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Chapter 1

Introduction

1.1 What is Abstract Algebra?

Abstract algebra is the subject area of mathematics that studies algebraic structures, such
as groups, rings, fields, modules, vector spaces, and algebras. This course is an introduc-
tion to abstract algebra. We will spend most of our time studying groups. Group theory
is the study of symmetry, and is one of the most beautiful areas in all of mathematics.
It arises in puzzles, visual arts, music, nature, the physical and life sciences, computer
science, cryptography, and of course, throughout mathematics. This course will cover the
basic concepts of group theory, and a special effort will be made to emphasize the intu-
ition behind the concepts and motivate the subject matter. In the last few weeks of the
semester, we will also introduce rings and fields.

1.2 An Inquiry-Based Approach

In a typical course, math or otherwise, you sit and listen to a lecture. (Hopefully) These
lectures are polished and well-delivered. You may have often been lured into believing
that the instructor has opened up your head and is pouring knowledge into it. I absolutely
love lecturing and I do believe there is value in it, but I also believe that in reality most
students do not learn by simply listening. You must be active in the learning process. I’m
sure each of you have said to yourselves, “Hmmm, I understood this concept when the
professor was going over it, but now that I am alone, I am lost.” In order to promote a
more active participation in your learning, we will incorporate ideas from an educational
philosophy called inquiry-based learning (IBL).

Loosely speaking, IBL is a student-centered method of teaching mathematics that en-
gages students in sense-making activities. Students are given tasks requiring them to
solve problems, conjecture, experiment, explore, create, communicate. Rather than show-
ing facts or a clear, smooth path to a solution, the instructor guides and mentors students
via well-crafted problems through an adventure in mathematical discovery. Effective IBL
courses encourage deep engagement in rich mathematical activities and provide oppor-
tunities to collaborate with peers (either through class presentations or group-oriented
work).
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CHAPTER 1. INTRODUCTION

Perhaps this is sufficiently vague, but I believe that there are two essential elements to
IBL. Students should as much as possible be responsible for:

1. Guiding the acquisition of knowledge, and

2. Validating the ideas presented. That is, students should not be looking to the in-
structor as the sole authority.

For additional information, check out my blog post, What the Heck is IBL?
Much of the course will be devoted to students proving theorems on the board and a

significant portion of your grade will be determined by how much mathematics you pro-
duce. I use the word “produce” because I believe that the best way to learn mathematics
is by doing mathematics. Someone cannot master a musical instrument or a martial art
by simply watching, and in a similar fashion, you cannot master mathematics by simply
watching; you must do mathematics!

Furthermore, it is important to understand that proving theorems is difficult and takes
time. You should not expect to complete a single proof in 10 minutes. Sometimes, you
might have to stare at the statement for an hour before even understanding how to get
started.

In this course, everyone will be required to

• read and interact with course notes on your own;

• write up quality proofs to assigned problems;

• present proofs on the board to the rest of the class;

• participate in discussions centered around a student’s presented proof;

• call upon your own prodigious mental faculties to respond in flexible, thoughtful,
and creative ways to problems that may seem unfamiliar on first glance.

As the semester progresses, it should become clear to you what the expectations are. This
will be new to many of you and there may be some growing pains associated with it.

Lastly, it is highly important to respect learning and to respect other people’s ideas.
Whether you disagree or agree, please praise and encourage your fellow classmates. Use
ideas from others as a starting point rather than something to be judgmental about.
Judgement is not the same as being judgmental. Helpfulness, encouragement, and com-
passion are highly valued.

1.3 Rules of the Game

You should not look to resources outside the context of this course for help. That is, you
should not be consulting the Internet, other texts, other faculty, or students outside of our
course. On the other hand, you may use each other, the course notes, me, and your own
intuition. In this class, earnest failure outweighs counterfeit success; you need not feel
pressure to hunt for solutions outside your own creative and intellectual reserves. For
more details, check out the Syllabus.
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CHAPTER 1. INTRODUCTION

1.4 Structure of the Notes

As you read the notes, you will be required to digest the material in a meaningful way. It
is your responsibility to read and understand new definitions and their related concepts.
However, you will be supported in this sometimes difficult endeavor. In addition, you
will be asked to complete problems aimed at solidifying your understanding of the mate-
rial. Most importantly, you will be asked to make conjectures, produce counterexamples,
and prove theorems.

The items labeled as Definition and Example are meant to be read and digested.
However, the items labeled as Problem, Theorem, and Corollary require action on your
part. Items labeled as Problem are sort of a mixed bag. Some Problems are computational
in nature and aimed at improving your understanding of a particular concept while oth-
ers ask you to provide a counterexample for a statement if it is false or to provide a proof
if the statement is true. Items with the Theorem and Corollary designation are mathe-
matical facts and the intention is for you to produce a valid proof of the given statement.
The main difference between a Theorem and a Corollary is that corollaries are typically
statements that follow quickly from a previous theorem. In general, you should expect
corollaries to have very short proofs. However, that doesn’t mean that you can’t produce
a more lengthy yet valid proof of a corollary.

It is important to point out that there are very few examples in the notes. This is
intentional. One of the goals of the items labeled as Problem is for you to produce the
examples.

Lastly, there are many situations where you will want to refer to an earlier definition,
problem, theorem, or corollary. In this case, you should reference the statement by num-
ber. For example, you might write something like, “By Theorem 5.19, we see that. . . .”

1.5 Some Minimal Guidance

Especially in the opening sections, it won’t be clear what facts from your prior experience
in mathematics we are “allowed” to use. Unfortunately, addressing this issue is difficult
and is something we will sort out along the way. However, in general, here are some
minimal guidelines to keep in mind.

First, there are times when we will need to do some basic algebraic manipulations.
You should feel free to do this whenever the need arises. But you should show sufficient
work along the way. You do not need to write down justifications for basic algebraic ma-
nipulations (e.g., adding 1 to both sides of an equation, adding and subtracting the same
amount on the same side of an equation, adding like terms, factoring, basic simplifica-
tion, etc.).

On the other hand, you do need to make explicit justification of the logical steps in a
proof. When necessary, you should cite a previous definition, theorem, etc. by number.

Unlike the experience many of you had writing proofs in geometry, our proofs will be
written in complete sentences. You should break sections of a proof into paragraphs and
use proper grammar. There are some pedantic conventions for doing this that I will point
out along the way. Initially, this will be an issue that most students will struggle with,
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CHAPTER 1. INTRODUCTION

but after a few weeks everyone will get the hang of it.
Ideally, you should rewrite the statements of theorems before you start the proof.

Moreover, for your sake and mine, you should label the statement with the appropriate
number. I will expect you to indicate where the proof begins by writing “Proof.” at the
beginning. Also, we will conclude our proofs with the standard “proof box” (i.e., � or�),
which is typically right-justified.

Lastly, every time you write a proof, you need to make sure that you are making your
assumptions crystal clear. Sometimes there will be some implicit assumptions that we can
omit, but at least in the beginning, you should get in the habit of stating your assumptions
up front. Typically, these statements will start off “Assume. . . ” or “Let. . . ”.

