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Basic definitions

A continuum is a compact, connected metric space.

A map (or mapping) is a continuous function.

A mapping f : X → X of a topological space to itself has a
fixed point if there exists a point x ∈ X such that f (x) = x .

Mappings f , g : X → Y of topological spaces have a
coincidence point if there exists a point x ∈ X such that
f (x) = g(x).

A mapping f : X → Y is universal if for each mapping
g : X → Y , f and g have a coincidence point.

A mapping f : X → Y is an ε-map if for each y ∈ Y , the
diameter of f −1(y) is less than ε.

A continuum X has the fixed point property (fpp) if each
mapping f : X → X has a fixed point.
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Representations of continua

Let P be the class of finite connected polyhedra. Let G ⊆ P.

A continuum X is G-like if for each ε > 0, there exist a
member Y of G and a surjective ε-map g : X → Y .

Theorem (S. Mardešić and J. Segal, 1963)

A continuum X is G-like iff X is an inverse limit of members of G
with surjective bonding maps.

By considering nerves of open covers, it follows from a theorem of
S. Eilenberg and N. Steenrod that each continuum is
polyhedra-like.

Both inverse limit descriptions and open ε-coverings of continua
have frequently been used to obtain fixed point results.
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We will primarily be interested in continua that are arc-like,
tree-like, or G-like for a class of polyhedra with the fpp. We discuss
the fpp as related to continua in these classes. Arc-like continua
have also been called snake-like continua and chainable continua.

Theorem (O.H. Hamilton, 1951)

Arc-like continua have the fpp.

Proof.

Suppose that X is an arc-like continuum and that f : X → X is a
fixed-point-free mapping. Let ε > 0 be chosen so that
d(x , f (x)) ≥ ε for all x ∈ X . Let g : X → [0, 1] be an ε-map. Each
map of a continuum onto [0, 1] is universal; so g is universal.
Hence, there exists a point x ∈ X such that g(x) = g(f (x)). But
then d(x , f (x)) < ε, which is a contradiction.
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A continuum X is an arc-continuum if each proper subcontinuum
of X is an arc. A continuum is indecomposable if it cannot be
written as the union of two proper subcontinua. Otherwise, it is
decomposable.

We let K be the class of n-adic Knaster continua. That is, X ∈ K
if there is an n ≥ 2 such that X is an inverse limit on [0, 1] with a
single open bonding map whose graph has n ”ups or downs”.

Members of K are indecomposable, arc-like, arc-continua.
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Circle-like continua

If X is circle-like and all bonding maps are inessential (homotopic
to a constant map), then X is arc-like and will have the fpp.

If X is circle-like and all bonding maps are essential, X may or may
not have the fpp.



Theorem (J. Mioduszewski and M. Rochowski, 1962)

Each inverse limit on polyhedra with universal bonding maps has
the fpp.

Theorem (W. Holsztynski, 1967)

Same result for inverse limits of ANRs.

So, one approach to get fixed point theorems on polyhedra-like
continua would be to determine necessary conditions for a map
between particular polyhedra to be universal. To use this approach,
the polyhedra must have the fpp.

I will refer to this approach as the MRH-method.
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Theorem (R.L. Russo (1979), C.L. Hagopian (2003))

If X is a tree-like continuum and K is a locally connected
continuum that contains an n-cell (n ≥ 2), then X is K-like.

As we will see, this means that there will be G-like continua
without the fpp, whenever G contains polyhedra of dimension ≥ 2,
even if the polyhedra in G have the fpp. Nevertheless, additional
conditions on the continua can result in fixed point theorems.



Disk-like continua

A mapping f : X → Y is confluent (weakly confluent) if for each
subcontinuum K of Y , each (there exists a) component H of
f −1(K ) is mapped onto K by f .

Theorem (S. Nadler, 1980)

If X is a disk-like continuum with weakly confluent bonding maps,
then X has the fixed point property.

.... uses the MRH-method.

Question

If X is n-cell-like, for n ≥ 3, with weakly confluent bonding maps,
does X have the fixed point property?
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Even-dimensional projective space-like continua

Theorem (J. Segal and T. Watanabe, 1992)

If X is an inverse limit on an even-dimensional complex projective
space with essential bonding maps, then X has the fpp.



