REPRESENTATION THEORY OF THE SYMMETRIC GROUP 2021 ANTC SEMINAR SERIES NOTES

ANDY YU AND JOSHUA WISCONS

These notes are simply a record of what was covered in the six-part seminar on the Representation Theory of the Symmetric Group in Spring 2021 at California State University, Sacramento. The seminar was meant to be casual, example driven, perhaps fun, and accessible to anyone having completed a first course in linear algebra. Many articles, books, and sets of lecture notes exist on this topic; the development of this seminar benefited in particular from a book by James [Jam78] and seminar notes by Chan [Cha11] and Wildon [Wil14].

1. Permutations and $\operatorname{Sym}(\mathrm{n})$

Definition 1.1. A permutation of a set X (think $X=\{1, \ldots, 7\}$ or $X=\{a, b, c\}$) is a function $\sigma: X \rightarrow X$ that is both one-to-one and onto. We might also say σ permutes X, σ acts on X, or σ rearranges X.

Let us now look at an example for the set $X=\{a, b, c\}$. Define $\sigma(a)=b, \sigma(b)=c, \sigma(c)=a$ and $\alpha(a)=b, \alpha(b)=c, \alpha(c)=c$. Note that σ is a permutation while α is not.

Definition 1.2. The collection of all permutations of a set X is denoted $\operatorname{Sym}(X)$ or S_{X} where $\operatorname{Sym}(X)$ is called the symmetric group on X.

This gives rise to the fact that if $\alpha, \beta \in \operatorname{Sym}(X)$ then $\alpha \circ \beta \in \operatorname{Sym}(X)$ and $\alpha^{-1} \in \operatorname{Sym}(X)$. Also note that the identity function, denoted 1 , is also in $\operatorname{Sym}(X)$.

2. Representing Permutations

Consider $\alpha, \beta \in \operatorname{Sym}(5)$ where $\operatorname{Sym}(5)$ is the symmetric group on $\{1,2,3,4,5\}$ defined by $\alpha(1)=$ $3, \alpha(2)=4, \alpha(3)=1, \alpha(4)=5, \alpha(5)=2$ and $\beta(1)=1, \beta(2)=4, \beta(3)=5, \beta(4)=2, \beta(5)=3$.
2.1. Diagrammatic Representation. Let us draw some diagrams for α and β.

And now let us draw the diagram for $\alpha \circ \beta$.

2.2. Cycle Notation. Again let us define $\alpha(1)=3, \alpha(2)=4, \alpha(3)=1, \alpha(4)=5, \alpha(5)=2$ and $\beta(1)=1, \beta(2)=4, \beta(3)=5, \beta(4)=2, \beta(5)=3$. Now let's follow elements in definition of α, so $\alpha: 1 \rightarrow 3 \rightarrow 1$, which written in cycle notation is (13) and $\alpha: 2 \rightarrow 4 \rightarrow 5 \rightarrow 2$, again written in cycle notation is (245) yields $\alpha=(13)(245)$. Note that each individual cycle is read from left to right. Similarly $\beta: 2 \rightarrow 4 \rightarrow 2$ and $\beta: 3 \rightarrow 5 \rightarrow 3$, so $\beta=(24)(35)$.

Let's now look at an example and find the cycle notation for γ :

Lastly, let's return to α and β from before and compose them using cycle notation to find

$$
\alpha \beta=(13)(245)(24)(35)=(1325) .
$$

Note that in cycle notation we follow each element through the cycles from right to left (but within the cycles we read from left to right). For example following the element 1 we see that $1 \leftarrow 1$ by (35), $1 \leftarrow 1$ by (24), $1 \leftarrow 1$ by (245), and $3 \leftarrow 1$ by (13). Thus, $\alpha \beta(1)=3$. Similarly we see that $5 \leftarrow 3$ by (35), $5 \leftarrow 5$ by (24), $2 \leftarrow 5$ by (245), and $2 \leftarrow 2$ by (13), so $\alpha \beta(3)=2$.

Second Meeting Notes 02/26/2021

3. Representations

Let's keep looking at $\alpha=(13)(245), \beta=(24)(35) \in \operatorname{Sym}(5)$. This time we'll reresent them with 5×5 matrices, so consider the following vectors:

$$
\bar{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \bar{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \bar{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \overline{e_{4}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right], \overline{e_{5}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Note that α acts on $\{1,2,3,4,5\}$ via $\alpha(1)=3, \alpha(2)=4, \alpha(3)=1, \alpha(4)=5, \alpha(5)=2$. This gives rise to an "obvious" action on $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}, \overline{e_{4}}, \overline{e_{5}}\right\}$ via $\alpha\left(\bar{e}_{1}\right)=\bar{e}_{3}, \alpha\left(\bar{e}_{2}\right)=\overline{e_{4}}, \alpha\left(\bar{e}_{3}\right)=\bar{e}_{1}, \alpha\left(\overline{e_{4}}\right)=\overline{e_{5}}$, $\alpha\left(\overline{e_{5}}\right)=\bar{e}_{2}$. In other words, $\alpha\left(\overline{e_{i}}\right)=\overline{e_{\alpha(i)}}$. Now, let's try to find a matrix M_{α} that acts the same on $\left\{\bar{e}_{1}, \ldots, \overline{e_{5}}\right\}$ as α does. That is we want

$$
\begin{aligned}
& M_{\alpha} \cdot \bar{e}_{1}=\bar{e}_{3} \\
& M_{\alpha} \cdot \bar{e}_{2}=\overline{e_{4}} \\
& M_{\alpha} \cdot \bar{e}_{3}=\bar{e}_{1} \\
& M_{\alpha} \cdot \overline{e_{4}}=\overline{e_{5}} \\
& M_{\alpha} \cdot \overline{e_{5}}=\bar{e}_{2} \\
& 2
\end{aligned}
$$

Thus we find

$$
M_{\alpha} \cdot \bar{e}_{1}=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\operatorname{Col}_{1}\left(M_{\alpha}\right)=\bar{e}_{3}
$$

Similarly,

$$
M_{\alpha} \cdot \bar{e}_{2}=\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\operatorname{Col}_{2}\left(M_{\alpha}\right)=\overline{e_{4}}
$$

Continuing on, we find that

$$
M_{\alpha}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Similarly, for $\beta=(24)(35)$, we find that

$$
M_{\beta}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

This gives a function: $\rho: \operatorname{Sym}(n) \rightarrow \mathrm{GL}_{n}$ (where $G L_{n}$ is the set of invertible $n \times n$ matrices) defined by $\rho(\alpha)=M_{\alpha}$ where M_{α} is the matrix such that $\operatorname{Col}_{i}\left(M_{\alpha}\right)=\overline{e_{\alpha(i)}}$.
Definition 3.1. The function $\rho: \operatorname{Sym}(n) \rightarrow \mathrm{GL}_{n}$ defined above is called the natural (linear) representation of $\operatorname{Sym}(n)$.

