = hn
m(Gn) in

Gm, respectively, with ϵm < 1/n and lim ϵm = 0. Let Fm = Gm \Um,n,

and let Y and Z be the following two subsets of X̂:

Y = X0 ∪
∪

{Gn+k × {1/k} | k ∈ {1, 2, . . .}}

Z = X0 ∪
∪

{(Hn+k ∪ Fn+k)× {1/k} | k ∈ {1, 2, . . .}}.

We define a retraction r0 : Z → Gn × {0} as follows. For (x, 0) ∈ X0,
let r0(x, 0) = (0, rn(x)). For p = (x, 1/k) with x ∈ Hm and m = n+ k,
we let r0(p) = ((hn

m)−1(x), 0). For p = (x, 1/k) with y ∈ Fm and
m = n+ k, we let r0(p) = (gmn (y), 0). Verifying that r0 is well defined
and continuous is straightforward. Since Gn is an absolute retract for
one-dimensional compact spaces [7, page 354, Theorem 1], and Y and
Z are one-dimensional and compact, the retraction r0 can be extended
to a retraction r : Y → Gn × {0}.

For any k ∈ {1, 2, . . .}, let qk : Gn+k → Y be defined as p 7→ (p, 1/k).
Given p ∈ Gm = Gn+k, we let fm

n (p) = π0(r(qk(p))). Note that
fm
n : Gm → Gn are well defined r-maps, and the sequence {fm

n } is
uniformly equicontinuous.
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We are almost ready to apply Theorem 1.4 to complete the proof. A
careful reader notices, however, that by taking an arbitrary extension r

of r0, we have possibly lost the uniform convergence of the sizes d̃(fm
n )

to 0 with respect to n, which is a condition of Theorem 1.4. Neverthe-
less, observe that, for each n, we have limm→∞ sup{d(gmn (x), fm

n (x)) |
x ∈ Gm} = 0 and limn→∞ sup{d̃(gmn ) | m > n} = 0. By choosing
a correct subsequence of {Gn} and the corresponding maps, we can

ensure that limn→∞ sup{d̃(fm
n ) | m > n} = 0. Applying Theorems 1.4

and 2.1, the conclusion follows. �

We have the following corollary to Theorem 3.4.

Corollary 3.5. Let X be a compactum, and let G be a class of graphs
of order at most three. The following are equivalent.

(i) X is retractably G-like.
(ii) X is retractably G-representable.
(iii) X

T≈ lim
←−

{Xn, r
n+1
n }, where each Xn is in G and each rn+1

n is an
r-map.

Corollary 3.5 provides another partial answer to Question 5.3 in [5].
Namely, if the images rk(X), for a decreasing sequence {ϵk} → 0, can
be chosen to be graphs of order at most three, then 5.2.2 implies 5.2.1.

We do not know whether, in our results, the assumption that the
graphs have order at most three is essential. We end the paper with
the following two natural questions.

Question 3.6. Given a class G of graphs, is every retractably G-like
continuum retractably G-representable?

Question 3.7. Does there exist a class P of polyhedra and a retractably
P-like continuum which is not retractably P-representable?
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