This should get you started. We will discuss more as the semester progresses. Now, go
have fun and kick some butt!
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Chapter 2

An Introduction to Groups

One of the major topics of this course is groups. The area of mathematics that is con-
cerned with groups is called group theory. Loosely speaking, group theory is the study
of symmetry, and in my opinion is one of the most beautiful areas in all of mathematics.
It arises in puzzles, visual arts, music, nature, the physical and life sciences, computer
science, cryptography, and of course, throughout mathematics.

2.1 A First Example

Let’s begin our study by developing some intuition about what groups actually are. To
get started, we will explore the game SpinpossibleTM, which used to be available for iOS
and Android devices∗. The game is played on a 3× 3 board of scrambled tiles numbered
1 to 9, each of which may be right-side-up or up-side-down. The objective of the game is
to return the board to the standard configuration where tiles are arranged in numerical
order and right-side-up. This is accomplished by a sequence of “spins”, where a spin
consists of rotating an m × n subrectangle by 180◦. The goal is to minimize the number
of spins used. The following figure depicts a scrambled board on the left and the solved
board on the right. The sequence of arrows is used to denote some sequence of spins that
transforms the scrambled board into the solved board.

?−→ ·· · ?−→

Let’s play with an example. Suppose we start with the following scrambled board.

∗If you’d like to play the game, try going here: https://www.kongregate.com/games/spinpossible.
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CHAPTER 2. AN INTRODUCTION TO GROUPS

2 9 1

4 6 5

7 3 8

The underlines on the numbers are meant to help us tell whether a tile is right-side-up
or up-side-down. Our goal is to use a sequence of spins to unscramble the board. Before
we get started, let’s agree on some conventions. When we refer to tile n, we mean the
actual tile that is labeled by the number n regardless of its position and orientation on
the board. On the other hand, position n will refer to the position on the board that tile
n is supposed to be in when the board has been unscrambled. For example, in the board
above, tile 1 is in position 3 and tile 7 happens to be in position 7.

It turns out that there are multiple ways to unscramble this board, but I have one par-
ticular sequence in mind. First, let’s spin the rectangle determined by the two rightmost
columns. Here’s what we get. I’ve shaded the subrectangle that we are spinning.

2 9 1

4 6 5

7 3 8
→

2 8 3

4 5 6

7 1 9

Okay, now let’s spin the middle column.
2 8 3

4 5 6

7 1 9
→

2 1 3

4 5 6

7 8 9

Hopefully, you can see that we are really close to unscrambling the board. All we need to
do is spin the rectangle determined by the tiles in positions 1 and 2.

2 1 3

4 5 6

7 8 9
→

1 2 3

4 5 6

7 8 9

Putting all of our moves together, here is what we have.

2 9 1

4 6 5

7 3 8
→

2 8 3

4 5 6

7 1 9
→

2 1 3

4 5 6

7 8 9
→

1 2 3

4 5 6

7 8 9

In this case, we were able to solve the scrambled board in 3 moves. It’s not immediately
obvious, but it turns out that there is no way to unscramble the board in fewer than 3
spins. However, there is at least one other solution that involves exactly 3 spins.
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CHAPTER 2. AN INTRODUCTION TO GROUPS

Problem 2.1. How many scrambled 3 × 3 Spinpossible boards are there? To answer this
question, you will need to rely on some counting principles such as factorials. In this
context, we want to include the solved board as one of the scrambled boards—it’s just not
very scrambled.

Problem 2.2. How many spins are there?

It’s useful to have some notation. Let sij (with i ≤ j) denote the spin that rotates the
subrectangle that has position i in the upper-left corner and position j in the lower-right
corner. As an example, the sequence of spins that we used above to unscramble our initial
scrambled board is

s29→ s28→ s12.

As you noticed in Problem 2.2, we can also rotate a single tile. Every spin of the form sii
is called a toggle. For example, s44 toggles the tile in position 4.

We can think of each spin as a function and since we are doing spins on top of spins,
every sequence of spins corresponds to a composition of functions. We will follow the
standard convention of function composition that says the function on the right goes first.
In this case, our previous sequence of spins becomes s12 ◦ s28 ◦ s29, which we abbreviate
as s12s28s29. This might take some getting used to, but just remember that it is just like
function notation—stuff on the right goes first. We will refer to expressions like s12s28s29
as words in the alphabet {sij | i ≤ j}. Our words will always consist of a finite number of
spins.

Every word consisting of spins corresponds to a function that takes a scrambled board
as input and returns a scrambled board. We say that the words “act on” the scrambled
boards. For each word, there is an associated net action. For example, the word s12s23s12
corresponds to swapping the positions but not orientation of the tiles in positions 1 and
3. You should take the time to verify this for yourself. Sometimes it is difficult to describe
what the net action associated to a word is, but there is always some corresponding net
action nonetheless.

It is worth pointing out that s12s23s12 is not itself a spin. However, sometimes a com-
position of spins will yield a spin. For example, the net action of s12s11s12 is toggling the
tile in position 2. That is, s12s11s12 and s22 are two different words that correspond to the
same net action. In this case, we write s12s11s12 = s22, where the equality is referring to
the net action as opposed to the words themselves. The previous example illustrates that
multiple words may represent the same net action.

Problem 2.3. Find a sequence of 3 spins that is different from the one we described earlier
that unscrambles the following board. Write your answer as a word consisting of spins.

2 9 1

4 6 5

7 3 8

Problem 2.4. What is the net action that corresponds to the word s23s12s23? What can
you conclude about s23s12s23 compared to s12s23s12?

10



CHAPTER 2. AN INTRODUCTION TO GROUPS

We can also use exponents to abbreviate. For example, s223 is the same as s23s23 (which
in this case is the net action of doing nothing) and (s12s23)2 is the same as s12s23s12s23.

Problem 2.5. It turns out that there is an even simpler word (i.e., a shorter word) that
yields the same net action as (s12s23)2. Can you find one?

Define Spin3×3 to be the collection of net actions that we can obtain from words con-
sisting of spins. We say that the set of spins generates Spin3×3 and we refer to the set of
spins as a generating set for Spin3×3.

Problem 2.6. Suppose sx1
sx2
· · ·sxn and sy1

sy2
· · ·sym are both words consisting of spins.

Then the corresponding net actions, say u and v, respectively, are elements of Spin3×3.
Prove that the composition of the actions u and v is an element of Spin3×3.

The previous problem tells us that the composition of two net actions from Spin3×3
results in another net action in Spin3×3. Formally, we say that Spin3×3 is closed under
composition.

It is clear that we can construct an infinite number of words consisting of spins, but
since there are a finite number of ways to rearrange the positions and orientations of the
tiles of the 3 × 3 board, there are only a finite number of net actions arising from these
words. That is, Spin3×3 is a finite set of functions.

Problem 2.7. Verify that Spin3×3 contains an identity function, i.e., a function whose net
action is “do nothing.” What happens if we compose a net action from Spin3×3 with the
identity?