Let us now look at an example where we write down all permutations in Sym(3) using cycle notation and the natural representation.
Example 3.2. Using cycle notation we have

$$
\operatorname{Sym}(3)=\{1,(12),(23),(13),(123),(132)\}
$$

And using the natural representation, we have

$$
\left.\begin{array}{rl}
M_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & M_{(123)}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{array} M_{(132)}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\right)
$$

Example 3.3. Recall that for $\alpha=(13)(245)$ and $\beta=(24)(35)$ from before we found that

$$
M_{\alpha}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]_{3} M_{\beta}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Computing the product $M_{\alpha} M_{\beta}$, we find that

$$
M_{\alpha} M_{\beta}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]=M_{(1325)}=M_{\alpha \beta}
$$

Fact 3.4. For all $\alpha, \beta \in \operatorname{Sym}(n)$,
(1) $M_{1}=I_{n}$
(2) $M_{\alpha} \cdot M_{\beta}=M_{\alpha \beta}$
(3) $\left(M_{\alpha}\right)^{-1}=M_{\alpha^{-1}}$

Also, $M_{\alpha} \cdot \overline{e_{i}} \Longleftrightarrow \alpha(i)=j$.
Modeling the properties above, we arrive at the definition of a representation.
Definition 3.5. A function $\rho: \operatorname{Sym}(n) \rightarrow \mathrm{GL}_{m}$ is called a (linear) representation of $\operatorname{Sym}(n)$ if
(1) $\rho(1)=I_{m}$
(2) $\rho(\alpha \beta)=\rho(\alpha) \rho(\beta)$
(3) $\rho\left(\alpha^{-1}\right)=\rho(\alpha)^{-1}$

The number m is called the degree or dimension of the representation. It can be checked that the second condition implies the first and third, so only the second is needed.

3.1. Main Questions (take 1).

Questions.

I. Are there representations of $\operatorname{Sym}(n)$ other than the natural one? If so what are they?
II. Are there representations of $\operatorname{Sym}(n)$ of degree m with $m<n$? If so how small of m is possible?

Third Meeting Notes 03/05/2021

4. Modules

Let's start by recalling the definition of a representation and the special case of the natural representation.

Definition (See Definition 3.5). A function $\rho: \operatorname{Sym}(n) \rightarrow \mathrm{GL}_{m}(F)$ is called a (linear) representation of $\operatorname{Sym}(n)$ if $\forall \alpha, \beta \in \operatorname{Sym}(n), \rho(\alpha \beta)=\rho(\alpha) \rho(\beta)$. We call m the degree or dimension of the representation.

This definition of a representation only gives one of the three axioms from Definition 3.5, but it can be shown that this one axiom implies the other two.

Example (See Definition 3.1). The natural representation $\rho: \operatorname{Sym}(n) \rightarrow \mathrm{GL}_{m}(\mathbb{Z})$ where $\rho(\alpha)=$ M_{α} is a representation of degree n.

Example 4.1. The following is a 2-dimensional representation of $\operatorname{Sym}(3)$:

$$
\begin{aligned}
1 & \mapsto\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] & (123) & \mapsto\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]
\end{aligned} \begin{array}{lll}
(132) & \mapsto\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right] \\
(12) & \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] & (23)
\end{array}>\left[\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right] \quad(13) \mapsto\left[\begin{array}{cc}
-1 & -1 \\
4 & 1
\end{array}\right]
$$

To verify it's a representation there are various things to check. For example, if $\alpha=(123)$ and $\beta=(12)$, then we need to verify that

$$
\rho(\alpha) \rho(\beta)=\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right]=\rho((13))=\rho(\alpha \beta) .
$$

Also, there is the obvious question: where did this representation come from?
Let $\rho: \operatorname{Sym}(n) \rightarrow \mathrm{GL}_{m}(\mathbb{R})$ be any representation. Then $\alpha \mapsto \rho(\alpha)$ where $\rho(\alpha)$ is a matrix, and it may be helpful to just think of $\alpha \rightarrow M_{\alpha}$.

Matrices can be understood by how they multiply vectors. Let us recall some properties. If $A, B \in \mathrm{Mat}_{m \times m}$ and $\bar{v}, \bar{w} \in \mathbb{R}^{m}$ and $c \in \mathbb{R}$, then

- $A(\bar{v}+\bar{w})=A \bar{v}+A \bar{w} ;$
- $A C(\bar{v}))=C(A \bar{v})$;
- $A(B \cdot \bar{v})=(A B) \cdot \bar{v}$.

Thus,

- $\rho(\alpha)(\bar{v}+\bar{w})=\rho(\alpha) \bar{v}+\rho(\alpha) \bar{w} ;$
- $\rho(\alpha)(c \cdot \bar{v})=c \rho(\alpha) \bar{v} ;$
- $\rho(\alpha)(\rho(\beta) \bar{v})=(\rho(\alpha) \rho(\beta)) \bar{v}=\rho(\alpha \beta) \bar{v}$.

