
REPRESENTATION THEORY OF THE SYMMETRIC GROUP

2021 ANTC SEMINAR SERIES NOTES

ANDY YU AND JOSHUA WISCONS

These notes are simply a record of what was covered in the six-part seminar on the Representation
Theory of the Symmetric Group in Spring 2021 at California State University, Sacramento. The
seminar was meant to be casual, example driven, perhaps fun, and accessible to anyone having
completed a first course in linear algebra. Many articles, books, and sets of lecture notes exist on
this topic; the development of this seminar benefited in particular from a book by James [Jam78]
and seminar notes by Chan [Cha11] and Wildon [Wil14].
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1. Permutations and Sym(n)

Definition 1.1. A permutation of a set X (think X = {1, . . . , 7} or X = {a, b, c}) is a function
σ : X → X that is both one-to-one and onto. We might also say σ permutes X, σ acts on X, or
σ rearranges X.

Let us now look at an example for the set X = {a, b, c}. Define σ(a) = b, σ(b) = c, σ(c) = a and
α(a) = b, α(b) = c, α(c) = c. Note that σ is a permutation while α is not.

Definition 1.2. The collection of all permutations of a set X is denoted Sym(X) or SX where
Sym(X) is called the symmetric group on X.

This gives rise to the fact that if α, β ∈ Sym(X) then α ◦ β ∈ Sym(X) and α−1 ∈ Sym(X). Also
note that the identity function, denoted 1, is also in Sym(X).

2. Representing Permutations

Consider α, β ∈ Sym(5) where Sym(5) is the symmetric group on {1, 2, 3, 4, 5} defined by α(1) =
3, α(2) = 4, α(3) = 1, α(4) = 5, α(5) = 2 and β(1) = 1, β(2) = 4, β(3) = 5, β(4) = 2, β(5) = 3.

2.1. Diagrammatic Representation. Let us draw some diagrams for α and β.

And now let us draw the diagram for α ◦ β.

This material is based upon work supported by the National Science Foundation under grant No. DMS-1954127.
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2.2. Cycle Notation. Again let us define α(1) = 3, α(2) = 4, α(3) = 1, α(4) = 5, α(5) = 2 and
β(1) = 1, β(2) = 4, β(3) = 5, β(4) = 2, β(5) = 3. Now let’s follow elements in definition of α, so
α : 1 → 3 → 1, which written in cycle notation is (13) and α : 2 → 4 → 5 → 2, again written in
cycle notation is (245) yields α = (13)(245). Note that each individual cycle is read from left to
right. Similarly β : 2→ 4→ 2 and β : 3→ 5→ 3, so β = (24)(35).

Let’s now look at an example and find the cycle notation for γ:

Lastly, let’s return to α and β from before and compose them using cycle notation to find

αβ = (13)(245)(24)(35) = (1325).

Note that in cycle notation we follow each element through the cycles from right to left (but within
the cycles we read from left to right). For example following the element 1 we see that 1 ← 1 by
(35), 1 ← 1 by (24), 1 ← 1 by (245), and 3 ← 1 by (13). Thus, αβ(1) = 3. Similarly we see that
5← 3 by (35), 5← 5 by (24), 2← 5 by (245), and 2← 2 by (13), so αβ(3) = 2.
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3. Representations

Let’s keep looking at α = (13)(245), β = (24)(35) ∈ Sym(5). This time we’ll reresent them with
5× 5 matrices, so consider the following vectors:

e1 =


1
0
0
0
0

 , e2 =


0
1
0
0
0

 , e3 =


0
0
1
0
0

 , e4 =


0
0
0
1
0

 , e5 =


0
0
0
0
1

 .
Note that α acts on {1, 2, 3, 4, 5} via α(1) = 3, α(2) = 4, α(3) = 1, α(4) = 5, α(5) = 2. This gives

rise to an “obvious” action on {e1, e2, e3, e4, e5} via α(e1) = e3, α(e2) = e4, α(e3) = e1, α(e4) = e5,
α(e5) = e2. In other words, α(ei) = eα(i). Now, let’s try to find a matrix Mα that acts the same on
{e1, . . . , e5} as α does. That is we want

Mα · e1 = e3

Mα · e2 = e4

Mα · e3 = e1

Mα · e4 = e5

Mα · e5 = e2
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Thus we find

Mα · e1 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




1
0
0
0
0

 = Col1(Mα) = e3.