A natural question to ask is whether every possible scrambled Spinpossible board can
be unscrambled using only spins. In other words, is Spin3×3 sufficient to unscramble
every scrambled board? It turns out that the answer is yes.

Problem 2.8. Verify that Spin3×3 is sufficient to unscramble every scrambled board by de-
scribing an algorithm that will always unscramble a scrambled board. It does not matter
whether your algorithm is efficient. That is, we don’t care how many steps it takes to un-
scramble the board as long as it works in a finite number of steps. Using your algorithm,
what is the maximum number of spins required to unscramble any scrambled board?

In a 2011 paper, Alex Sutherland and Andrew Sutherland (a father and son team)
present a number of interesting results about Spinpossible and list a few open problems.
You can find the paper at http://arxiv.org/abs/1110.6645. As a side note, Alex is one
of the developers of the game and his father, Andrew, is a mathematics professor at MIT.
Using a brute-force computer algorithm, the Sutherlands verified that every scrambled
3 × 3 Spinpossible board can be solved in at most 9 moves. However, a human readable
mathematical proof of this fact remains elusive. By the way, mathematics is chock full of
open problems and you can often get to the frontier of what is currently known without
too much trouble. Mathematicians are in the business of solving open problems.

Instead of unscrambling boards, we can act on the solved board with an action from
Spin3×3 to obtain a scrambled board. Problem 2.8 tells us that we can use Spin3×3 to get
from the solved board to any scrambled board. In fact, starting with the solved board
makes it clear that there is a one-to-one correspondence between net actions and scram-
bled boards.

11
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CHAPTER 2. AN INTRODUCTION TO GROUPS

Problem 2.9. What is the size of Spin3×3? That is, how many net actions are in Spin3×3?

Let’s make a couple more observations. First, every spin is reversible. That is, every
spin has an inverse. In the case of Spinpossible, we can just apply the same spin again
to undo it. For example, s212 is the same as doing nothing. This means that the inverse
of s12, denoted s−1

12 , is s12 itself. Symbolically, we write s−1
12 = s12. Remember that we are

exploring the game Spinpossible—it won’t always be the case that repeating an action
will reverse the action.

In the same vein, every sequence of spins is reversible. For example, if we apply s12s23
(i.e., do s23 first followed by s12), we could undo the net action by applying s23s12 because

(s12s23)−1 = s−1
23s
−1
12 = s23s12

since s−1
23 = s23 and s−1

12 = s12. Notice that the first equality is an instantiation of the “socks
and shoes theorem”, which states that if f and g are functions with compatible domain
and codomain, then

(f ◦ g)−1 = g−1 ◦ f −1.

The upshot is that the net action that corresponds to a word consisting of spins can be
reversed by applying “socks and shoes” and is itself an action.

Problem 2.10. Imagine we started with the solved board and then you scrambled the
board according to some word consisting of spins. Let’s call this word w. How could you
obtain the solved board from the scrambled board determined by w? How is this related
to w−1?

There is one detail we have been sweeping under the rug. Notice that every time we
wrote down a word consisting of two or more spins, we didn’t bother to group pairs of
adjacent spins using parentheses. Recall that the composition of functions with compat-
ible domains and codomains is associative (see Theorem 2.29). That is, if f , g, and h are
functions with compatible domains and codomains, then

(f ◦ g) ◦ h = f ◦ (g ◦ h).

Since composition of spins is really just function composition, composition of spins is
also associative. And since the spins generate Spin3×3, the composition of net actions
from Spin3×3 is associative, as well.

Problem 2.11. Does the order in which you apply spins matter? Does it always matter?
Let’s be as specific as possible. If the order in which we apply two spins does not matter,
then we say that the spins commute. However, if the order does matter, then the spins
do not commute. When will two spins commute? When will they not commute? Provide
some specific examples.

In the previous problem, you discovered that the composition of two spins may or
may not commute. Since the spins generate Spin3×3, the composition of two net actions
may or may not commute. We say that Spin3×3 is not commutative.

Let’s collect our key observations about Spin3×3.

12



CHAPTER 2. AN INTRODUCTION TO GROUPS

(1) Generating Set: The set of spins generates Spin3×3. That is, every net action from
Spin3×3 corresponds to a word consisting of spins.†

(2) Closure: The composition of any two net actions from Spin3×3 results in a net action
from Spin3×3.

(3) Associative: The composition of net actions from Spin3×3 is associative.

(4) Identity: There is an identity in Spin3×3 whose corresponding net action is “do
nothing”.

(5) Inverses: Every net action from Spin3×3 has an inverse net action in Spin3×3. Com-
posing a net action and its inverse results in the identity.

(6) The composition of two net actions from Spin3×3 may or may not commute.

It turns out that Spin3×3 is an example of a group. Loosely speaking, a group is a
set together with a method for combining two elements together that satisfies conditions
(2), (3), (4), and (5) above. More formally, a group is a nonempty set together with an
associative binary operation such that the set contains an identity element and every
element in the set has an inverse that is also in the set. As we shall see, groups can have a
variety of generating sets, possibly of different sizes. Also, some groups are commutative
and some groups are not.

Before closing out this section, let’s tackle a few more interesting problems concerning
Spinpossible. We say that a generating set S for a group is a minimal generating set if
S \ {x} is no longer a generating set for the group for all x ∈ S.

Problem 2.12. Determine whether the set of spins is a minimal generating set for Spin3×3.

It’s not too difficult to prove—but we will omit the details—that we can generate
Spin3×3 with the following subset of 9 spins:

T = {s11, s12, s23, s36, s56, s45, s47, s78, s89}.

That is, every net action in Spin3×3 corresponds to a word consisting of the spins from T .
Try to take a moment to convince yourself that this is at least plausible.

Problem 2.13. For each of the following spins, find a word consisting of spins from the
set T that yields the same net action.

(a) s33

(b) s13

(c) s14

Problem 2.14. Taking for granted that T is a generating set for Spin3×3, determine whether
T is a minimal generating set.
†The case of Spinpossible is a little misleading. Since each spin is its own inverse, we never need to write
words consisting of spins with inverses. However, as we shall see later, there are situations outside the
context of Spinpossible where we will need to utilize inverses of elements from a generating set.
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CHAPTER 2. AN INTRODUCTION TO GROUPS

2.2 Binary Operations

Before beginning our formal study of groups, we need have an understanding of binary
operations. After learning to count as a child, you likely learned how to add, subtract,
multiply, and divide with natural numbers. As long as we avoid division by zero, these
operations are examples of binary operations since we are combining two objects to obtain
a single object. More formally, we have the following definition.

Definition 2.15. A binary operation ∗ on a set A is a function from A × A into A. For
each (a,b) ∈ A ×A, we denote the element ∗(a,b) via a ∗ b. If the context is clear, we may
abbreviate a ∗ b as ab.

Don’t misunderstand the use of ∗ in this context. We are not implying that ∗ is the
ordinary multiplication of real numbers that you are familiar with. We use ∗ to represent
a generic binary operation.