Definition 4.2. A $\operatorname{Sym}(n)$-module is a vector space V together with a multiplication $\alpha \cdot \bar{v}$ defined for all $\alpha \in \operatorname{Sym}(n)$ and all $\bar{v} \in V$ such that $\alpha \cdot \bar{v} \in V$ and
(1) $\alpha \cdot(\bar{v}+\bar{w})=\alpha \cdot \bar{v}+\alpha \cdot \bar{w}$
(2) $\alpha \cdot(c \bar{v})=c(\alpha \cdot \bar{v})$
(3) $\alpha \cdot(\beta \cdot \bar{v})=\alpha \beta \cdot \bar{v}$
(4) $1 \cdot \bar{v}=\bar{v}$

Remark 4.3. A $\operatorname{Sym}(n)$-module as has addition, scalar multiplication, and $\operatorname{Sym}(n)$-multiplication, and when working with a $\operatorname{Sym}(n)$-module, we may think of each $\alpha \in \operatorname{Sym}(n)$ as a matrix.
Fact 4.4. $\operatorname{Sym}(n)$-representations correspond to $\operatorname{Sym}(n)$-modules.
To see why this is true, first consider a representation $\rho: \operatorname{Sym}(n) \rightarrow \mathrm{GL}_{m}(F)$. Then we produce a module $V=F^{m}$ where we define $\alpha \cdot \bar{v}=\rho(\alpha) \bar{v}$. Conversely, we can also produce a representation from a module, as we'll see in the next example.

Definition 4.5. We define the natural permutation module $\operatorname{perm}_{F}^{n}$ to be the $\operatorname{Sym}(n)$-module corresponding to the natural representation $\rho: \operatorname{Sym}(n) \rightarrow \mathrm{GL}_{n}(F)$.

Example 4.6. Lets look at perm \mathbb{R}^{3} as a $\operatorname{Sym}(3)$-module. We want to understand the multiplication $\alpha \cdot \bar{v}$. Let $\bar{v} \in \operatorname{perm}_{\mathbb{R}}^{3}$. Then

$$
\bar{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
b \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
c
\end{array}\right]=a \bar{e}_{1}+b \bar{e}_{2}+c \bar{e}_{3} .
$$

Consider $\alpha=(132)$. Remember from before, we determined the natural representation of $\operatorname{Sym}(3)$ and found that $M_{\alpha} \bar{e}_{1}=\bar{e}_{3}, M_{\alpha} \bar{e}_{2}=\bar{e}_{1}$, and $M_{\alpha} \bar{e}_{3}=\bar{e}_{2}$. So using our module notation, this means that $\alpha \cdot \bar{e}_{1}=\bar{e}_{3}, \alpha \cdot \bar{e}_{2}=\bar{e}_{1}$, and $\alpha \cdot \bar{e}_{3}=\bar{e}_{2}$. Thus,

$$
\begin{aligned}
\alpha \cdot \bar{v} & =\alpha\left(a \bar{e}_{1}+b \bar{e}_{2}+c \bar{e}_{3}\right) \\
& =a \alpha \cdot \bar{e}_{1}+b \alpha \cdot \bar{e}_{2}+c \alpha \cdot \bar{e}_{3} \\
& =a \bar{e}_{3}+b \bar{e}_{1}+c \bar{e}_{2} \\
& =b \bar{e}_{1}+c \bar{e}_{2}+a \bar{e}_{3},
\end{aligned}
$$

so

$$
\text { (132) } \cdot\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
b \\
c \\
a
\end{array}\right] .
$$

Notice how α acts on \bar{v} by permuting the rows of \bar{v}. Similarly,

$$
\begin{aligned}
(12) \cdot v & =(12) \cdot\left(a \bar{e}_{1}+b \bar{e}_{2}+c \bar{e}_{3}=\right. \\
& =a \bar{e}_{2}+b \bar{e}_{1}+c \bar{e}_{3} \\
& =b \bar{e}_{1}+a \bar{e}_{2}+c \bar{e}_{3},
\end{aligned}
$$

so

$$
\text { (12) } \cdot\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
b \\
a \\
c
\end{array}\right] \text {. }
$$

Fourth Meeting Notes (Talk by Barry Chin) 04/02/2021
Remark 4.7. If \bar{v} is in $\operatorname{perm}_{\mathbb{R}}^{3}$, then we may write it in terms of the standard basis for \mathbb{R}^{3} as

$$
\bar{v}=a \bar{e}_{1}+b \bar{e}_{2}+c \bar{e}_{3},
$$

and as we saw above,

$$
\alpha \cdot \bar{v}=\alpha\left(a \bar{e}_{1}+b \bar{e}_{2}+c \bar{c}_{3}\right)=a\left(\alpha \cdot \bar{e}_{1}\right)+b\left(\alpha \cdot \bar{e}_{2}\right)+c\left(\alpha \cdot \bar{e}_{3}\right) .
$$

This illustrates that to understand the multiplication $\alpha \cdot \bar{v}$ for any $\operatorname{Sym}(n)$-module, we only need to understand how α acts on the basis of the module. In other words, if $\bar{b}_{1}, \ldots, \bar{b}_{d}$ is a basis for a $\operatorname{Sym}(n)$-module, then as soon as we know $\alpha \cdot \bar{b}_{1}, \ldots, \alpha \cdot \bar{b}_{d}$, we are able to determine $\alpha \cdot \bar{v}$ for all \bar{v} in the module.

4.1. Submodules.

Definition 4.8. Let V be a $\operatorname{Sym}(n)$-module, and let $W \subseteq V$. We call W a submodule of V if it is a subspace of V that is closed under $\operatorname{Sym}(n)$-multiplication, i.e. if for all $\alpha \in \operatorname{Sym}(n)$ and all $\bar{w} \in W$, we have $\alpha \cdot \bar{w} \in W$. This means that W is a $\operatorname{Sym}(n)$-module with respect to the same operations used for V.
Example 4.9 (submodules of $\operatorname{perm}_{\mathbb{R}}^{3}$). Let $V=\operatorname{perm}_{\mathbb{R}}^{3}$. Let's look for submodules of V.
(1) Let's first consider

$$
W_{1}=\operatorname{span}\left(\bar{e}_{1}, \bar{e}_{2}\right)=\left\{a \bar{e}_{1}+b \bar{e}_{2} \mid a, b \in \mathbb{R}\right\}=\left\{\left.\left[\begin{array}{c}
a \\
b \\
0
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} .
$$

Let $w \in W_{1}$, so $w=a \bar{e}_{1}+b \bar{e}_{2}=\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]$ for some $a, b \in \mathbb{R}$. To check if W_{1} is a submodule, we need to check if $\alpha \cdot w \in W_{1}$ for all $\alpha \in \operatorname{Sym}(3)$. Observe that

- (12) $\cdot w=(12) \cdot\left(a \bar{e}_{1}+b \bar{e}_{2}\right)=a \bar{e}_{2}+b \bar{e}_{1}=\left[\begin{array}{l}b \\ a \\ 0\end{array}\right] \in W_{1}$;
- (123) $\cdot w=(123) \cdot\left(a \bar{e}_{1}+b \bar{e}_{2}\right)=a \bar{e}_{2}+b \bar{e}_{3}=\left[\begin{array}{l}0 \\ a \\ b\end{array}\right] \notin W_{1}$.

