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WEAK CHAINABILITY OF ARC FOLDERS

BY

C. L. HAGOPIAN, M. M. MARSH and J. R. PRAJS (Sacramento, CA)

Abstract. Arc folders are continua that admit mappings onto an arc where the
preimage of each point is either an arc or a point. We show that all arc folders are weakly
chainable. Equivalently, they are continuous images of the pseudo-arc. We conclude that
a continuum X that admits a mapping f : X → Y onto a locally connected continuum Y ,
where the preimage of each point is either an arc or a point, is weakly chainable.

Weakly chainable continua were introduced in the 1960s, and proven,
by Fearnley [6] and Lelek [9], to form the class of continuous images of the
pseudo-arc. The class of weakly chainable continua is a natural extension
of the class of locally connected continua, and there is an analogy between
these two classes. Each has a single continuum as a common model: the
pseudo-arc for weakly chainable continua, and, by the Hahn–Mazurkiewicz
Theorem (see [17, p. 126]), an arc for locally connected continua. Both classes
are invariant with respect to mappings. Both are closed with respect to
countable products, and with respect to finite unions. Locally connected
continua have been of significant interest since the beginning of the 20th
century. The interest in weakly chainable continua has been growing since
the 1960s (see [2], [7], [11–13], [15], [18], [19], [21]).

The class of weakly chainable continua is large, containing all locally
connected continua, all chainable continua, and various interesting tree-like
continua. The property of being weakly chainable is nonlocal for continua,
and is much less intuitive than the one of being locally connected. Proving the
weak chainability of a continuum can be a challenge; few tools are available.

In this paper, we add one such tool by showing that if a continuum X
admits a mapping onto a locally connected continuum, where the preimage
of each point is either an arc or a point, thenX is weakly chainable. A critical
intermediate step in our argument is to show that all arc folders are weakly
chainable.
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A continuum is a nonempty, compact, connected metric space. A map
or mapping is a continuous function. A mapping f : X → Y is monotone if,
for each y ∈ Y , f−1(y) is connected. Consider the classM of continua that
admit a monotone mapping onto [0, 1]. If X ∈ M and η : X → [0, 1] is
surjective and monotone, we refer to each η−1(t), for t ∈ [0, 1], as a fiber
of X. This structure gives rise to an upper semicontinuous decomposition
of X, where the fibers are elements of the decomposition. The next three
definitions from [8] are repeated here for convenience to the reader.

Definition 1. We refer to a member X ofM together with a monotone
surjective map η : X → [0, 1] as a continuum folder. So, a continuum folder
is a pair (X, η), but we will typically refer to X as a continuum folder, with
an assumed monotone map η : X → [0, 1]. Let G be a class of continua. If
each fiber of X is either a point or belongs to G, we call X a G folder or a
folder of continua from G.

Definition 2. ForM a continuum, an {M} folder, which we call simply
M folder, is a continuum folder where each fiber is either a point or is
homeomorphic to M .

Definition 3. If the decomposition of a continuum folder X into its
fibers is continuous, we call X a continuous continuum folder.

Basic properties of continuum folders and arc folders, as well as examples,
can be found in [8]. Although the main results of this paper are related to
arc folders, we begin with some definitions that apply to continuum folders.
We first define some concepts that generalize the notion of a continuous
continuum folder. For X a compact metric space, and B ⊂ X, we let cl(B)
denote the closure of B in X.

Definition 4. A continuum folder X is strongly left-cohesive at a fiber
η−1(t) provided either t = 0, or there exists a sequence {tn} ⊂ [0, t) converg-
ing to t such that the fibers η−1(tn) converge to η−1(t) in the sense of the
Hausdorff distance. Similarly, X is strongly right-cohesive at η−1(t) if either
t = 1, or there exists a sequence {tn} ⊂ (t, 1] converging to t such that
the fibers η−1(tn) converge to η−1(t) in the sense of the Hausdorff distance.
We say that X is strongly cohesive at η−1(t) if it is strongly left-cohesive
and strongly right-cohesive at η−1(t). We say that X is a strongly cohesive
continuum folder if it is strongly cohesive at each of its fibers.

Proposition 1. Each continuum folder is strongly cohesive at all but
countably many fibers.