Similarly,

Mα · e2 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




1
0
0
0
0

 = Col2(Mα) = e4

Continuing on, we find that

Mα =


0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

 .
Similarly, for β = (24)(35), we find that

Mβ =


1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 .
This gives a function: ρ : Sym(n) → GLn (where GLn is the set of invertible n × n matrices)

defined by ρ(α) = Mα where Mα is the matrix such that Coli(Mα) = eα(i).

Definition 3.1. The function ρ : Sym(n) → GLn defined above is called the natural (linear)
representation of Sym(n).

Let us now look at an example where we write down all permutations in Sym(3) using cycle
notation and the natural representation.

Example 3.2. Using cycle notation we have

Sym(3) = {1, (12), (23), (13), (123), (132)}.
And using the natural representation, we have

M1 =

1 0 0
0 1 0
0 0 1


M(12) =

0 1 0
1 0 0
0 0 1


M(123) =

0 0 1
1 0 0
0 1 0


M(23) =

1 0 0
0 0 1
0 1 0


M(132) =

0 1 0
0 0 1
1 0 0


M(13) =

0 0 1
0 1 0
1 0 0


Example 3.3. Recall that for α = (13)(245) and β = (24)(35) from before we found that

Mα =


0 0 0 0 0
0 0 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 1 0

 Mβ =


1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 .
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Computing the product MαMβ, we find that

MαMβ =


0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0

 = M(1325) = Mαβ.

Fact 3.4. For all α, β ∈ Sym(n),

(1) M1 = In
(2) Mα ·Mβ = Mαβ

(3) (Mα)−1 = Mα−1

Also, Mα · ei ⇐⇒ α(i) = j.

Modeling the properties above, we arrive at the definition of a representation.

Definition 3.5. A function ρ : Sym(n)→ GLm is called a (linear) representation of Sym(n) if

(1) ρ(1) = Im
(2) ρ(αβ) = ρ(α)ρ(β)
(3) ρ(α−1) = ρ(α)−1

The number m is called the degree or dimension of the representation. It can be checked that
the second condition implies the first and third, so only the second is needed.

3.1. Main Questions (take 1).

Questions.

I. Are there representations of Sym(n) other than the natural one? If so what are they?
II. Are there representations of Sym(n) of degree m with m < n? If so how small of m is

possible?
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4. Modules

Let’s start by recalling the definition of a representation and the special case of the natural
representation.

Definition (See Definition 3.5). A function ρ : Sym(n)→ GLm(F ) is called a (linear) represen-
tation of Sym(n) if ∀α, β ∈ Sym(n), ρ(αβ) = ρ(α)ρ(β). We call m the degree or dimension of
the representation.

This definition of a representation only gives one of the three axioms from Definition 3.5, but it
can be shown that this one axiom implies the other two.

Example (See Definition 3.1). The natural representation ρ : Sym(n)→ GLm(Z) where ρ(α) =
Mα is a representation of degree n.

Example 4.1. The following is a 2-dimensional representation of Sym(3):

1 7→
[
1 0
0 1

]
(12) 7→

[
0 1
1 0

] (123) 7→
[
−1 −1
1 0

]
(23) 7→

[
1 0
−1 −1

] (132) 7→
[

0 1
−1 −1

]
(13) 7→

[
−1 −1
0 1

]
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To verify it’s a representation there are various things to check. For example, if α = (123) and
β = (12), then we need to verify that

ρ(α)ρ(β) =

[
−1 −1
1 0

] [
0 1
1 0

]
=

[
−1 −1
0 1

]
= ρ((13)) = ρ(αβ).