Since (123) $\cdot w \notin W_{1}, W_{1}$ is not a submodule.
(2) Next, let's consider

$$
W_{2}=\operatorname{span}\left(\bar{e}_{1}+\bar{e}_{2}+\bar{e}_{3}\right)=\left\{a \bar{e}_{1}+a \bar{e}_{2}+a \bar{e}_{3} \mid a \in \mathbb{R}\right\}=\left\{\left.\left[\begin{array}{l}
a \\
a \\
a
\end{array}\right] \right\rvert\, a \in \mathbb{R}\right\}
$$

Let $w \in W_{2}$, so $w=a \bar{e}_{1}+a \bar{e}_{2}+a \bar{e}_{3}$ for some $a \in \mathbb{R}$. This time observe that
$\bullet(123) \cdot w=(123) \cdot\left(a \bar{e}_{1}+a \bar{e}_{2}+a \bar{e}_{3}\right)=a \bar{e}_{2}+a \bar{e}_{3}+a \bar{e}_{1}=w \in W_{2}$.

In fact, $\alpha \cdot w=w$ for all $\alpha \in \operatorname{Sym}(3)$. This shows that W_{2} is a submodule. The multiplication $\alpha \cdot w$ is very boring, so this submodule is called the trivial module, denoted triv $y_{\mathbb{R}}^{3}$.
(3) Finally we consider

$$
W_{3}=\left\{a \bar{e}_{1}+b \bar{e}_{2}+c \bar{e}_{3} \mid a+b+c=0\right\}=\left\{\left.\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \right\rvert\, a+b+c=0\right\} .
$$

Let $w \in W_{3}$, and write $w=a \bar{e}_{1}+b \bar{e}_{2}+c \bar{e}_{3}$ where $a+b+c=0$. Observe that - $(123) \cdot w=(123) \cdot\left(a \bar{e}_{1}+b \bar{e}_{2}+c \bar{e}_{3}\right)=a \bar{e}_{2}+b \bar{e}_{3}+c \bar{e}_{1}=\left[\begin{array}{c}c \\ a \\ b\end{array}\right]$,
so as the sum of the coefficients of (123) w is still zero (i.e. $c+a+b=0$), we see that (123) $\cdot w \in W_{3}$. And it is not hard to verify that $\alpha \cdot w \in W_{3}$ for all $\alpha \in \operatorname{Sym}(3)$, so W_{3} is also a submodule. This submodule is called the standard module, denoted std $\mathbb{d}_{\mathbb{R}}^{3}$.
We may define $\operatorname{std}_{F}^{n}$ and $\operatorname{triv}_{F}^{n}$ (for any n and F) in an analogous way to $\operatorname{std}_{\mathbb{R}}^{3}$ and $\operatorname{triv}_{\mathbb{R}}^{3}$ above, and it's easy to show that both are submodules of perm ${ }_{\mathbb{F}}^{n}$.
Definition 4.10. The standard and trivial modules are the submodules of perm ${ }_{F}^{n}$ defined by

$$
\begin{aligned}
\operatorname{std}_{F}^{n} & =\left\{a_{1} \bar{e}_{1}+\cdots+a_{n} \bar{e}_{n} \mid a_{1}+\cdots+a_{n}=0\right\} \\
\operatorname{triv}_{F}^{n} & =\left\{a \bar{e}_{1}+\cdots+a \bar{e}_{n}\right\}=\operatorname{span}\left(\bar{e}_{1}+\cdots+\bar{e}_{n}\right)
\end{aligned}
$$

We know that $\operatorname{dim}\left(\operatorname{perm}_{F}^{n}\right)=n$ and $\operatorname{dim}\left(\operatorname{triv}_{F}^{n}\right)=1$, but what about $\operatorname{dim}\left(\operatorname{std}_{F}^{n}\right)$? At this point, we only know that $\operatorname{dim}\left(\operatorname{std}_{F}^{n}\right)<n$. And what might be a basis for $\operatorname{std}_{F}^{n}$?
Example 4.11. Let's find a basis for std $d_{\mathbb{R}}^{3}$. Consider the vectors \bar{f}_{1} and \bar{f}_{2} defined as

$$
\bar{f}_{1}=\bar{e}_{1}-\bar{e}_{3}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \text { and } \bar{f}_{2}=\bar{e}_{2}-\bar{e}_{3}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] .
$$

Note that $\bar{f}_{1}, \bar{f}_{2} \in \operatorname{std}_{\mathbb{R}}^{3}$. If we can show \bar{f}_{1} and \bar{f}_{2} are linearly independent, then we'll know they form a basis since $\operatorname{dim}\left(\operatorname{std}_{\mathbb{R}}^{3}\right) \leq 2$. Suppose $a \bar{f}_{1}+b \bar{f}_{2}=0$. We want to show $a, b=0$. Observe that

$$
\begin{aligned}
a \bar{f}_{1}+b \bar{f}_{2}=0 & \Longleftrightarrow a\left(\bar{e}_{1}-\bar{e}_{3}\right)+b\left(\bar{e}_{2}-\bar{e}_{3}\right)=0 \\
& \Longleftrightarrow a \bar{e}_{1}-a \bar{e}_{3}+b \bar{e}_{2}+b \bar{e}_{3}=0 \\
& \Longleftrightarrow a \bar{e}_{1}+b \bar{e}_{2}+(-a-b) \bar{e}_{3}=0 .
\end{aligned}
$$

Since $\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}$ are linearly independent, we conclude that $a=b=0$. Hence \bar{f}_{1} and \bar{f}_{2} are linearly independent so form a basis for $\operatorname{std}_{\mathbb{R}}^{3}$.