Proof. Let X be a continuum folder. Let dH denote the Hausdorff dis-
tance inX. Let A be the set of all t ∈ [0, 1] such thatX is not strongly left-co-
hesive at η−1(t). Thus if t ∈ A, then, for some εt > 0, dH(η−1(t), η−1(s)) > εt
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for every s ∈ [0, 1] with s < t. Let ε > 0, and let Aε = {t ∈ A | εt > ε}. If
s, t ∈ Aε and s 6= t, then dH(η−1(t), η−1(s)) > ε. Otherwise, either εt < ε
or εs < ε, which would violate the definition of Aε. Since the collection
Aε = {η−1(t) | t ∈ Aε} is a subset of the compact space of all subcontinua
of X, Aε must be finite. We have A =

⋃∞
n=1A1/n. Thus A is countable.

Similarly, the set B of all t ∈ [0, 1] such that X is not strongly right-cohesive
at t is countable. Hence, A ∪B is countable, and the conclusion follows.

Definition 5. A continuum folder X is left-cohesive at a fiber η−1(t)
provided either t = 0, or η−1(t) ⊂ cl(η−1([0, t))). Similarly, X is right-
cohesive at η−1(t) if either t = 1, or η−1(t) ⊂ cl(η−1((t, 1])). We say that X
is cohesive at η−1(t) if it is left-cohesive and right-cohesive at η−1(t). We say
that X is a cohesive continuum folder if it is cohesive at each of its fibers.

Clearly, continuity of a continuum folder implies strong cohesion, and
strong cohesion implies cohesion. We note that the hairy arc is a strongly
cohesive, 1-dimensional arc folder. So, [8, Proposition 19(7)] cannot be gen-
eralized to strongly cohesive arc folders. The discussion in [10, bottom of
p. 262 and top of p. 263] makes it clear that the hairy arc has these prop-
erties. The definition of the hairy arc and a proof of its uniqueness can be
found in [1].

A continuum X is irreducible if there exist points p and q in X such
that no proper subcontinuum of X contains both p and q. In this case,
we say that X is irreducible between the points p and q. We note that if
a continuum folder X is irreducible, then it is irreducible between points
p ∈ η−1(0) and q ∈ η−1(1). A subcontinuum X of a continuum Y is terminal
in Y if each subcontinuum of Y that intersects both X and Y \ X must
contain X. A continuum T is a triod if there exist subcontinua L1, L2, L3,
and K of T such that T = L1 ∪ L2 ∪ L3, K is a proper subcontinuum of Li
for each i ∈ {1, 2, 3}, and K = L1 ∩ L2 = L1 ∩ L3 = L2 ∩ L3 (see [5, p. 36]
or [16, p. 218]). Following this definition, we will say that T = L1 ∪ L2 ∪ L3

is a triod with K a core of T . A continuum is atriodic if it contains no triod.

Proposition 2. If X is an irreducible, cohesive continuum folder, then
for all 0 ≤ s < t ≤ 1, the subfolder η−1([s, t]) of X is irreducible and
cohesive.

Proof. It is clear that η−1([s, t]) is a cohesive folder. Suppose that F is
a subcontinuum of η−1([s, t]) such that η(F ) = [s, t]. Then η−1((s, t)) ⊂ F ;
for otherwise, the continuum η−1([0, s]) ∪ F ∪ η−1([t, 1]) would be a proper
subcontinuum of X containing both η−1(0) and η−1(1), contradicting the
irreducibility of X. So, cl(η−1((s, t))) ⊂ F . Since X is cohesive, we see
that η−1([s, t]) ⊂ F . Hence, F = η−1([s, t]). So, η−1([s, t]) is an irreducible
folder.
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Proposition 3. A continuum folder X is irreducible and cohesive if and
only if each fiber of X is terminal in X.

Proof. Suppose (X, η) is irreducible and cohesive, t ∈ [0, 1], and K is a
continuum in X such that K \ η−1(t) 6= ∅ 6= K ∩ η−1(t). Then for some
r < t ≤ s (or r > t ≥ s) we have [r, s] = η(K) (or [s, r] = η(K)).

We assume, without loss of generality, that r < s. By Proposition 2, we
know that η−1([r, s]) is irreducible and cohesive. So, η−1(t)⊂η−1([r, s])=K,
and hence η−1(t) is terminal in X.

Suppose all fibers of X are terminal. Let K be a continuum in X meeting
both η−1(0) and η−1(1). ThenK must meet all fibers, and by the terminality
of η−1(t) for each t ∈ [0, 1], each η−1(t) is contained in K. Thus K = X,
and hence X is irreducible.