Notice that since the codomain of a binary operation on a set A is A, binary operations
require that we yield an element of Awhen combining two elements of A. In this case, we
say that A is closed under ∗. Binary operations have this closure property by definition.
Also, since binary operations are functions, any attempt to combine two elements from A
should result in a unique element of A. Moreover, since the domain of ∗ is A×A, it must
be the case that ∗ is defined for all pairs of elements from A.

Example 2.16. Here are some examples of binary operations.

(a) The operations of + (addition), − (subtraction), and · (multiplication) are binary
operations on the real numbers. All three are also binary operations on the integers.
However, while + and · are both binary operations on the set of natural numbers,
− is not a binary operation on the natural numbers since 1 − 2 = −1, which is not a
natural number.

(b) The operation of ÷ (division) is not a binary operation on the set of real numbers
because all elements of the form (a,0) are not in the domain R×R since we cannot
divide by 0. Yet, ÷ is a suitable binary operation on R \ {0}.

(c) Let A be a nonempty set and let F be the set of functions from A to A. Then ◦ (func-
tion composition) is a binary operation on F. We utilized this fact when exploring
the game Spinpossible.

(d) Let M2×2(R) be the set of 2 × 2 matrices with real number entries. Then matrix
multiplication is a binary operation on M2×2(R).

Problem 2.17. Let M(R) be the set of matrices (of any size) with real number entries. Is
matrix addition a binary operation on M(R)? How about matrix multiplication? What if
you restrict to square matrices of a fixed size n×n?

Problem 2.18. Let A be a set. Determine whether ∪ (union) and ∩ (intersection) are
binary operations on P (A) (i.e., the power set of A).

14
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Problem 2.19. Consider the closed interval [0,1] and define ∗ on [0,1] via a ∗b = min{a,b}
(i.e., take the minimum of a and b). Determine whether ∗ is a binary operation on [0,1].

Problem 2.20. Consider a square puzzle piece that fits perfectly into a square hole. Let
R4 be the set of net actions consisting of the rotations of the square by an appropriate
amount so that it fits back into the hole. Assume we can tell the corners of the square
apart from each other so that if the square has been rotated and put back in the hole we
can notice the difference. Each net action is called a symmetry of the square.

(a) Describe all of the distinct symmetries in R4. How many distinct symmetries are in
R4?

(b) Is composition of symmetries a binary operation on R4?

The set R4 is called the rotation group for the square. For n ≥ 3, Rn is the rotation
group for the regular n-gon and consists of the rotational symmetries for a regular n-gon.
As we shall see later, every Rn really is a group under composition of symmetries.

Problem 2.21. Consider a puzzle piece like the one in the previous problem, except this
time, let’s assume that the piece and the hole are an equilateral triangle. LetD3 be the full
set of symmetries that allow the triangle to fit back in the hole. In addition to rotations,
we will also allow the triangle to be flipped over—called a reflection.

(a) Describe all of the distinct symmetries in D3. How many distinct symmetries are in
D3?

(b) Is composition of symmetries a binary operation on D3?

Problem 2.22. Repeat the above problem, but do it for a square instead of a triangle. The
corresponding set is called D4.

The sets D3 and D4 are examples of dihedral groups. In general, for n ≥ 3, Dn consists
of the symmetries (rotations and reflections) of a regular n-gon and is called the dihedral
group of order 2n. In this case, the word “order” simply means the number of symmetries
in the set. Do you see whyDn consists of 2n actions? As expected, we will prove that every
Dn really is a group.

Problem 2.23. Consider the set S3 consisting of the net actions that permute the positions
of three coins (without flipping them over) that are sitting side by side in a line. Assume
that you can tell the coins apart.

(a) Write down all distinct net actions in S3 using verbal descriptions. Some of these
will be tricky to describe. How many distinct net actions are in S3?

(b) Is composition of net actions a binary operation on S3?

The set S3 is an example of a symmetric group. In general, Sn is the symmetric group
on n objects and consists of the net actions that rearrange the n objects. Such rearrange-
ments are called permutations. Later we will prove that each Sn is a group under com-
position of permutations.

15
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Problem 2.24. Explain why composition of spins is not a binary operation on the set of
spins in Spin3×3.

Some binary operations have additional properties.

Definition 2.25. Let A be a nonempty set and let ∗ be a binary operation on A.

(a) We say that ∗ is associative if and only if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b,c ∈ A.

(b) We say that ∗ is commutative if and only if a ∗ b = b ∗ a for all a,b ∈ A.

Problem 2.26. Provide an example of each of the following.

(a) A binary operation on a set that is commutative.

(b) A binary operation on a set that is not commutative.

Problem 2.27. Provide an example of a set A and a binary operation ∗ on A such that
(a ∗ b)2 , a2 ∗ b2 for some a,b ∈ A. Under what conditions will (a ∗ b)2 = a2 ∗ b2 for all
a,b ∈ A? Note: The notation x2 is shorthand for x ∗ x.

Problem 2.28. Define the binary operation ∗ on R via a∗b = 1+ab. In this case, ab denotes
the multiplication of the real numbers a and b. Determine whether ∗ is associative on R.

Theorem 2.29. Let A be a nonempty set and let F be the set of functions from A to A.
Then function composition is an associative binary operation on F.

When the set A is finite, we can represent a binary operation on A using a table in
which the elements of the set are listed across the top and down the left side (in the
same order). The entry in the ith row and jth column of the table represents the output
of combining the element that labels the ith row with the element that labels the jth
column (order matters).

Example 2.30. Consider the following table.

∗ a b c

a b c b
b a c b
c c b a

This table represents a binary operation on the set A = {a,b,c}. In this case, a ∗ b = c while
b ∗ a = a. This shows that ∗ is not commutative.

Problem 2.31. Consider the following table that displays the binary operation ∗ on the
set {x,y,z}.

∗ x y z

x x y z
y y x x
z y x x

(a) Determine whether ∗ is commutative.

(b) Determine whether ∗ is associative.

Problem 2.32. What property must the table for a binary operation have in order for the
operation to be commutative?
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2.3 Groups

Without further ado, here is our official definition of a group.

Definition 2.33. A group (G,∗) is a set G together with a binary operation ∗ such that the
following axioms hold.

(0) The set G is closed under ∗.

(1) The operation ∗ is associative.

(2) There is an element e ∈ G such that for all g ∈ G, e ∗ g = g ∗ e = g. We call e the
identity.

(3) Corresponding to each g ∈ G, there is an element g ′ ∈ G such that g ∗ g ′ = g ′ ∗ g = e.
In this case, g ′ is said to be an inverse of g.

The order of G, denoted |G|, is the cardinality of the set G. If |G| is finite, then we say that
G has finite order. Otherwise, we say that G has infinite order.

In the definition of a group, the binary operation ∗ is not required to be commutative.
If ∗ is commutative, then we say thatG is abelian. Commutative groups are called abelian
in honor of the Norwegian mathematician Niels Abel (1802–1829). A few additional
comments are in order.