This example generalizes to give the following fact.
Fact 4.12. A basis for the standard module $\operatorname{std}_{F}^{n}$ is $\left\{\bar{f}_{1}, \ldots, \bar{f}_{n-1}\right\}$ where $\bar{f}_{i}=\bar{e}_{i}-\bar{e}_{n}$. In particular, $\operatorname{dim}\left(\operatorname{std}_{F}^{n}\right)=n-1$.
Remark 4.13. There are many other "nice" bases for $\operatorname{std}_{F}^{n}$; here's one:

$$
\left\{\bar{e}_{1}-\bar{e}_{2}, \bar{e}_{2}-\bar{e}_{3} \ldots, \bar{e}_{n-1}-\bar{e}_{n}\right\} .
$$

Remember that every $\operatorname{Sym}(n)$-module corresponds to a representation of $\operatorname{Sym}(n)$. In Example 3.2, we saw the representation of $\operatorname{Sym}(3)$ corresponding to the natural module. Also, in Example 4.1, we saw the representation of $\operatorname{Sym}(3)$ corresponding to the standard module, but we didn't know it then. Let's try to see how to build the representation from Example 4.1.
Example 4.14. Let $\mathcal{B}=\left\{\bar{f}_{1}, \bar{f}_{2}\right\}$ be the basis for $\operatorname{std}_{\mathbb{R}}^{3}$ described above. With respect to \mathcal{B}, $\bar{f}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\bar{f}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Now, observe that

- $(12) \cdot \bar{f}_{1}=\bar{f}_{1}=(12) \cdot\left(\bar{e}_{1}-\bar{e}_{3}\right)=\bar{e}_{2}-\bar{e}_{3}=\bar{f}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$;
- $(12) \cdot \bar{f}_{2}=(12) \cdot\left(\bar{e}_{2}-\bar{e}_{3}\right)=\bar{e}_{1}-\bar{e}_{3}=\bar{f}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Thus, the matrix for (12) with respect to the basis \mathcal{B} is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Also, we find that

- $(123) \cdot \bar{f}_{1}=(123) \cdot\left(\bar{e}_{1}-\bar{e}_{3}\right)=\bar{e}_{2}-\bar{e}_{1}=\bar{e}_{2}-\bar{e}_{3}+\bar{e}_{3}-\bar{e}_{1}=\left(\bar{e}_{2}-\bar{e}_{3}\right)-\left(\bar{e}_{1}-\bar{e}_{3}\right)=\bar{f}_{2}-\bar{f}_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$;
- $(123) \cdot \bar{f}_{2}=(123) \cdot\left(\bar{e}_{2}-\bar{e}_{3}\right)=\bar{e}_{3}-\bar{e}_{1}=-\bar{f}_{1}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

Thus, the matrix for (123) is $\left[\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right]$. The remaining elements of $\operatorname{Sym}(3)$ can be built from (12) and (123), which can be used to find the remaining matrices for this representation. For example,

$$
(23)=(12)(123) \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right]
$$

Computing the remaining matrices, we find the exact representation given in Example 4.1.
4.2. Main Questions (take 2). We are trying to find representations of $\operatorname{Sym}(n)$, which we saw is equivalent to trying to find $\operatorname{Sym}(n)$-modules. Here's the catalog of so far:

- $\operatorname{perm}_{F}^{n}=\operatorname{span}\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right)$, which is n-dimensional;
- $\operatorname{std}_{F}^{n}=\operatorname{span}\left(\bar{e}_{1}-\bar{e}_{n}, \ldots, \bar{e}_{n-1}-\bar{e}_{n}\right)$, which is $n-1$-dimensional;
- $\operatorname{triv}_{F}^{n}=\operatorname{span}\left(\bar{e}_{1}+\cdots+\bar{e}_{n}\right)$, which is 1 -dimensional.

Questions.
I. Are there other submodules of $\operatorname{perm}_{F}^{n}$? Are there submodules of $\operatorname{std}_{F}^{n}$, other than $\operatorname{std}_{F}^{n}$ and $\{\overline{0}\}$?
II. Are there other modules (that may not be submodules of $\operatorname{perm}_{F}^{n}$)?
4.3. Irreducibility. In our search for modules, we've been looking specifically at submodules of perm ${ }_{F}^{n}$. There is the question of if there are any submodules we haven't yet found and the related question of if $\operatorname{std}_{F}^{n}$ has any "interesting" submodules at all (other that itself and the zero module $\{\overline{0}\}$, consisting of just the zero vector). The answer to both questions turn out to be (usually) no!
Definition 4.15. Let V be a $\operatorname{Sym}(n)$-module. We say V is irreducible if the only submodules of V are V (itself) and $\{\overline{0}\}$ (the zero module).

Fifth Meeting Notes 04/30/2021

Remark 4.16. Irreducible modules have no "interesting" submodules - think of them as primes. They are the "building blocks" of all modules, so in our quest to find modules, we should focus on finding the irreducible ones.

The next proposition shows that the answer to the second part of Question I. above is "no" in the case when our scalars are from $F=\mathbb{R}$. In fact, the same argument shows that the answer is "no" anytime the so-called characteristic of F is not a divisor of n. However, when the characteristic of F does divide n (e.g. when $F=\mathbb{Z} / p \mathbb{Z}$ for p a prime divisor of n), then $\operatorname{triv}_{F}^{n} \leq \operatorname{std}_{\mathbb{R}}^{n}$, so $\operatorname{std}_{\mathbb{R}}^{n}$ is not irreducible in this case.
Proposition 4.17. The module $\operatorname{std}_{\mathbb{R}}^{n}$ is irreducible
Proof. Let $V=\operatorname{perm}_{\mathbb{R}}^{n}, S=\operatorname{std}_{\mathbb{R}}^{n}$, and $T=\operatorname{triv}_{\mathbb{R}}^{n}$. As before, we set $\bar{f}_{i}=\bar{e}_{i}-\bar{e}_{n}$. Recall that

$$
\begin{aligned}
& S=\{\bar{v} \in V \mid \text { sum of coefficients is } 0\}=\operatorname{span}\left(\bar{f}_{1}, \ldots, \bar{f}_{n-1}\right) \\
& T=\{\bar{v} \in V \mid \text { all coefficients are equal }\}=\operatorname{span}\left(\bar{e}_{1}+\cdots+\bar{e}_{n}\right) .
\end{aligned}
$$

Claim 1. $S \cap T=\{\overline{0}\}$.
Proof of Claim. Let $\bar{v} \in T$. This implies $\bar{v}=a \bar{e}_{1}+\cdots+a \bar{e}_{n}$ for some $a \in \mathbb{R}$. Thus, if \bar{v} is also in S, then $n \cdot a=0$, which implies $a=0$. (Here is where we are using that the characteristic of R does not divide n.) And, if $a=0$, then $\bar{v}=\overline{0}$, so we see that $\bar{v} \in T \cap S$ implies $\bar{v}=\overline{0}$.