Suppose for some t ∈ (0, 1] the folder X is not left-cohesive at η−1(t).
Then the continuum η−1(t)∩ cl(η−1([0, t))) is a proper subset of η−1(t). The
continuum cl(η−1([0, t))) meets η−1(t) and its complement, but it does not
contain η−1(t). Thus η−1(t) is not terminal in X, a contradiction. The case
of a fiber that is not right-cohesive is similar. Hence, all fibers in X are both
left- and right-cohesive, and X is a cohesive folder.

Proposition 4. Let X be an irreducible, cohesive continuum folder.
Then

(1) X is hereditarily irreducible if and only if all fibers of X are hereditarily
irreducible,

(2) X is atriodic if and only if all fibers of X are atriodic, and
(3) X is chainable if and only if all fibers of X are chainable.

Proof. We note that all “left-to-right” implications are obvious. So, we
prove the “right-to-left” implications.

(1) Suppose each fiber of X is hereditarily irreducible. Let H be a sub-
continuum ofX. IfH is a subset of some fiber ofX, thenH is irreducible. So,
we assume that η(H) = [s, t] is a nondegenerate interval. By Proposition 2,
H equals η−1([s, t]) and is irreducible.

(2) Suppose each fiber of X is atriodic. Suppose that X contains a triod
T = L1 ∪ L2 ∪ L3 with core K. Since each fiber of X is atriodic, we may
assume, without loss of generality, that η(L1) = [s, t] is a nondegenerate
interval. By Proposition 2, L1 = η−1([s, t]). Also by Proposition 2, it follows
that η(K) 6= [s, t]. Assume that s 6∈ η(K). Then both L2 and L3 meet
η−1((t, 1]), which violates the irreducibility of X. So, X contains no triod.

(3) Suppose each fiber of X is chainable. Then each fiber of X is atriodic.
By (2), X is atriodic. By [8, Proposition 6], X is chainable.

By [9, Corollary 3], a continuum is weakly chainable if it is the continuous
image of a chainable continuum. We use a fiber replacement technique to



WEAK CHAINABILITY OF ARC FOLDERS 5

prove that every arc folder is the continuous image of a chainable arc folder,
and hence, is weakly chainable. To accomplish this, we need the following
definitions, which we state in the general setting of continuum folders.

Definition 6. Let (X, η) and (Y, ρ) be folders of continua. A map f from
X to Y defines a morphism f : (X, η) → (Y, ρ) if, for every t ∈ [0, 1], there
is an s ∈ [0, 1] such that f(η−1(t)) ⊂ ρ−1(s). Each morphism f : (X, η) →
(Y, ρ) between folders of continua induces a unique map f̂ : [0, 1] → [0, 1]

where ρ ◦ f = f̂ ◦ η.
If f is one-to-one and f̂ is an increasing embedding, we say that f :

(X, η) → (Y, ρ) is a morphic embedding, or simply an embedding. If X is a
subset of Y and the inclusion map is a morphic embedding, then (X, η) is
called a subfolder of (Y, ρ). If f maps X onto Y homeomorphically and the
induced map f̂ is a homeomorphism, we say that f is a folder isomorphism
between (X, η) and (Y, ρ).

Definition 7. For a folder of continua (X, η) and t ∈ (0, 1), we letXt(L)
andXt(R) be, respectively, disjoint copies of cl(η−1([0, t))) and cl(η−1((t, 1])).
Let

Ft(L) = cl(η−1([0, t))) ∩ η−1(t) and Ft(R) = cl(η−1((t, 1])) ∩ η−1(t).
By [8, Lemma 1], we see that Ft(L) and Ft(R) are continua. Also, the
rightmost fiber of Xt(L) and the leftmost fiber of Xt(R) are copies of, re-
spectively, Ft(L) and Ft(R). So, Xt(L) and Xt(R) are folders of continua,
and there exist natural morphic embeddings hL : Xt(L) → η−1([0, t]) and
hR : Xt(R)→ η−1([t, 1]).

If t = 0, X0(R) and F0(R) are defined analogously, and we let F0(L) =
η−1(0). If t = 1, then X1(L) and F1(L) are defined analogously, and we let
F1(R) = η−1(1).

Suppose also that (Y, ρ) is a folder of continua, where there exists a
mapping gt : Y → η−1(t) such that

gt|ρ−1(0) : ρ
−1(0)→ Ft(L), gt|ρ−1(1/2) : ρ

−1(1/2)→ η−1(t),

gt|ρ−1(1) : ρ
−1(1)→ Ft(R) are all homeomorphisms.