• Axiom 2 forces G to be nonempty.

• If (G,∗) is a group, then we say that G is a group under ∗.

• We refer to a ∗ b as the product of a and b even if ∗ is not actually multiplication.

• For simplicity, if (G,∗) is a group, we will often refer to G as being the group and
suppress any mention of ∗ whatsoever. In particular, we will often abbreviate a ∗ b
as ab.

• In Theorem 2.41, we shall see that each g ∈ G has a unique inverse. From that point
on, we will denote the inverse of g by g−1.

Problem 2.34. Explain why Axiom 0 is unnecessary.

Problem 2.35. Verify that each of the following is a group under composition of actions
and determine the order. Which of the groups are abelian?

(a) Spin3×3

(b) R4 (see Problem 2.20)

(c) D3 (see Problem 2.21)

(d) D4 (see Problem 2.22)

17



CHAPTER 2. AN INTRODUCTION TO GROUPS

(e) S3 (see Problem 2.23)

Problem 2.36. Determine whether each of the following is a group. If the pair is a group,
determine the order, identify the identity, describe the inverses, and determine whether
the group is abelian. If the pair is not a group, explain why.

(a) (Z,+)

(b) (N,+)

(c) (Z, ·)

(d) (R,+)

(e) (R, ·)

(f) (R \ {0}, ·)

(g) (M2×2(R),+)

(h) (M2×2(R),∗), where ∗ is matrix multiplication.

(i) ({a,b,c},∗), where ∗ is the operation determined by the table in Example 2.30.

(j) ({x,y,z},∗), where ∗ is the operation determined by the table in Problem 2.31.

Notice that in Axiom 2 of Definition 2.33, we said the identity and not an identity.
Implicitly, this implies that the identity is unique.

Theorem 2.37. If G is a group, then there is a unique identity element in G. That is, there
is only one element e ∈ G such that ge = eg = g for all g ∈ G.

Problem 2.38. Provide an example of a group of order 1. Can you find more than one
such group?

Any group of order 1 is called a trivial group. It follows immediately from the defi-
nition of a group that the element of a trivial group must be the identity.

The following theorem is crucial for proving many theorems about groups.

Theorem 2.39 (Cancellation Law). Let G be a group and let g,x,y ∈ G. Then gx = gy if
and only if x = y. Similarly, xg = yg if and only if x = y.‡

Problem 2.40. Show that (R, ·) fails the Cancellation Law confirming the fact that it is not
a group.

Recall that Axiom (3) of Definition 2.33 states that each element of a group has at least
one inverse. The next theorem tells us that each element has exactly one inverse.

Theorem 2.41. If G is a group, then each g ∈ G has a unique inverse.

‡You only need to prove one of these statements as the proof of the other is similar.
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In light of the previous theorem, the unique inverse of g in a group G will be denoted
as g−1.

Theorem 2.42. If G is a group, then for all g,h ∈ G, the equations gx = h and yg = h have
unique solutions for x and y in G.

While proving the previous few theorems, hopefully one of the things you realized is
that you can multiply both sides of a group equation by the same element but that you
have to do it on the same side of each half. That is, since a group may or may not be
abelian, if we multiply one side of an equation on the left by a group element, then we
must multiply the other side of the equation on the left by the same group element.

Despite the fact that a group may or may not be abelian, the next result tells us that if
one product is equal to the identity, then reversing the order yields the same result.

Theorem 2.43. If G is a group and g,h ∈ G such that gh = e, then hg = e.

The upshot of the previous theorem is if we have a “left inverse” then we automatically
have a “right inverse” (and vice versa). The next theorem should not be surprising.

Theorem 2.44. If G is a group, then (g−1)−1 = g for all g ∈ G.

The next theorem is analogous to the “socks and shoes theorem” for composition of
functions.

Theorem 2.45. If G is a group, then (gh)−1 = h−1g−1 for all g,h ∈ G.

Definition 2.46. If G is a group and g ∈ G, then for all n ∈ N, we define:

(a) gn = gg · · ·g︸ ︷︷ ︸
n factors

(b) g−n = g−1g−1 · · ·g−1︸          ︷︷          ︸
n factors

(c) g0 = e

Note that if G is a group under +, then we can reinterpret Definition 2.46 as:

(a) ng = g + g + · · ·+ g︸         ︷︷         ︸
n summands

(b) −ng = −g +−g + · · ·+−g︸               ︷︷               ︸
n summands

(c) 0g = 0

The good news is that the rules of exponents you are familiar with still hold for groups.

Theorem 2.47. If G is a group and g ∈ G, then for all n,m ∈ Z, we have the following:

(a) gngm = gn+m,

(b) (gn)−1 = g−n.

Problem 2.48. Reinterpret Theorem 2.47 if G is a group under addition.
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2.4 Generating Sets

In this section, we explore the concept of a generating set for a group.

Definition 2.49. Let G be a group and let S be a subset of G. A finite product (under the
operation of G) consisting of elements from S or their inverses is called a word in S. That
is, a word in S is of the form

sx1
sx2
· · ·sxn ,

where each sxi is either an element from S or the inverse of an element from S. Each sxi
is called a letter and the set S is called the alphabet. By convention, the identity of G
can be represented by the empty word, which is the word having no letters. The set of
elements of G that can be written as words in S is denoted by 〈S〉 and is called the group
generated by S.

For example, if a,b, and c are elements of a groupG, then ab, c−1acc, and ab−1caa−1bc−1

are words in the set {a,b,c}. It is important to point out that two different words may be
equal to the same element in G. We saw this happen when we studied Spinpossible in
Section 2.1. For example, see Problems 2.3–2.5.

Theorem 2.50. If G is a group under ∗ and S is a subset of G, then 〈S〉 is also a group
under ∗.

Definition 2.51. If G is a group and S is a subset of G such that G = 〈S〉, then S is called
a generating set of G. In other words, S is a generating set of G if every element of G can
be expressed as a word in S. In this case, we say S generates G. A generating set S for G
is a minimal generating set if S \ {x} is no longer a generating set for G for all x ∈ S.

A generating set for a group is analogous to a spanning set for a vector space and a
minimal generating set for a group is analogous to a basis for a vector space.

If we know what the elements of S actually are, then we will list them inside the angle
brackets without the set braces. For example, if S = {a,b,c}, then we will write 〈a,b,c〉
instead of 〈{a,b,c}〉. In the special case when the generating set S consists of a single
element, say g, we have

G = 〈g〉 = {gk | k ∈ Z}

and say that G is a cyclic group. As we shall see, 〈g〉may be finite or infinite.

Example 2.52. In Section 2.1, we discovered that the set of spins is a non-minimal gen-
erating set for Spin3×3 while the set T = {s11, s12, s23, s36, s56, s45, s47, s78, s89} is a minimal
generating set.

Problem 2.53. Consider the rotation group R4 that we introduced in Problem 2.20. Let r
be the element of R4 that rotates the square by 90◦ clockwise.