Now let W be a submodule of S. We aim to show $W=S$ or $W=\{\overline{0}\}$. Set $B_{1}=\operatorname{span}\left(\bar{f}_{1}\right)$. The next claim highlights an important property of B_{1}.

Claim 2. $\bar{v} \in B_{1} \Longleftrightarrow(1 n) \cdot \bar{v}=-\bar{v}$.
Proof of Claim. Suppose $\bar{v} \in B_{1}$. Then $\bar{v}=c\left(\bar{e}_{1}-\bar{e}_{n}\right)$ for some $c \in \mathbb{R}$, so

$$
(1 n) \cdot \bar{v}=(1 n) \cdot\left(c \bar{e}_{1}-c \bar{e}_{n}\right)=c \bar{e}_{n}-c \bar{e}_{1}=-\bar{v} .
$$

Conversely, assume (1n) $\bar{v}=-\bar{v}$ for an arbitrary $\bar{v} \in S$. Writing, $\bar{v}=a_{1} \bar{e}_{1}+\cdots+a_{n} \bar{e}_{n}$, we have,

$$
-\left(a_{1} \bar{e}_{1}+a_{2} \bar{e}_{2}+\cdots+a_{n} \bar{e}_{n}\right)=(1 n) \cdot\left(a_{1} \bar{e}_{1}+a_{2} \bar{e}_{2}+\cdots+a_{n} \bar{e}_{n}\right)=a_{1} \bar{e}_{n}+a_{2} \bar{e}_{2}+\cdots+a_{n} \bar{e}_{1},
$$

so comparing coefficients, we find that $-a_{1}=a_{n}$ and $-a_{i}=a_{i}$ for all $1<i<n$. This shows $\bar{v}=a_{1} \bar{e}_{1}-a_{1} \bar{e}_{n} \in B_{1}$.

We now consider two cases: $B_{1} \subseteq W$ and $B_{1} \nsubseteq W$.
Claim 3. If $B_{1} \subseteq W$, then $W=S$.
Proof of Claim. As W is a submodule, we have $\alpha \cdot \bar{w} \in W$ for all $\alpha \in \operatorname{Sym}(n)$ and all $\bar{w} \in W$. Thus,

$$
\begin{aligned}
B_{1} \subseteq W & \Longrightarrow \bar{f}_{1} \in W \\
& \Longrightarrow \bar{f}_{1},(12) \cdot f_{1},(13) \cdot f_{2}, \ldots,(1 n-1) \cdot f_{1} \in W \\
& \Longrightarrow \bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}, \ldots, \bar{f}_{n-1} \subseteq W \\
& \Longrightarrow \operatorname{span}\left(\bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}, \ldots, \bar{f}_{n-1}\right) \subseteq W
\end{aligned}
$$

Since $\operatorname{span}\left(\bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}, \ldots, \bar{f}_{n-1}\right)=S$, we find that $S \subseteq W \subseteq S$, so $W=S$.
Claim 4. If $B_{1} \nsubseteq W$, then $W=\{\overline{0}\}$.
Proof of Claim. Since B_{1} is 1-dimensional, $B_{1} \nsubseteq W$ implies $B_{1} \cap W=\{\overline{0}\}$. We show that this implies that $(1 n) \cdot \bar{w}=\bar{w}$ for all $\bar{w} \in W$. Let $\bar{u}=\bar{w}-(1 n) \cdot \bar{w}$. We aim to show $\bar{u}=\overline{0}$. Observe,

$$
(1 n) \cdot \bar{u}=(1 n) \cdot \bar{w}-(1 n)(1 n) \cdot \bar{w}=(1 n) \cdot \bar{w}-\bar{w}=-\bar{u},
$$

which shows $\bar{u} \in B_{1}$. Since W is a submodule, $\bar{u} \in W$, so as $B_{1} \cap W=\{\overline{0}\}, \bar{u}=\overline{0}$. This shows that (1n) $\cdot \bar{w}=\bar{w}$ for all $\bar{w} \in W$.

Define $B_{i}=\operatorname{span}\left(\bar{f}_{i}\right)$. The argument in the previous claim adapts to show that if any $B_{i} \subseteq W$, then $W=S$. Thus, in the case we are considering, $B_{i} \nsubseteq W$ for all $1 \leq i \leq n-1$. Moreover, the argument we just gave then shows $(i n) \cdot \bar{w}=\bar{w}$ for all $\bar{w} \in W$. Writing $\bar{w}=a_{1} \bar{e}_{1}+\cdots+a_{n} \bar{e}_{n}$, and using that $(i n) \cdot \bar{w}=\bar{w}$ for all $1 \leq i \leq n-1$, we find that $\bar{w}=a \bar{e}_{1}+\cdots+a \bar{e}_{n} \in T$. Thus $W \subseteq T$. Since W is a submodule of S, we have $W \subseteq S \cap T$, which is equal to $\{\overline{0}\}$ by the first claim.