Theorem (Marsh, 2010)

If X is an inverse limit on an even-dimensional real (or
quaternionic) projective space and the bonding maps have
non-zero degree, then X has the fpp.

Corollary (partial answer to a question of Bellamy)

Each projective plane-like continuum with essential bonding maps
that lift to essential bonding maps on the 2-sphere has the fpp?

The question for projective plane-like continua whose bonding
maps are essential, but have inessential lifts to the 2-sphere is of
interest. Lifts of representatives of this homotopy class of maps on
the projective plane have similarities to the squaring map on the
unit circle; they also produce inverse limits with the fpp.
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Cellular continua

A subcontinuum X of Euclidean n-space is cellular if X is the
intersection of a decreasing sequence of topological n-cells.
Cellular continua are important in decomposition theory of
manifolds, but this characteristic of some continua has not proven
to be particularly useful in continuum fixed point theory.

For example, each non-separating planar continuum is an
intersection of topological disks, but the well-known question
below remains unanswered.

Question (W.L. Ayres (1930), Scottish Book (1935))

Does each non-separating planar continuum have the fpp?

Additionally, there are several well-known examples of cellular
(with 3-cells) continua without the fpp. (K. Borsuk, R.H. Bing, S.
Kinoshita, R. Knill, A. Illanes)
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Tree-like continua

Theorem (O.H. Hamilton, 1938)

If X is a tree-like continuum and contains no indecomposable
subcontinuum, then X has the fpp for homeomorphisms.

Theorem (K. Borsuk, 1954)

Arc-wise connected tree-like continua have the fpp.



Bing called the following question one of the most interesting
unsolved problems in geometric topology.

Question (R.H. Bing, 1969)

Do all tree-like continua have the fpp?

Since 1-dimensional, non-separating planar continua are tree-like
(Bing), and planar tree-like continua are non-separating, this
question is related to the non-separating planar question.



Theorem (J.H. Case and R.E. Chamberlin, 1960)

If a 1-dimensional continuum admits no essential mapping into a
graph, then it is tree-like.

In 1975, J. Krasinkiewicz improved this result by replacing “graph”
with “the figure eight”.



A dendroid is an arc-wise connected, hereditarily unicoherent
continuum. A dendrite is a locally connected dendroid. A
λ-dendroid is a hereditarily decomposable, hereditarily unicoherent
continuum.

Theorem (H. Cook, 1970)

All dendroids, λ-dendroids, and hereditarily equivalent continua are
tree-like.

Theorem (R. Manka, 1976)

λ-dendroids have the fpp.

Corollary (R. Manka, 1976)

Each tree-like continuum without the fpp must contain an
indecomposable subcontinuum.
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Lefschetz theory applied to non-ANRs

quasi-complexes, defined by S. Lefschetz (1942)

weak semi-complexes, defined by R.B. Thompson (1967)

Q-simplicial spaces, defined by R. Knill (1970)

These definitions are related to covers and nerves of covers on the
spaces. They ensure enough structure on the spaces so that the
Lefschetz theorem applies. That is, if a mapping f : X → X on a
space X admitting such a structure has a non-zero Lefschetz
number, then f has a fixed point. All of these definitions (although
different in general) coincide on the class of tree-like continua.
In 1959, Chamberlin showed that not all tree-like continua are
quasi-complexes.
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Theorem (R.B. Thompson, 1967)

If a tree-like continuum admits a weak semi-complex structure,
then it has the fpp.

In 1975, Borsuk defined conditions on a mapping, called nearly
extendable, so that the Lefschetz theorem holds for these
mappings. His result was later generalized by J. Dugundji (1977),
by G. Gauthier (1980), and by J. Girolo (1988). Girolo’s theory
defined Q-simplicial maps, and defined a space X as Q-simplicial if
the identity map on X is Q-simplicial. His theory unified and
generalized many of the theories above, which allow a Lefschetz
theorem.



Theorem (J.B. Fugate and L. Mohler, 1977)

If there is a tree-like continuum without the fpp, then there is an
indecomposable tree-like continuum that admits a fixed-point-free
homeomorphism.