(a) Describe the action of r−1 on the square and express r−1 as a word using r only.

(b) Prove that R4 = 〈r〉 by writing every element of R4 as a word using r only.

(c) Is {r} a minimal generating set for R4?
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(d) Is R4 a cyclic group?

Problem 2.54. Consider the dihedral group D3 introduced in Problem 2.21. To give us
a common starting point, let’s assume the triangle and hole are positioned so that one of
the tips of the triangle is pointed up. Let r be rotation by 120◦ in the clockwise direction
and let s be the reflection in D3 that fixes the top of the triangle.

(a) Describe the action of r−1 on the triangle and express r−1 as a word using r only.

(b) Describe the action of s−1 on the triangle and express s−1 as a word using s only.

(c) Prove that D3 = 〈r, s〉 by writing every element of D3 as a word in r or s.

(d) Is {r, s} a minimal generating set for D3?

(e) Explain why there is no single generating set for D3 consisting of a single element.
This proves that D3 is not cyclic.

It is important to point out that the fact that {r, s} is a minimal generating set for D3
does not imply that D3 is not a cyclic group. There are examples of cyclic groups that
have minimal generating sets consisting of more than one element (see Problem 2.69).

Problem 2.55. Let’s consider the group D3 again. Let s be the same reflection as in Prob-
lem 2.54 and let s′ be the reflection inD3 that fixes the bottom right corner of the triangle.

(a) Express r as a word in s and s′.

(b) Use part (a) together with Problem 2.54 to prove that 〈s, s′〉 =D3.

Problem 2.56. Consider the dihedral group D4 introduced in Problem 2.22. Let r be
clockwise rotation by 90◦ and let s be the reflection over the vertical midline of the square.

(a) Describe the action of r−1 on the square and express r−1 as a word using r only.

(b) Describe the action of s−1 on the square and express s−1 as a word using s only.

(c) Prove that {r, s} is generating set for D4.

(d) Is {r, s} a minimal generating set for D4?

(e) Find a different generating set for D4.

(f) Is D4 a cyclic group?

Problem 2.57. Consider the symmetric group S3 that was introduced in Problem 2.23.
Let s1 be the action that swaps the positions of the first and second coins and let s2 be the
action that swaps the positions of the second and third coins. Prove that S3 = 〈s1, s2〉.

Problem 2.58. Find a minimal generating set for (Z,+). Is Z a cyclic group under addi-
tion?
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2.5 Group Tables

Recall that we could represent a binary operation on a finite set using a table. Since
groups have binary operations at their core, we can represent a finite group (i.e., a group
with finitely many elements) using a table, called a group table. For example, the group
table for D3 is given below, where we have used {r, s} as the generating set (see Prob-
lem 2.54).

∗ e r r2 s sr sr2

e e r r2 s sr sr2

r r r2 e sr2 s sr
r2 r2 e r sr sr2 s
s s sr sr2 e r r2

sr sr sr2 s r2 e r
sr2 sr2 s sr r r2 e

As a reminder, our convention is that if x appears in row i and y appears in column j,
then row i “times” column j will result in the element determined by xy, where as usual
we follow our right to left convention. That is, xy means we apply y first and then x (as
in function composition).

Given an arbitrary group G, we should probably say, “a group table for G” and not
“the group table for G.” The reason for this is that if we chose a different order of the
elements (e.g., swap rows 1 and 4—which swaps columns 1 and 4, as well), then the table
would look slightly different. Also, if we had chosen a different generating set, then the
names of the elements would look different. Regardless, the table still captures the same
information about the binary operation. Because every possible table for a given group
conveys the same information about the architecture of the group, people may refer to
any table for the group as “the” table. Regardless of the ordering of the other elements in
the group, it is standard practice to list the identity first. That is, we will always put e in
the top row and the leftmost column.

Problem 2.59. For each of the following groups, identify a generating set and then create
the group table.

(a) R4

(b) D4

(c) S3

Problem 2.60. Given the table for a group, how can you identify which elements are
inverses of each other? Does this tell you anything about which element must appear in
every row and column of the group table?

Let’s introduce a couple of new groups.

Problem 2.61. Consider the symmetric group S2 that consists of the net actions that per-
mute the positions of two coins (without flipping them over) that are sitting side by side
in a line. Let s be the action that swaps the positions of the two coins.
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(a) Verify that S2 = 〈s〉. What is the order of S2?

(b) Create the group table for S2.

(c) Is S2 abelian?

Problem 2.62. Consider a rectangle (which may or may not be a square) oriented so that
one side is parallel to the ground. Let h be the symmetry that reflects the rectangle over
the horizontal midline and let v be the symmetry that reflects the rectangle over the ver-
tical midline. Define V4 := 〈v,h〉. This group is called the Klein group (or Vierergruppe,
which is German for “four-group”) after the German mathematician Felix Klein (1849–
1925).

(a) Verify that |V4| = 4 by describing the symmetries in the group.

(b) Create the group table for V4.

(c) Is V4 abelian?

(d) Is V4 cyclic?

Perhaps you noticed when creating the tables above that each element of the group
appeared exactly once in each row and column, respectively. This is true in general for
groups.

Theorem 2.63. If (G,∗) is a finite group, then each element of G appears exactly once in
each row and each column, respectively, in any group table for G.

We can also use tables to define groups. For example, consider the following table on
the set A = {e,a,b,c}.

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Is this a table for a group? First, we see that the binary operation determined by the table
is closed. Second, we see that e is acting as the identity. Since every row and column has
the identity element e appearing, we know that every element has an inverse (do you see
why that follows?). The only thing left to check is associativity. Imagine for a moment
what this entails. It’s messy right?! And this is only for a group of order 4.

Thankfully, we can rely on some prior knowledge to help out with associativity. It
turns out that if you look closely, the group table for V4 looks the “same” as the table
above. What do we mean by “same” here? The names for elements are different (except
for e), but

the product of corresponding elements yields the corresponding result.
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To see what I mean, let’s color both tables with white, red, blue, and green in such a way
that each element corresponds to a unique color. If we choose our colors wisely, it is easy
to see that both tables have the same structure.

◦ e v h vh

e e v h vh
v v e vh h
h h vh e v
vh vh h v e

←→

∗ e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Since we already know that V4 is a group, we know that the binary operation for V4 is
associative. This discussion verifies that (A,∗) is a group.

It is important to point out that if we had not chosen our colors wisely, then perhaps
the colorings of the two tables would not agree. Moreover, if we had made the same color
choices for elements, but then rearranged columns and rows of one table, the colorings
of the two tables would not agree. This doesn’t imply anything. The point is whether we
can get the tables to match.

Problem 2.64. Is it possible to color the group table for R4 so that it matches the coloring
of V4? Explain your answer.

2.6 Cayley Diagrams

In this section, we will introduce visual way of encoding the abstract structure of the
group in terms of a specified generating set. To get started, let’s tinker with an example.