Also, there is the obvious question: where did this representation come from?

Let ρ : Sym(n) → GLm(R) be any representation. Then α 7→ ρ(α) where ρ(α) is a matrix, and
it may be helpful to just think of α→Mα.

Matrices can be understood by how they multiply vectors. Let us recall some properties. If
A,B ∈ Matm×m and v, w ∈ Rm and c ∈ R, then

• A(v + w) = Av +Aw;
• AC(v)) = C(Av);
• A(B · v) = (AB) · v.

Thus,

• ρ(α)(v + w) = ρ(α)v + ρ(α)w;
• ρ(α)(c · v) = cρ(α)v;
• ρ(α)(ρ(β)v) = (ρ(α)ρ(β))v = ρ(αβ)v.

Definition 4.2. A Sym(n)-module is a vector space V together with a multiplication α ·v defined
for all α ∈ Sym(n) and all v ∈ V such that α · v ∈ V and

(1) α · (v + w) = α · v + α · w
(2) α · (cv) = c(α · v)
(3) α · (β · v) = αβ · v
(4) 1 · v = v

Remark 4.3. A Sym(n)-module as has addition, scalar multiplication, and Sym(n)-multiplication,
and when working with a Sym(n)-module, we may think of each α ∈ Sym(n) as a matrix.

Fact 4.4. Sym(n)-representations correspond to Sym(n)-modules.

To see why this is true, first consider a representation ρ : Sym(n)→ GLm(F ). Then we produce
a module V = Fm where we define α · v = ρ(α)v. Conversely, we can also produce a representation
from a module, as we’ll see in the next example.

Definition 4.5. We define the natural permutation module permn
F to be the Sym(n)-module

corresponding to the natural representation ρ : Sym(n)→ GLn(F ).

Example 4.6. Lets look at perm3
R as a Sym(3)-module. We want to understand the multiplication

α · v. Let v ∈ perm3
R. Then

v =

ab
c

 =

a0
0

+

0
b
0

+

0
0
c

 = ae1 + be2 + ce3.

Consider α = (132). Remember from before, we determined the natural representation of Sym(3)
and found that Mαe1 = e3, Mαe2 = e1, and Mαe3 = e2. So using our module notation, this means
that α · e1 = e3, α · e2 = e1, and α · e3 = e2. Thus,

α · v = α(ae1 + be2 + ce3)

= aα · e1 + bα · e2 + cα · e3
= ae3 + be1 + ce2

= be1 + ce2 + ae3,
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so

(132) ·

ab
c

 =

bc
a

 .
Notice how α acts on v by permuting the rows of v. Similarly,

(12) · v = (12) · (ae1 + be2 + ce3 =

= ae2 + be1 + ce3

= be1 + ae2 + ce3,

so

(12) ·

ab
c

 =

ba
c

 .
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Remark 4.7. If v is in perm3
R, then we may write it in terms of the standard basis for R3 as

v = ae1 + be2 + ce3,

and as we saw above,

α · v = α(ae1 + be2 + ce3) = a(α · e1) + b(α · e2) + c(α · e3).
This illustrates that to understand the multiplication α · v for any Sym(n)-module, we only need
to understand how α acts on the basis of the module. In other words, if b1, . . . , bd is a basis for a
Sym(n)-module, then as soon as we know α · b1, . . . , α · bd, we are able to determine α · v for all v
in the module.

4.1. Submodules.

Definition 4.8. Let V be a Sym(n)-module, and let W ⊆ V . We call W a submodule of V if
it is a subspace of V that is closed under Sym(n)-multiplication, i.e. if for all α ∈ Sym(n) and all
w ∈ W , we have α · w ∈ W. This means that W is a Sym(n)-module with respect to the same
operations used for V .