5. The irreducible modules of $\operatorname{Sym}(\mathrm{n})$

We now know that to find other modules we should look outside of perm $_{F}^{n}$. Let's start by revisiting how we built perm ${ }_{F}^{n}$.
Step 1: $\operatorname{Sym}(n)$ permutes $\{1,2, \ldots, n\}$
Step 2: Consider a basis for F^{n} labeled $\bar{e}_{1}, \ldots, \bar{e}_{n}$. Then $\alpha \cdot \bar{e}_{i}=\bar{e}_{\alpha(i)}$.
Step 3: $\operatorname{perm}_{F}^{n}=\operatorname{span}\left(\bar{e}_{1}, \ldots, \bar{e}_{n}\right)$ with this $\operatorname{Sym}(n)$-multiplication.
So one idea would be to revisit Step 1 and find other sets that $\operatorname{Sym}(n)$ permutes. For example, we could consider the set of ordered pairs: $\{(i, j) \mid 1 \leq i, j \leq n\}$ with a "coordinatewise" action: $\alpha \cdot(i, j)=(\alpha(i), \alpha(j))$. For example, $(153) \cdot(5,1)=(3,5)$ and $(153) \cdot(1,7)=(5,7) . \underline{\text { We could also }}$ consider unordered pairs: $\{\overline{\bar{i} j} \mid 1 \leq i \neq j \leq n\}$, where we are using the notation $\overline{i j}$ in place of $\{i, j\}$. The action is again coordinatewise. Notice that here we have

$$
\text { (12) } \overline{\overline{12}}=\overline{21}=\overline{12}
$$

since the order does not matter. These lead to new modules.
Example 5.1. Consider $\operatorname{Sym}(5)$. There are $\binom{5}{2}=10$ unordered pairs $\{\overline{i j} \mid 1 \leq i \neq j \leq 5\}$. Let $V=\mathbb{R}^{10}$, and label a basis by the 10 unordered pairs. When doing this, we simply write $\overline{i j}$ in place of $\bar{e} \overline{i j}$, so here we are thinking of $\overline{i j}$ as a vector. Thus, the elements of V can be written in terms of this basis as

$$
\begin{aligned}
\bar{v} & =a_{12} \overline{\overline{12}}+a_{13} \overline{\overline{13}}+a_{14} \overline{\overline{14}}+a_{15} \overline{\overline{15}}+a_{23} \overline{\overline{23}} \\
& +a_{24} \overline{\overline{24}}+a_{25} \overline{\overline{25}}+a_{34} \underline{\overline{34}}+a_{35} \overline{\overline{35}}+a_{45} \overline{45}
\end{aligned}
$$

for some $a_{i j} \in \mathbb{R}$. One concrete element of V is

$$
\bar{w}=7 \cdot \overline{\overline{12}}-3 \cdot \overline{34}+\pi \cdot \overline{45} .
$$

With the $\operatorname{Sym}(n)$-multiplication defined above, V is a module of dimension 10 .

Sixth Meeting Notes 5/07/2021

Remark 5.2. If $\operatorname{Sym}(n)$ permutes the elements of some set $X=\left\{x_{1}, \ldots, x_{d}\right\}$, then we may make F^{d} (for F any field) a module as follows:

- label a basis for F^{d} as $\left\{\bar{e}_{x_{1}}, \ldots, \bar{e}_{x_{d}}\right\}$;
- define a $\operatorname{Sym}(n)$-multiplication via $\alpha \cdot \bar{e}_{x_{i}}=\bar{e}_{\alpha \cdot x_{i}}$.
5.1. Tableaux and tabloids. We now develop a general setting that captures all previous examples of $\operatorname{Sym}(n)$-modules. We first introduce (integer) partitions, Young tableaux, and Young tabloids.

Definition 5.3. Let n be a positive integer. A partition of n is a non-increasing sequence of positive integers that sum to n.

For example, there are 7 partitions of 5 . They are (5), $(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1)$, and ($1,1,1,1,1$).

We now introduce, by example, λ-tableaux and λ-tabloids.
Example 5.4. Let $\lambda=(3,2)$. Here are three examples of λ-tableaux:

$$
t_{1}=\begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & \\
\hline
\end{array} \quad t_{2}= \quad t_{3}=\begin{array}{|l|l|l|}
\hline 5 & 3 & 3 \\
4 & 2 & 1 \\
\hline & & \\
\hline
\end{array} .
$$

Notice how the numbers in $\lambda=(3,2)$ indicate the number of boxes in each row of a λ-tableau. All numbers from 1 to n (in this case $n=5$) are then used once when filling in the boxes.

Continuing on, each λ-tableau t has a corresponding λ-tabloid denoted $\{t\}$:

$$
\left\{t_{1}\right\}=\overline{\begin{array}{l}
135 \\
\hline 24
\end{array}}\left\{t_{2}\right\}=\overline{\begin{array}{l}
235 \\
\hline 4
\end{array}}\left\{t_{3}\right\}=\overline{\begin{array}{|c|}
\hline 43 \\
\hline
\end{array}} .
$$

The notation for λ-tabloid is meant to highlight that the order of the numbers in a row of a λ tabloid does not matter; whereas, it does matter for tableau. However, the column order matters for both. Thus, in this example, we have $t_{1} \neq t_{3},\left\{t_{1}\right\}=\left\{t_{3}\right\}$, and $\left\{t_{1}\right\} \neq\left\{t_{2}\right\}$.

Remark 5.5. If λ is a partition of n, then $\operatorname{Sym}(n)$ permutes the λ-tabloids by "acting coordinatewise." For example, if $\alpha=(14)(23)$, then

$$
\alpha \cdot \overline{\begin{array}{lll}
531 \\
\hline 42
\end{array}}=\frac{\overline{5} 24}{} .
$$

Definition 5.6. Let λ be a partition of n, and let d be the number of λ-tabloids. Label a basis for F^{d} by the λ-tabloids. Define the module

$$
M_{F}^{\lambda}=\operatorname{span}\left(\left\{t_{1}\right\}, \ldots,\left\{t_{d}\right\}\right)=F^{d}
$$

with coordinatewise $\operatorname{Sym}(n)$-multiplication.
Example 5.7. Consider $\lambda=(4,1)$. There are 5λ-tabloids:
so $M_{F}^{(4,1)}$ is a 5 -dimensional vector space. Notice how each tabloid above is completely determined by the one number in the second row, which gives a correspondence

Then, thinking about how the $\operatorname{Sym}(n)$-multiplication is defined, we find that $M_{F}^{(4,1)}$ is really just perm ${ }_{F}^{5}$ in disguise, i.e. $M_{F}^{(4,1)} \cong \operatorname{perm}_{F}^{5}$ as modules.
Example 5.8. Consider $\lambda=(3,2)$. There are 10λ-tabloids:

As before, our tabloids only have two rows, so each one is completely determined by the second row. Thus, in this case, we find that $M_{F}^{(3,2)}$ is really the same as the 10 -dimensional module we constructed in Example 5.1.
5.2. Specht modules and the main theorem. So, the M_{F}^{λ} construction yields many modules, capturing familiar ones from before, but how can we use this to find irreducible modules? The answer is to look inside of M_{F}^{λ} for an irreducible module in a way analogous to how we found $\operatorname{std}_{F}^{n}$ inside of perm $_{F}^{n}$.