Example (D. Bellamy, 1979)

A tree-like continuum without the fpp.

Bellamy noted that by applying the Fugate-Mohler technique to his
example, one gets an indecomposable tree-like arc-continuum
admitting a fixed-point-free homeomorphism.
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Bellamy’s pioneering example

He -------®

Modified 6-adic solenoid



®

Modified 6-adic Knaster continuum



Some properties of Bellamy’s example are

there are endpoints of period 2 and of period 3 under the
fixed-point-free map,

no points map “into” the period 2 orbit

the fixed-point-free map is not a deformation

not embeddable in the plane



Do fan-like (or star-like) continua have the fpp? (asked by
L.G. Oversteegen and J.T. Rogers, Jr.)

Some more questions ....
Let f be a map on a tree-like continuum X .

Must f have a periodic point? No, P. Minc

If f has orbits of “sufficiently small” diameter, must f have a
fixed point? No, P. Minc

If f is a deformation, does f have a fixed point? Yes, C.L.
Hagopian
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Oversteegen-Rogers examples

In 1980, Oversteegen and Rogers, gave an inverse limit description
of a tree-like arc-continuum admitting an “induced”
fixed-point-free map. In this example, using the geometric nature
of its description, they show that complements of open sets are
embeddable in the plane. To obtain a somewhat simple description
of the bonding maps, they have rather complicated factor spaces,
in which the number of branchpoints, simple closed curves, and
“Hawaiian earrings” increases in the inverse sequence.

In 1982, Oversteegen and Rogers, defined two more examples using
inverse limits. These examples have similar properties to the
previous example, but additionally the fixed-point-free map is a
homeomorphism, and the factor spaces are trees.
Again, the number of branchpoints in the factor spaces increases in
the inverse sequence. The nature of the “symmetry” in the factor
spaces and the “folding” of the bonding maps is reminiscent of
Bellamy’s example.
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Minc examples

For each positive integer j , Minc alters an n-adic Knaster
continuum, where n = 2(41 − 1)(42 − 1) · · · (4j − 1), by replacing
an arc containing the endpoint with a fan over a 0-dimensional set.
The resulting indecomposable tree-like continuum Bj admits a map
with no periodic points of period less than or equal j . The
continuum B1 is quite similar to Bellamy’s original example as it is
a modified 6-adic Knaster continuum.
Applying the Fugate-Mohler technique, Minc defines tree-like
arc-continua B̃j that admit homeomorphisms with analogous
properties.



Minc uses the sequence {Bj} and the sequence {B̃j} to construct a
number of remarkable examples. Namely,

(1992) A tree-like continuum X such that for each ε > 0 and
each j ≥ 1, there exists a map f : X → X such that f has no
periodic points of period ≤ j , and the diameters of all
trajectories (forward and backward orbits) of points are less
than ε.

(1996) A periodic-point-free homeomorphism on a tree-like
continuum. (a particularly sophisticated and technical
construction)

• (1999) A map of a tree-like continuum with no invariant
indecomposable subcontinuum.

• (1999) A weakly chainable tree-like continuum without the
fpp. And a hereditarily indecomposable tree-like continuum
without the fpp.



Minc uses the sequence {Bj} and the sequence {B̃j} to construct a
number of remarkable examples. Namely,

(1992) A tree-like continuum X such that for each ε > 0 and
each j ≥ 1, there exists a map f : X → X such that f has no
periodic points of period ≤ j , and the diameters of all
trajectories (forward and backward orbits) of points are less
than ε.

(1996) A periodic-point-free homeomorphism on a tree-like
continuum. (a particularly sophisticated and technical
construction)

• (1999) A map of a tree-like continuum with no invariant
indecomposable subcontinuum.

• (1999) A weakly chainable tree-like continuum without the
fpp. And a hereditarily indecomposable tree-like continuum
without the fpp.



Minc uses the sequence {Bj} and the sequence {B̃j} to construct a
number of remarkable examples. Namely,

(1992) A tree-like continuum X such that for each ε > 0 and
each j ≥ 1, there exists a map f : X → X such that f has no
periodic points of period ≤ j , and the diameters of all
trajectories (forward and backward orbits) of points are less
than ε.