Example 4.9 (submodules of perm3
R). Let V = perm3

R. Let’s look for submodules of V .

(1) Let’s first consider

W1 = span(e1, e2) = {ae1 + be2 | a, b ∈ R} =
{[

a
b
0

]
| a, b ∈ R

}
.

Let w ∈ W1, so w = ae1 + be2 =
[
a
b
0

]
for some a, b ∈ R. To check if W1 is a submodule,

we need to check if α · w ∈W1 for all α ∈ Sym(3). Observe that

• (12) · w = (12) · (ae1 + be2) = ae2 + be1 =
[
b
a
0

]
∈W1;

• (123) · w = (123) · (ae1 + be2) = ae2 + be3 =
[
0
a
b

]
/∈W1.

Since (123) · w /∈W1, W1 is not a submodule.
(2) Next, let’s consider

W2 = span(e1 + e2 + e3) = {ae1 + ae2 + ae3 | a ∈ R} =
{[

a
a
a

]
| a ∈ R

}
.

Let w ∈W2, so w = ae1 + ae2 + ae3 for some a ∈ R. This time observe that
• (123) · w = (123) · (ae1 + ae2 + ae3) = ae2 + ae3 + ae1 = w ∈W2.
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In fact, α·w = w for all α ∈ Sym(3). This shows thatW2 is a submodule. The multiplication
α · w is very boring, so this submodule is called the trivial module, denoted triv3

R.
(3) Finally we consider

W3 = {ae1 + be2 + ce3 | a+ b+ c = 0} =
{[

a
b
c

]
| a+ b+ c = 0

}
.

Let w ∈W3, and write w = ae1 + be2 + ce3 where a+ b+ c = 0. Observe that

• (123) · w = (123) · (ae1 + be2 + ce3) = ae2 + be3 + ce1 =
[
c
a
b

]
,

so as the sum of the coefficients of (123) · w is still zero (i.e. c + a + b = 0), we see that
(123) · w ∈ W3. And it is not hard to verify that α · w ∈ W3 for all α ∈ Sym(3), so W3 is
also a submodule. This submodule is called the standard module, denoted std3

R.

We may define stdnF and trivnF (for any n and F ) in an analogous way to std3
R and triv3

R above,
and it’s easy to show that both are submodules of permn

F .

Definition 4.10. The standard and trivial modules are the submodules of permn
F defined by

stdnF = {a1e1 + · · ·+ anen | a1 + · · ·+ an = 0};
trivnF = {ae1 + · · ·+ aen} = span(e1 + · · ·+ en).

We know that dim(permn
F ) = n and dim(trivnF ) = 1, but what about dim(stdnF )? At this point,

we only know that dim(stdnF ) < n. And what might be a basis for stdnF ?

Example 4.11. Let’s find a basis for std3
R. Consider the vectors f1 and f2 defined as

f1 = e1 − e3 =

 1
0
−1

 and f2 = e2 − e3 =

 0
1
−1

 .
Note that f1, f2 ∈ std3

R. If we can show f1 and f2 are linearly independent, then we’ll know they
form a basis since dim(std3

R) ≤ 2. Suppose af1 + bf2 = 0. We want to show a, b = 0. Observe that

af1 + bf2 = 0 ⇐⇒ a(e1 − e3) + b(e2 − e3) = 0

⇐⇒ ae1 − ae3 + be2 + be3 = 0

⇐⇒ ae1 + be2 + (−a− b)e3 = 0.

Since e1, e2, e3 are linearly independent, we conclude that a = b = 0. Hence f1 and f2 are linearly
independent so form a basis for std3

R.

This example generalizes to give the following fact.

Fact 4.12. A basis for the standard module stdnF is {f1, . . . , fn−1} where f i = ei−en. In particular,
dim(stdnF ) = n− 1.