Recall that in Problem 2.1, we discovered that there are a total of 29 ·9! = 185,794,560
possible scrambled 3×3 Spinpossible boards. Now, imagine we wanted to write a solution
manual that would describe how to solve all these boards. There are many possible ways
to construct such a solution manual, but here is one way.

The manual will consist of 185,794,560 pages such that each page lists a unique
scrambling of the 3 × 3 board. Don’t forget that one of these scramblings is the solved
board, which we will make page 1. Also, imagine that the book is arranged in such a
way that it isn’t too difficult to look up a given scrambled board. On each page below the
scrambled board is a table that lists all possible spins. Next to each spin, the table indi-
cates whether doing that particular spin will result in a board that is either closer to being
solved or farther away from being solved. In addition, the page number that corresponds
to the resulting board is listed next to each spin.

In most cases, there will be many spins that take us closer to the solved board. Given
a scrambled board, a solution would consist of following one possible sequence of pages
through the book that takes us from the scrambled board to the solved board. There
could be many such sequences. If we could construct such a solution manual, we would
have an atlas or map for the game Spinpossible.

Note that even if we make a wrong turn (i.e., follow a page that takes us farther away
from the solution), we can still get back on track by following page numbers that take us
closer to the solved board. In fact, we can always flip back to the page we were on before

24



CHAPTER 2. AN INTRODUCTION TO GROUPS

taking a wrong turn. This page will be listed on our “wrong turn page” since doing the
same spin twice has the net effect of doing nothing. If you were to actually do this, the
number of pages we would need to visit would be longer than an optimal solution, but
we’d get to the solved board nonetheless.

Let’s get a little more concrete. Consider the game Spinpossible, except let’s simplify
it a little. Instead of playing on the 3× 3 board, let’s play on a 1× 2 board consisting of a
single row with tiles labeled 1 and 2. The rules of the game are what you would expect;
we are restricted to spins involving just the tiles in positions 1 and 2 of the original board.
A scrambling of the 1× 2 Spinpossible board consists of any rearrangement of the tiles 1
and 2, where either of the tiles can be right-side-up or up-side-down.

Problem 2.65. Let Spin1×2 denote the group of net actions that corresponds to composi-
tions of allowable spins on the 1× 2 Spinpossible board.

(a) How many scrambled boards are there for the 1×2 Spinpossible game? Write them
all down. Don’t forget to include the solved board.

(b) What is the order of Spin1×2?

(c) Verify that Spin1×2 = 〈s11, s22, s12〉 by writing every element as a word in s11, s22, or
s12.

(d) Is {s11, s22, s12} a minimal generating set for Spin1×2?

Let’s try to make a map for Spin1×2, but instead of writing a solution manual, we will
draw a diagram of the group. The first thing we’ll do is draw each of the scramblings
that we found in the previous problem. It doesn’t matter how we arrange all of these
drawings, as long as there is some space between them. Now, for each of our 8 scrambled
boards, figure out what happens when we do each of our 3 allowable spins. For each of
these spins, we’ll draw an arrow from the scrambled board under consideration to the
resulting board. Don’t worry about whether doing each of these spins is a good idea or
not. In this case, each of our scrambled boards will have 3 arrows heading out towards 3
distinct boards. Do you see why?

In order for us to keep straight what each arrow represents, let’s color our arrows, so
that doing a particular type of spin is always the same color. For example, we could color
the arrows that toggle the tile in the first position as green. Recall that doing the same
spin twice has the net effect of doing nothing, so let’s just make all of our arrows point in
both directions.

To make sure you are following along, consider the following scrambled board.

1 2

This board is one of our 8 possible scrambled 1× 2 boards. We have three possible spins
we can do to this board: toggle position 1, toggle position 2, or spin the whole board.
Each of these spins has a corresponding two-way arrow that takes us to three different
scrambled boards. Figure 2.1 provides a visual representation of what we just discussed.
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1 2

2 1

1 21 2

Figure 2.1

Note that I could have drawn the four scrambled boards in Figure 2.1 anywhere I wanted
to, but I have a particular layout in mind. Also, notice we have three different colored
arrows. In this case, a green arrow corresponds to toggling the tile in position 1 (s11),
a blue arrow corresponds to toggling position 2 (s22), and a red arrow corresponds to
spinning the whole board (s12).

If we include the rest of the scrambled boards and all possible spins, we obtain Fig-
ure 2.2. Note that I’ve chosen a nice layout for the figure, but it’s really the connections
between the various boards that are important.

1 2 1 2

2 1

2 1

1 21 2

2 1

2 1

Figure 2.2

Ultimately, we want a diagram that conveys information about the structure of the
group, so instead of labeling the vertices of the diagram for Spin1×2 in Figure 2.2 with
scrambled boards, we will label the vertices with the elements of the group in a way that
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respects the configuration of arrows. But in order to do this, we need to make a choice
about how to start labeling. A natural choice to make is to label the solved board with
the identity e. Then each scrambled board should be labeled by the group element that
corresponds to the net action that takes us from the solved board to that scrambled board.

One way to do this is to label each vertex with the word that corresponds to a path
of arrows that leads to the vertex from the vertex labeled by the identity e. Don’t forget
that we apply our composition of actions from right to left. This means that following a
sequence of arrows out of the vertex labeled by e will get recorded as a word written right
to left. That is, the first arrow out of e corresponds to the rightmost letter in the word.

For example, consider the following scrambled board.

2 1

Looking at Figure 2.2, we see that one way to get to this board from the solved board is to
follow a blue arrow and then a red arrow. This corresponds to the word s12s22. However,
it also corresponds to the word s22s12s22s11 even though this is not an optimal solution.
So, we can label the board in question with either s11s22 or s22s12s22s11 and there are other
choices, as well.

Problem 2.66. Using Figure 2.2, find three distinct words in s11, s22, or s12 that correspond
to the following scrambled board.

1 2

If we continue labeling the vertices of the directed graph in Figure 2.2, then one pos-
sible labeling is given in Figure 2.3. Each word tells you how to reach the corresponding
scrambled board from the solved board. The directed graph in Figure 2.3 is called the
Cayley diagram for Spin1×2 using {s11, s22, s12} as a generating set. It is important to point
out that it will not always be the case that the arrows are two-way arrows. This happened
to be the case here because each of our generators is its own inverse.

Problem 2.67. Consider the Cayley diagram for Spin1×2 in Figure 2.3.

(a) Removing all the red arrows corresponds to forbidding the spin that rotates the full
1×2 board. Can we obtain all of the scrambled boards from the solved board using
only blue and green arrows? What does this tell you about {s11, s22}?

(b) What if we remove the blue arrows? What does this tell you about {s11, s12}?

(c) What if we remove the green arrows? What does this tell you about {s22, s12}?

Definition 2.68. SupposeG is a group and S is a generating set ofG. The Cayley diagram
for G with generating set S is a colored directed graph constructed as follows:

(a) The vertices correspond to elements of G.