(1996) A periodic-point-free homeomorphism on a tree-like
continuum. (a particularly sophisticated and technical
construction)

• (1999) A map of a tree-like continuum with no invariant
indecomposable subcontinuum.

• (1999) A weakly chainable tree-like continuum without the
fpp. And a hereditarily indecomposable tree-like continuum
without the fpp.



Minc uses the sequence {Bj} and the sequence {B̃j} to construct a
number of remarkable examples. Namely,

(1992) A tree-like continuum X such that for each ε > 0 and
each j ≥ 1, there exists a map f : X → X such that f has no
periodic points of period ≤ j , and the diameters of all
trajectories (forward and backward orbits) of points are less
than ε.

(1996) A periodic-point-free homeomorphism on a tree-like
continuum. (a particularly sophisticated and technical
construction)

• (1999) A map of a tree-like continuum with no invariant
indecomposable subcontinuum.

• (1999) A weakly chainable tree-like continuum without the
fpp. And a hereditarily indecomposable tree-like continuum
without the fpp.



Some more positive results on tree-like continua

In conversation with Hagopian, Bing asked several fixed-point
questions related to inverse limits of n-ods where the bonding
maps “fix“ vertices, or “fix” some of the edges.
One of Bing’s questions is answered below.

Let F be a fan with one isolated edge L. If X is an inverse
limit on F with bonding maps leaving edges other than L
invariant, then X has the fpp. (Marsh, 1984)

Inverse limits on n-ods with edges L1, L2, . . . , Ln, where the
bonding maps satisfy f (Li ) ⊂ ∪i

j=1Lj , then X has the fpp.
(Marsh, 1986)

Let T be a tree. If X is an inverse limit on T with bonding
maps satisfying a condition that is of a similar nature as the
fan result, then X has the fpp. (Marsh, 1989)
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Theorem (C.A. Eberhart and J.B. Fugate, 1981)

Inverse limits on trees with weakly arc-preserving bonding maps
have the fpp.

Theorem (Marsh, 1992)

If X is an inverse limit on trees with u-mappings for bonding maps,
then X has the fpp.

....generalizes the Eberhart-Fugate result by allowing the bonding
maps to have a “restricted” amount of folding across branchpoints.
.... uses the MRH-method.

In 1998, Eberhart and Fugate characterized universal maps
between trees.
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The following two theorems follow from the previous
Marsh/Eberhart-Fugate theorems.

Theorem

If X is an inverse limit on a single tree with weakly confluent
bonding maps, then X has the fpp.

Theorem

If X is an inverse limit on trees with confluent bonding maps, then
X has the fpp.

The second result also follows from a result of H. Schirmer in
1967, and was again established independently by J.J. Charatonik
and J. Prajs in 2005.



Theorem (Fugate and McLean, 1981)

Every periodic homeomorphism of a tree-like continuum has a
fixed point; in fact, a non-empty connected fixed point set.

Theorem (Oversteegen and Tymchatyn, 1981)

Every point-wise periodic homeomorphism on an atriodic tree-like
continuum has a fixed point.
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Composant-preserving maps of indecomposable k-junctioned
tree-like continua have fixed points.

Example (Hagopian, Marsh, and Prajs, 2012)

There exists a fixed-point-free homeomorphism on an
indecomposable tree-like continuum that leaves all composants
invariant.
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Joint work with Hagopian

Let X and Y be tree-like continua with the fpp.

Question

If X ∩ Y has the fpp, does X ∪ Y have the fpp?

No, in general. Yes, if X ∩ Y is a dendrite.

Example

There exists a countably infinite wedge of tree-like continua {Xn},
each having the fpp, such that X = ∪n≥1Xn is tree-like and does
not have the fpp.
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A few open questions

1. Do simple triod-like continua (arc-continua) have the fpp?

2. Do weakly chainable arc-continua have the fpp?

3. Must each map of a tree-like arc-continuum have a periodic
point?

4. Must each pointwise periodic homeomorphism on a tree-like
continuum have a fixed point?

5. Must every composant-preserving map of an indecomposable
(tree-like) planar continuum have a fixed point?

6. Do homogeneous tree-like continua have the fpp?