Remark 4.13. There are many other “nice” bases for stdnF ; here’s one:

{e1 − e2, e2 − e3 . . . , en−1 − en}.
Remember that every Sym(n)-module corresponds to a representation of Sym(n). In Exam-

ple 3.2, we saw the representation of Sym(3) corresponding to the natural module. Also, in Exam-
ple 4.1, we saw the representation of Sym(3) corresponding to the standard module, but we didn’t
know it then. Let’s try to see how to build the representation from Example 4.1.

Example 4.14. Let B = {f1, f2} be the basis for std3
R described above. With respect to B,

f1 = [ 10 ] and f2 = [ 01 ]. Now, observe that

• (12) · f1 = f1 = (12) · (e1 − e3) = e2 − e3 = f2 =

[
0
1

]
;
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• (12) · f2 = (12) · (e2 − e3) = e1 − e3 = f1 =

[
1
0

]
.

Thus, the matrix for (12) with respect to the basis B is

[
0 1
1 0

]
. Also, we find that

• (123)·f1 = (123)·(e1−e3) = e2−e1 = e2−e3+e3−e1 = (e2−e3)−(e1−e3) = f2−f1 =

[
−1
1

]
;

• (123) · f2 = (123) · (e2 − e3) = e3 − e1 = −f1 =

[
−1
0

]
.

Thus, the matrix for (123) is

[
−1 −1
1 0

]
. The remaining elements of Sym(3) can be built from (12)

and (123), which can be used to find the remaining matrices for this representation. For example,

(23) = (12)(123) 7→
[
0 1
1 0

]
·
[
−1 −1
1 0

]
=

[
1 0
−1 −1

]
Computing the remaining matrices, we find the exact representation given in Example 4.1.

4.2. Main Questions (take 2). We are trying to find representations of Sym(n), which we saw
is equivalent to trying to find Sym(n)-modules. Here’s the catalog of so far:

• permn
F = span(e1, . . . , en), which is n-dimensional;

• stdnF = span(e1 − en, . . . , en−1 − en), which is n− 1-dimensional;
• trivnF = span(e1 + · · ·+ en), which is 1-dimensional.

Questions.

I. Are there other submodules of permn
F ? Are there submodules of stdnF , other than stdnF and

{0}?
II. Are there other modules (that may not be submodules of permn

F )?

4.3. Irreducibility. In our search for modules, we’ve been looking specifically at submodules of
permn

F . There is the question of if there are any submodules we haven’t yet found and the related
question of if stdnF has any “interesting” submodules at all (other that itself and the zero module
{0}, consisting of just the zero vector). The answer to both questions turn out to be (usually) no!

Definition 4.15. Let V be a Sym(n)-module. We say V is irreducible if the only submodules of
V are V (itself) and {0} (the zero module).
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Remark 4.16. Irreducible modules have no “interesting” submodules—think of them as primes.
They are the “building blocks” of all modules, so in our quest to find modules, we should focus on
finding the irreducible ones.

The next proposition shows that the answer to the second part of Question I. above is “no” in the
case when our scalars are from F = R. In fact, the same argument shows that the answer is “no”
anytime the so-called characteristic of F is not a divisor of n. However, when the characteristic of
F does divide n (e.g. when F = Z/pZ for p a prime divisor of n), then trivnF ≤ stdnR, so stdnR is not
irreducible in this case.

Proposition 4.17. The module stdnR is irreducible

Proof. Let V = permn
R, S = stdnR, and T = trivnR . As before, we set f i = ei − en. Recall that

S ={v ∈ V | sum of coefficients is 0 } = span(f1, . . . , fn−1)

T ={v ∈ V | all coefficients are equal } = span(e1 + · · ·+ en).
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Claim 1. S ∩ T = {0̄}.

Proof of Claim. Let v ∈ T . This implies v = ae1 + · · ·+aen for some a ∈ R. Thus, if v is also in S,
then n · a = 0, which implies a = 0. (Here is where we are using that the characteristic of R does
not divide n.) And, if a = 0, then v = 0̄, so we see that v ∈ T ∩ S implies v = 0̄. ♦

Now let W be a submodule of S. We aim to show W = S or W = {0̄}. Set B1 = span(f1). The
next claim highlights an important property of B1.