We call Y an admissible insertion for X at η−1(t).
Under these conditions, we identify ρ−1(0) with h−1L gt(ρ

−1(0)), the right-
most fiber of Xt(L). Also, we identify ρ−1(1) with h−1R gt(ρ

−1(1)), the left-
most fiber of Xt(R). Thusly, we obtain Xt(L)∪Y ∪Xt(R) with the described
identifications. We refer to this construction as inserting a copy of Y at
η−1(t) in X, and we denote the resulting space by X ∪t Y .

We observe that X ∪t Y is a folder of continua, where the quotient map
η̂ : X ∪t Y → [0, 1] can be chosen in a natural, but not unique, way so
that its fibers η̂−1(t) are copies of fibers in either X or Y . Any such choice
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will be sufficient for our constructions. Also, there is a natural morphism
g : X ∪t Y → X given by g = hL ∪ gt ∪ hR. It is clear from the definitions
that g, restricted to each of Xt(L) and Xt(R), is a morphic embedding, and
g collapses Y to η−1(t).

Definition 8. We call the morphism g as above a Y -collapsing mor-
phism. As mentioned in the definition of morphisms, we have the following
commuting diagram, which we call the commuting diagram for a collapsing
morphism:

X
g←−−−− X ∪t Y

η

y yη̂
[0, 1]

ĝ←−−−− [0, 1]

Note that ĝ is a monotone map with exactly one nondegenerate fiber.

We now turn our attention to arc folders.

Definition 9. Let S0 = [0, 1]. We call S0, together with the identity
map, the trivial arc folder.

Below we define four versions of paired one-sided and/or two-sided topol-
ogist’s sine curves, lying in [0, 1] × [0, 1], which we will use repeatedly as
insertion folders into arc folders in an inverse limit construction in the proof
of Theorem 1. The first projection map restricted to each of these folders
will be the quotient map onto [0, 1].

Definition 10. Let

M1 = ({0} × [0, 1]) ∪
{(

x,
1

2

(
1 + sin

3π

8x

)) ∣∣∣∣ 0 < x ≤ 1

4

}
.

Let M2 be the reflection of M1 through the line x = 1/4, and let M3 be the
reflection of M1 ∪M2 through the line x = 1/2. Let S1 =M1 ∪M2 ∪M3.

Let N1 = ([0, 1/4]×{0})∪M2, and let N2 be the reflection of N1 through
the line x = 1/2. Let S2 = N1 ∪N2, S3 =M1 ∪M2 ∪N2, and S4 =M3 ∪N1.

We note that π1 : Si → [0, 1] is monotone for each i ∈ {1, 2, 3, 4}, with
only π−11 (0), π−11 (1/2) and π−11 (1) as possible nondegenerate fibers. So, for
each i ∈ {1, 2, 3, 4}, Si is an arc folder, and we observe that Si is cohesive.
Also, π2 : Si → [0, 1] is a mapping whose restrictions to the nondegenerate
fibers π−11 (0), π−11 (1/2), and/or π−11 (1) are homeomorphisms. Hence, for
some i ∈ {0, 1, 2, 3, 4}, Si is an admissible insertion for an arc folder at each
of its fibers (see Observation 1 below). We refer to each of the folders Si,
i ∈ {0, 1, 2, 3, 4}, as a standard insertion for an arc folder.

Observation 1. For each arc folder X, and each t ∈ [0, 1], there exists,
for some i ∈ {0, 1, 2, 3, 4}, a standard insertion Si at η−1(t) in X.
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Proof. Note which of the sets Ft(L), η−1(t), and Ft(R) are degener-
ate, and which are nondegenerate. Pick the appropriate Si so that π−11 (0),
π−11 (1/2), and π−11 (1) are, respectively, copies of the first three sets. Let g′t be
a mapping whose domain is the union of the second group of three sets, and
whose restriction to each is a homeomorphism onto the respective member
of the first group of three sets. Now, by the Tietze extension theorem, we
extend g′t to a mapping gt : Si → η−1(t).

For an arc folder X, let NC(X) = {t∈ [0, 1] | X is not cohesive at η−1(t)}.
We make the following immediate observation about our standard insertions
for arc folders.