Remark 5.9. Recall that permutations of the form $(i j)$ are called transpositions. It is not difficult to see that an arbitrary permutation $\alpha \in \operatorname{Sym}(n)$ can be written as a product of transpositions. This can be done in many different ways, but it turns out that for a given α every possible way
of writing α as a product of transpositions will either require an even number of transpositions or every possible way will require an odd number. This leads to the definition of the sign of α :

$$
\operatorname{sgn}= \begin{cases}+1 & \text { if } \alpha \text { can be written as a product of an even number of transpositions } \\ -1 & \text { otherwise }\end{cases}
$$

For example,

$$
\begin{aligned}
\operatorname{sgn}((1234)) & =\operatorname{sgn}((12)(23)(34))=-1 \\
\operatorname{sgn}((123)(456)) & =\operatorname{sgn}((12)(23)(45)(56)=1
\end{aligned}
$$

Definition 5.10. Let t be a λ-tableau. We define $e_{t} \in M_{F}^{\lambda}$ as follows.

- Let C_{t} be the collection of permutations that preserve (as a set) every column of t.
- Write $C_{t}=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, and define $e_{t}=\operatorname{sgn}\left(\alpha_{1}\right) \alpha \cdot\{t\}+\operatorname{sgn}\left(\alpha_{2}\right) \alpha \cdot\{t\}+\cdots+\operatorname{sgn}\left(\alpha_{k}\right) \alpha \cdot\{t\}$.

Let's see a couple of examples of constructing e_{t}.

Example 5.11. Let $t=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 5 | 2 | . | . Then $C_{t}=\{1,(15),(23),(15)(23)\}$. Thus,

$$
\begin{aligned}
& e_{t}=1 \cdot\{t\}+\operatorname{sgn}((15)) \cdot(15) \cdot\{t\}+\operatorname{sgn}((23)) \cdot(23) \cdot\{t\}+\operatorname{sgn}((15)(23)) \cdot(15)(23) \cdot\{t\} \\
& =1 \cdot\{t\}-(15) \cdot\{t\}-(23) \cdot\{t\}+(15)(23) \cdot\{t\}
\end{aligned}
$$

Example 5.12. Let $t=$| 5 | 2 | 3 | 4. . Then $C_{t}=\{1,(15)\}$. Thus, |
| :--- | :--- | :--- | :--- |
| 1 | | | |

$$
\begin{aligned}
e_{t} & =1 \cdot\{t\}+\operatorname{sgn}((15)) \cdot(15) \cdot\{t\} \\
& =1 \cdot\{t\}-(15) \cdot\{t\} \\
& =1 \cdot \frac{\frac{5234}{1}-(15) \cdot \frac{5234}{\frac{1}{5}}}{} \\
& =\frac{\frac{52}{1}}{\frac{5}{1}}-\frac{234}{\underline{5}}
\end{aligned}
$$

Recall that $M_{F}^{(4,1)} \cong \operatorname{perm}_{F}^{5}$ via $\overline{* * * *} \mapsto \bar{e}_{i}$. Using this identification, we have that $e_{t}=$
$\bar{e}_{1}-\bar{e}_{5}=f_{1}$, which in turn leads to an identification of $\operatorname{span}\left(\left\{e_{t} \mid t\right.\right.$ is a $(4,1)$-tableau $\left.\}\right)$ with $\operatorname{std}_{F}^{5}$. (See Fact 4.12 and the example preceding it.) We elaborate a bit on this below in Remark 5.14.

Definition 5.13. Let λ be a partition. The Specht module S_{F}^{λ} is defined to be

$$
S_{F}^{\lambda}=\operatorname{span}\left(\left\{e_{t} \mid t \text { is a } \lambda \text {-tableau }\right\}\right) \leq M_{F}^{\lambda}
$$

Remark 5.14. We indicated in Example 5.7 how $M_{F}^{(n-1,1)} \cong \operatorname{perm}_{F}^{n}$ via $\overline{\frac{* * * *}{i}} \mapsto \bar{e}_{i}$. Building off of this, we find that

$$
\begin{aligned}
S_{F}^{(n-1,1)} & =\operatorname{span}\left(\left\{e_{t} \mid t \text { is a }(n-1,1) \text {-tableau }\right\}\right) \\
& =\operatorname{span}\left(\left\{\left.\frac{\pi * * *}{\frac{* * * *}{i}} \right\rvert\, 1 \leq i, j \leq n\right\}\right) \\
& \cong \operatorname{span}\left(\left\{\bar{e}_{i}-\bar{e}_{j} \mid 1 \leq i, j \leq n\right\}\right) \\
& \cong \operatorname{std}_{F}^{n} .
\end{aligned}
$$

Theorem 5.15. Assume F has characteristic 0 (e.g. F is \mathbb{R}, \mathbb{C}, or \mathbb{Q}). Then
(1) S_{F}^{λ} is irreducible for every λ, and
(2) every irreducible $\operatorname{Sym}(n)$-module is isomorphic to S_{F}^{λ} for some λ.

So, in the case that F has characteristic 0 , this shows how to describe all of the irreducible modules. And that is where the story ends for this seminar.

- The End -

References

[Cha11] Charlotte Chan. Representation theory of symmetric groups. Available online at http://math.mit.edu/ ~charchan/RepresentationTheorySymmetricGroupsNotes.pdf, 2011.
[Jam78] G. D. James. The representation theory of the symmetric groups, volume 682 of Lecture Notes in Mathematics. Springer, Berlin, 1978.
[Wil14] Mark Wildon. Representation theory of the symmetric group. Available online at http://www.ma.rhul.ac. uk/~uvah099/Maths/Sym/SymGroup2014.pdf, 2014.