Claim 2. v ∈ B1 ⇐⇒ (1n) · v = −v.

Proof of Claim. Suppose v ∈ B1. Then v = c(e1 − en) for some c ∈ R, so

(1n) · v = (1n) · (ce1 − cen) = cen − ce1 = −v.

Conversely, assume (1n) · v = −v for an arbitrary v ∈ S. Writing, v = a1e1 + · · ·+ anen, we have,

−(a1e1 + a2e2 + · · ·+ anen) = (1n) · (a1e1 + a2e2 + · · ·+ anen) = a1en + a2e2 + · · ·+ ane1,

so comparing coefficients, we find that −a1 = an and −ai = ai for all 1 < i < n. This shows
v = a1e1 − a1en ∈ B1. ♦

We now consider two cases: B1 ⊆W and B1 6⊆W .

Claim 3. If B1 ⊆W , then W = S.

Proof of Claim. As W is a submodule, we have α ·w ∈W for all α ∈ Sym(n) and all w ∈W . Thus,

B1 ⊆W =⇒ f1 ∈W
=⇒ f1, (12) · f1, (13) · f2, . . . , (1n− 1) · f1 ∈W
=⇒ f1, f2, f3, . . . , fn−1 ⊆W
=⇒ span(f1, f2, f3, . . . , fn−1) ⊆W.

Since span(f1, f2, f3, . . . , fn−1) = S, we find that S ⊆W ⊆ S, so W = S. ♦

Claim 4. If B1 6⊆W , then W = {0̄}.

Proof of Claim. Since B1 is 1-dimensional, B1 6⊆ W implies B1 ∩W = {0̄}. We show that this
implies that (1n) · w = w for all w ∈W . Let u = w − (1n) · w. We aim to show u = 0̄. Observe,

(1n) · u = (1n) · w − (1n)(1n) · w = (1n) · w − w = −u,

which shows u ∈ B1. Since W is a submodule, u ∈ W , so as B1 ∩W = {0̄}, u = 0̄. This shows
that (1n) · w = w for all w ∈W .

Define Bi = span(f i). The argument in the previous claim adapts to show that if any Bi ⊆ W ,
then W = S. Thus, in the case we are considering, Bi 6⊆ W for all 1 ≤ i ≤ n − 1. Moreover, the
argument we just gave then shows (in) ·w = w for all w ∈W . Writing w = a1e1 + · · ·+ anen, and
using that (in) · w = w for all 1 ≤ i ≤ n− 1, we find that w = ae1 + · · ·+ aen ∈ T . Thus W ⊆ T .
Since W is a submodule of S, we have W ⊆ S ∩ T , which is equal to {0̄} by the first claim. ♦

�
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5. The irreducible modules of Sym(n)

We now know that to find other modules we should look outside of permn
F . Let’s start by

revisiting how we built permn
F .

Step 1: Sym(n) permutes {1, 2, . . . , n}
Step 2: Consider a basis for Fn labeled e1, . . . , en. Then α · ei = eα(i).
Step 3: permn

F = span(e1, . . . , en) with this Sym(n)-multiplication.

So one idea would be to revisit Step 1 and find other sets that Sym(n) permutes. For example,
we could consider the set of ordered pairs: {(i, j) | 1 ≤ i, j ≤ n} with a “coordinatewise” action:
α · (i, j) = (α(i), α(j)). For example, (153) · (5, 1) = (3, 5) and (153) · (1, 7) = (5, 7). We could also

consider unordered pairs: { i j | 1 ≤ i 6= j ≤ n}, where we are using the notation i j in place
of {i, j}. The action is again coordinatewise. Notice that here we have

(12) · 1 2 = 2 1 = 1 2

since the order does not matter. These lead to new modules.