Observation 2. Let X be an arc folder, t ∈ [0, 1], and gt : Si → η−1(t)
be a standard insertion for some i ∈ {0, 1, 2, 3, 4}. Let g : X ∪t Si → X be
an Si-collapsing morphism. Then NC(X ∪t Si) ⊂ ĝ−1(NC(X) \ {t}), where
ĝ : [0, 1]→ [0, 1] is the induced map in the commuting diagram for g.

Theorem 1. For each arc folder (X0, η0) there is an arc folder (X, η)
and a surjective morphism g : (X, η)→ (X0, η0) such that (X, η) is chainable
and cohesive.

Proof. Let (X0, η0) be an arc folder, and let {Ai}i≥1 be a sequence of
fibers in X0 such that

(i) each fiber of noncohesion in X0 is an element of {Ai}i≥1, and
(ii) {η0(Ai) | i ≥ 1} is dense in [0, 1].

Note that each fiber of noncohesion is nondegenerate.
We will construct an inverse sequence, starting with X0, and inserting

copies of some Sj , j ∈ {0, 1, 2, 3, 4}, at each Ai. The bonding mappings will
be Sj-collapsing morphisms. The inverse limit space X will be the desired
chainable continuum, and the first projection mapping of X onto X0 will be
the desired surjective morphism.

Beginning with A1, we choose the appropriate Sj for insertion at A1. Let
t = η0(A1). Assume, without loss of generality, that Ft(L) is degenerate, and
both η−10 (t) and Ft(R) are nondegenerate. Then we insert a copy of S4 at
A1. That is, we let X1 = X0 ∪η0(A1) S4, and we let g10 : X1 → X0 be the
S4-collapsing morphism. Also, we let η1 = η̂0 : X1 → [0, 1] be a monotone
quotient mapping as described in the paragraph preceding Definition 8. Note
that X1 is an arc folder, and that copies of Ai for i ≥ 2 remain fibers of X1.
Although η0(Ai) may not be equal to η1(Ai) for given i ≥ 2, without loss of
generality, we identify each Ai for i ≥ 2 with its copy in X1. So, the fibers
of noncohesion in X1 lie among the Ai for i ≥ 2 (see Observation 2).

We repeat the procedure for A2 ⊂ X1, getting X2 = X1 ∪η1(A2) Sj for
appropriate j ∈ {0, 1, 2, 3, 4}, with collapsing morphism g21 : X2 → X1 and
quotient map η2 = η̂1 : X2 → [0, 1].
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Inductively, we have an inverse sequence ladder, with commuting dia-
grams and inverse limits X and [0, 1] as indicated below.

X0
g10←−−− X1

g21←−−− · · · ←−−− Xn
gn+1
n←−−− Xn+1 ←−−− · · · ←−−− X

η0

y η1

y ηn

y ηn+1

y η

y
[0, 1]

r10←−−− [0, 1]
r21←−−− · · · ←−−− [0, 1]

rn+1
n←−−− [0, 1] ←−−− · · · ←−−− [0, 1]

The bonding mappings ri+1
i are the induced mappings that were denoted

ĝi+1
i in Definition 6. Each bonding map gi+1

i is an Sj-collapsing morphism
for some j ∈ {0, 1, 2, 3, 4}. Each ηi is chosen as in the paragraph preceding
Definition 8. Each ri+1

i is a monotone mapping with exactly one nondegener-

ate fiber. It follows that lim←−{[0, 1], r
i+1
i }

T
≈ [0, 1] (see [3]). Also, since each ηi

is monotone, the induced mapping η between the inverse limits is monotone
(see [4, Corollary 11]). So, X is a folder of continua. We also note that for
each n ≥ 0, the fibers of noncohesion in Xn lie among the copies Ai, for
i ≥ n + 1, in Xn (recall Observation 2). For each n ≥ 1, we let gn and rn
denote, respectively, the projection mapping from the inverse limits X and
[0, 1] onto the factor spaces Xn and [0, 1].

Although it should be clear from the construction that X is an irre-
ducible, cohesive, arc folder, we provide some justification for these claims.

X is an arc folder. We need to see that each fiber η−1(t) in X is either
a point or an arc. Suppose x and y are points of X with η(x) = η(y). Since
η is induced, we have ηngn(x) = rnη(x) = rnη(y) = ηngn(y) for all n ≥ 0.
That is, gn(x) and gn(y) are in the same fiber of Xn for all n ≥ 0. So,
x and y belong to a fiber of X that is an inverse limit of fibers from the
Xn’s with bonding maps being the gn+1

n ’s restricted to the corresponding
fibers. From the construction, for each fiber F of X0, either (gn+1

n |F )−1 is a
homeomorphism of single fibers for all n ≥ 0, or there exists a k such that Sj ,
for some j ∈ {0, 1, 2, 3, 4}, is inserted for the copy of F in Xk. For such F ,
(gn+1
n |F ′)−1 is a homeomorphism of single fibers for each new fiber F ′ in Sj

and all n ≥ k. It follows that each fiber of X is of one of these two types,
which is either an arc or a point. So, X is an arc folder.