Example 5.1. Consider Sym(5). There are
(
5
2

)
= 10 unordered pairs { i j |1 ≤ i 6= j ≤ 5}. Let

V = R10, and label a basis by the 10 unordered pairs. When doing this, we simply write i j

in place of e
i j

, so here we are thinking of i j as a vector. Thus, the elements of V can be

written in terms of this basis as

v = a12 1 2 + a13 1 3 + a14 1 4 + a15 1 5 + a23 2 3

+ a24 2 4 + a25 2 5 + a34 3 4 + a35 3 5 + a45 4 5

for some aij ∈ R. One concrete element of V is

w = 7 · 1 2 − 3 · 3 4 + π · 4 5 .

With the Sym(n)-multiplication defined above, V is a module of dimension 10.

Sixth Meeting Notes 5/07/2021

Remark 5.2. If Sym(n) permutes the elements of some set X = {x1, . . . , xd}, then we may make
F d (for F any field) a module as follows:

• label a basis for F d as {ex1 , . . . , exd};
• define a Sym(n)-multiplication via α · exi = eα·xi .

5.1. Tableaux and tabloids. We now develop a general setting that captures all previous exam-
ples of Sym(n)-modules. We first introduce (integer) partitions, Young tableaux, and Young
tabloids.

Definition 5.3. Let n be a positive integer. A partition of n is a non-increasing sequence of
positive integers that sum to n.

For example, there are 7 partitions of 5. They are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1),
and (1, 1, 1, 1, 1).

We now introduce, by example, λ-tableaux and λ-tabloids.

Example 5.4. Let λ = (3, 2). Here are three examples of λ-tableaux:

t1 = 1 3 5
2 4

t2 = 2 3 5
1 4

t3 = 5 3 1
4 2

.
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Notice how the numbers in λ = (3, 2) indicate the number of boxes in each row of a λ-tableau. All
numbers from 1 to n (in this case n = 5) are then used once when filling in the boxes.

Continuing on, each λ-tableau t has a corresponding λ-tabloid denoted {t}:

{t1} = 1 3 5
2 4

{t2} = 2 3 5
1 4

{t3} = 5 3 1
4 2

.

The notation for λ-tabloid is meant to highlight that the order of the numbers in a row of a λ-
tabloid does not matter; whereas, it does matter for tableau. However, the column order matters
for both. Thus, in this example, we have t1 6= t3, {t1} = {t3}, and {t1} 6= {t2}.

Remark 5.5. If λ is a partition of n, then Sym(n) permutes the λ-tabloids by “acting coordinate-
wise.” For example, if α = (14)(23), then

α · 5 3 1
4 2

= 5 2 4
1 3

.

Definition 5.6. Let λ be a partition of n, and let d be the number of λ-tabloids. Label a basis for
F d by the λ-tabloids. Define the module

Mλ
F = span({t1}, . . . , {td}) = F d

with coordinatewise Sym(n)-multiplication.

Example 5.7. Consider λ = (4, 1). There are 5 λ-tabloids:

2 3 4 5
1

1 3 4 5
2

1 2 4 5
3

1 2 3 5
4

1 2 3 4
5

,

so M
(4,1)
F is a 5-dimensional vector space. Notice how each tabloid above is completely determined

by the one number in the second row, which gives a correspondence

∗ ∗ ∗ ∗
i

←→ ei.

Then, thinking about how the Sym(n)-multiplication is defined, we find that M
(4,1)
F is really just

perm5
F in disguise, i.e. M

(4,1)
F

∼= perm5
F as modules.

Example 5.8. Consider λ = (3, 2). There are 10 λ-tabloids:

3 4 5
1 2

2 4 5
1 3

2 3 5
1 4

· · · ∗ ∗ ∗
i j

· · · 1 2 3
4 5

.

As before, our tabloids only have two rows, so each one is completely determined by the second

row. Thus, in this case, we find that M
(3,2)
F is really the same as the 10-dimensional module we

constructed in Example 5.1.

5.2. Specht modules and the main theorem. So, the Mλ
F construction yields many modules,

capturing familiar ones from before, but how can we use this to find irreducible modules? The
answer is to look inside of Mλ

F for an irreducible module in a way analogous to how we found stdnF
inside of permn

F .

Remark 5.9. Recall that permutations of the form (ij) are called transpositions. It is not diffi-
cult to see that an arbitrary permutation α ∈ Sym(n) can be written as a product of transpositions.
This can be done in many different ways, but it turns out that for a given α every possible way
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of writing α as a product of transpositions will either require an even number of transpositions or
every possible way will require an odd number. This leads to the definition of the sign of α:

sgn =

{
+1 if α can be written as a product of an even number of transpositions

−1 otherwise.

For example,

sgn((1234)) = sgn((12)(23)(34)) = −1

sgn((123)(456)) = sgn((12)(23)(45)(56) = 1

Definition 5.10. Let t be a λ-tableau. We define et ∈Mλ
F as follows.

• Let Ct be the collection of permutations that preserve (as a set) every column of t.
• Write Ct = {α1, . . . , αk}, and define et = sgn(α1)α ·{t}+sgn(α2)α ·{t}+ · · ·+sgn(αk)α ·{t}.

Let’s see a couple of examples of constructing et.

Example 5.11. Let t = 1 3 4
5 2

. Then Ct = {1, (15), (23), (15)(23)}. Thus,

et = 1 · {t}+ sgn((15)) · (15) · {t}+ sgn((23)) · (23) · {t}+ sgn((15)(23)) · (15)(23) · {t}
= 1 · {t} − (15) · {t} − (23) · {t}+ (15)(23) · {t}

= 1 · 1 3 4
5 2

− (15) · 1 3 4
5 2

− (23) · 1 3 4
5 2

+ (15)(23) · 1 3 4
5 2

= 1 3 4
5 2

− 5 3 4
1 2

− 1 2 4
5 3

+ 5 2 4
1 3

Example 5.12. Let t = 5 2 3 4
1

. Then Ct = {1, (15)}. Thus,

et = 1 · {t}+ sgn((15)) · (15) · {t}
= 1 · {t} − (15) · {t}

= 1 · 5 2 3 4
1

− (15) · 5 2 3 4
1

= 5 2 3 4
1

− 1 2 3 4
5

Recall that M
(4,1)
F

∼= perm5
F via ∗ ∗ ∗ ∗

i
7→ ei. Using this identification, we have that et =

e1 − e5 = f1, which in turn leads to an identification of span({et | t is a (4, 1)-tableau}) with std5
F .

(See Fact 4.12 and the example preceding it.) We elaborate a bit on this below in Remark 5.14.

Definition 5.13. Let λ be a partition. The Specht module SλF is defined to be

SλF = span ({et | t is a λ-tableau}) ≤Mλ
F .
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Remark 5.14. We indicated in Example 5.7 how M
(n−1,1)
F

∼= permn
F via ∗ ∗ ∗ ∗

i
7→ ei. Building

off of this, we find that

S
(n−1,1)
F = span ({et | t is a (n− 1, 1)-tableau})

= span

 ∗ ∗ ∗ ∗
i

− ∗ ∗ ∗ ∗
j

∣∣∣∣∣∣ 1 ≤ i, j ≤ n




∼= span ({ei − ej | 1 ≤ i, j ≤ n})
∼= stdnF .

Theorem 5.15. Assume F has characteristic 0 (e.g. F is R, C, or Q). Then

(1) SλF is irreducible for every λ, and

(2) every irreducible Sym(n)-module is isomorphic to SλF for some λ.

So, in the case that F has characteristic 0, this shows how to describe all of the irreducible
modules. And that is where the story ends for this seminar.

— The End —
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