X is cohesive. Recall that for each n ≥ 0, the fibers of noncohesion in Xn

lie among the copies Ai, for i ≥ n + 1, in Xn. So, all fibers of noncohesion
in X0 have been replaced in X by copies of the cohesive arc folders Sj .
Furthermore, in the metric topology of

∏
n≥1Xn, the “widths” of the copies

of the Sj ’s that were inserted in the construction, tend to zero. Since each
copy of some Sj contains a copy of the fiber where it was inserted, each fiber
of X0 that was not one of the Ai fibers remains a fiber of cohesion. Hence,
X has no fibers of noncohesion.
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X is irreducible. Note that, by our construction, X contains a set M of
degenerate fibers such that M is dense in X. Therefore X is irreducible.

It follows from Proposition 4 and [8, Proposition 19(5)] that X is chain-
able. The first projection mapping g0 : X → X0 is a morphism onto X0.

Corollary 1. Each arc folder is weakly chainable.

Definition 11. Let X, Y , and Z be continua, and let f : X → Z and
g : Y → Z be surjective mappings. The fibered product of f and g is the set
in X × Y given by [f, g] = {(x, y) | f(x) = g(y)}.

With regard to Definition 11, see [22, p. 70]. We point out that these sets
were called double graphs in [14] and [20].

The next proposition gives a general method for constructing a contin-
uum folder.

Proposition 5. Let f : X → Y be a monotone mapping from a con-
tinuum X onto a locally connected continuum Y , and let g : [0, 1] → Y be
a surjective mapping. Then the fibered product [f, g] is a continuum folder.
Moreover, if G is some class of continua, and the preimages f−1(y) for y ∈ Y
are either points or members of G, then [f, g] is a G folder.

Proof. By definition, [f, g] = {(x, t) ∈ X × [0, 1] | f(x) = g(t)}. Let
η = π2|[f,g] : [f, g]→ [0, 1]. Note that, for t ∈ [0, 1],

η−1(t) = π−12 (t) ∩ [f, g] = {(x, t) | x ∈ f−1(g(t))},
which is a nonempty continuum since f is monotone. It follows that [f, g] is
a continuum folder.

Clearly, if additionally the point preimages under f are either points or
members of G, then [f, g] is a G folder.

Corollary 2. Let f : X → Y be a surjective mapping between continua
X and Y such that Y is locally connected, and f−1(y) is an arc or a point
for each y ∈ Y . Then X is weakly chainable.

Proof. By the Hahn–Mazurkiewicz Theorem [17, 8.14, p. 126], there ex-
ists a continuous surjection g : [0, 1] → Y . By Proposition 5, the fibered
product [f, g] is an arc folder. Consequently, [f, g] is weakly chainable by
Corollary 1. Since X is the continuous image of [f, g] by the projection of
X × [0, 1] onto X, the continuum X is weakly chainable.

The following example shows that local connectedness of Y cannot be
replaced with chainability in Corollary 2.

Example 1. There exists a mapping f : X → Y such that Y is chainable,
and for each y ∈ Y , f−1(y) is either a point or an arc, yet X is not weakly
chainable.
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Proof. Let T be the simple triod in the plane consisting of the points
{(x, 0) | |x| ≤ 1} ∪ {(0, y) | 0 ≤ y ≤ 1}. Let S be a simple spiral in
R2 \ T such that S ∪ T = cl(S). So, X = T ∪ S is a continuum that is
not weakly chainable (see [9, p. 281]). Let F : R2 → R2 be a mapping such
that F (x, y) = (x, 0) for points (x, y) ∈ T , and F |R2\T is a homeomorphism
onto R2 \ {(x, 0) | |x| ≤ 1}. Let f = F |X . The image of f is topologically a
topologist’s sine curve, which is chainable. Also, for each y ∈ f(X), f−1(y) is
either a point or an arc.

A proof of the following conjecture would give a significant generalization
of our main results.

Conjecture 1. Each folder of chainable continua is weakly chainable.
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