(b) Each generator s ∈ S is assigned a color, say cs.
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e s22

s12s22

s22s12s22

s11s22s11

s22s12

s12

Figure 2.3. Cayley diagram for Spin1×2 with generating set {s11, s22, s12}.

(c) For g ∈ G and s ∈ S, there is a directed edge from g to sg with color cs.

Note that following the arrow from g to sg with color cs corresponds to applying the
action of s to g. Moreover, following the arrow backwards from sg to g corresponds to
applying s−1 to sg. If a generator is its own inverse (like the spins in Spin1×2), then the
arrows corresponding to that generator are two-way arrows.

Cayley diagrams are named after their inventor Arthur Cayley, a nineteenth century
British mathematician. We’ll see his name pop up a couple more times in the course.

Before asking you to construct some Cayley diagrams, let’s play with another example.
In the next problem you will encounter a Cayley diagram where all the edges are one-way
arrows.

Problem 2.69. Let R6 denote the group of rotational symmetries of a regular hexagon
and let r be rotation by 60◦ clockwise. It’s not too hard to see that R6 = 〈r〉 and |R6| = 6.
The Cayley diagram for R6 with generating set {r} is given in Figure 2.4.

(a) Is R6 cyclic?

(b) Is R6 abelian?

(c) Write r−1 as a word in r.

(d) Can you find a shorter word to describe r8?

(e) Does r2 generate the group?

(f) Does r5 generate the group?

Now, let’s build a few Cayley diagrams to further our intuition.
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r2

re

r5

r4 r3

Figure 2.4. Cayley diagram for R6 with generating set {r}.

Problem 2.70. Construct a Cayley diagram for each of the following groups using the
specified generating set.

(a) S2 with generating set {s} (see Problem 2.61)

(b) R4 with generating set {r} (see Problem 2.20)

(c) V4 with generating set {v,h} (see Problem 2.62)

(d) D3 with generating set {r, s} (see Problem 2.21)

(e) D3 with generating set {s, s′} (see Problem 2.55)

(f) S3 with generating set {s1, s2} (see Problem 2.23)

(g) D4 with generating set {r, s} (see Problem 2.22)

Not only are Cayley diagrams visually appealing, but they provide a map for the group
in question. That is, they provide a method for navigating the group. Following se-
quences of arrows tells us how to achieve a net action. However, each Cayley diagram
very much depends on the set of generators that are chosen to generate the group. If we
change the generating set, we may end up with a very different looking Cayley diagram.
For example, compare the Cayley diagrams for D3 that you constructed in parts (d) and
(e) of Problem 2.70.

Before closing out this section, let’s tackle a few more problems.

Problem 2.71. Consider the group (Z,+).

(a) Construct a portion of the Cayley diagram for (Z,+) with generating set {1}.

(b) Construct a portion of the Cayley diagram for (Z,+) with generating set {−1}. How
does this diagram compare to the one in part (a)?

(c) It turns out that Z = 〈2,3〉. Construct a portion of the Cayley diagram for (Z,+) with
generating set {2,3}.
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Problem 2.72. Assume G is a group. Suppose that S and S ′ are two different sets that
generate G. If you draw the Cayley diagram for G using S and then draw the Cayley
diagram for G using S ′, what features of the two graphs are the same and which are
potentially different?

Problem 2.73. Consider the diagrams given in Figures 2.5 and 2.6. Explain why neither
of these diagrams could possibly be the Cayley diagram for a group.

a b

c

d

e f

Figure 2.5

a b c d

efgh

Figure 2.6

While thinking about the previous problem, you likely conjectured the next couple
theorems.

Theorem 2.74. If G is a group with generating set S, then for every g ∈ G and s ∈ S, there
is exactly one arrow with color cs pointing from s−1g to g and exactly one arrow with color
cs pointing from g to sg.

Theorem 2.75. If G is a group with generating set S, then the Cayley diagram for G with
generating set S is connected. That is, for every pair of vertices g and h, there is a path of
forward or backward arrows connecting g and h.§

Consider the Cayley diagram forD3 with generating set {r, s} that is given in Figure 2.7.
Notice that we labeled the lower right corner of the Cayley diagram with the word r2s.
This means that we first followed a blue arrow out of e and then two red arrows. However,
we could also get to this vertex by first doing a red arrow out of e followed by a blue arrow.
So, we could also have labeled this vertex with the word sr. The upshot is that r2s = sr.
These types of group equations are called relations.

§Hint: First consider the case when either g or h is the identity e.
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e

rr2

s

rs r2s

Figure 2.7. Cayley diagram for D3 with generating set {r, s}.

We discovered this relation by starting at e and then traveling a sequence of arrows
to get to the vertex in the lower right corner. However, notice that following a blue and
then two red arrows is always the same as following a red arrow and then a blue arrow
regardless of which vertex we start at. That is, the local relation r2s = sr starting at e holds
globally across the entire Cayley diagram.

Cayley diagrams for groups will always have this uniform symmetry. That is, any local
patterns in the diagram appear globally throughout the diagram.

Problem 2.76. Let G be a group with generating set S and consider the corresponding
Cayley diagram. Suppose

sx1
sx2
· · ·sxn = sy1

sy2
· · ·sym

is a relation in G, where each sxi and syj is either an element from S or the inverse of an
element from S. Explain what it means for this relation to hold globally across the entire
Cayley diagram for G.

You’ve likely noticed the following theorem while tinkering with examples.

Theorem 2.77. Suppose G is a finite group with generating set S and consider the corre-
sponding Cayley diagram. For s ∈ S, if we follow a sequence of (forward) arrows of color
cs out of e, we eventually end up back at e after a finite number of steps.

Problem 2.78. Suppose {g1, . . . , gn} is a generating set for a group G.

(a) Explain why {g−1
1 , . . . , g−1

n } is also a generating set for G.

(b) How does the Cayley diagram for G with generating set {g1, . . . , gn} compare to the
Cayley diagram with generating set {g−1

1 , . . . , g−1
n }?

We close this section with two problems that ask you to think about the structure of
Cayley diagrams for cyclic groups and abelian groups.

Problem 2.79. Suppose G is a cyclic group.
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(a) If G is finite, what conclusions can you make about Cayley diagrams for G?

(b) If G is infinite, what conclusions can you make about Cayley diagrams for G?

Problem 2.80. Suppose G is an abelian group with generating set S and consider the
corresponding Cayley diagram.

(a) If s, t ∈ S, then what relationship must be true about the corresponding arrows?

(b) Is the converse of your claim in part (a) true? That is, if every pair of arrows in the
Cayley diagram for G has the property you stated above, will the group be abelian?
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Subgroups and Isomorphisms

For the next two sections, it would be useful to have all of the Cayley diagrams we’ve
encountered in one place for reference. So, before continuing, gather up the following
Cayley diagrams:

• Spin1×2. There are 3 of these. I drew one for you in Section 2.6 and you discovered
two more in Problem 2.67.

• S2. See Problem 2.70(a).

• R4. See Problem 2.70(b).

• V4. See Problem 2.70(c).

• D3. There are two of these. See Problems 2.70(d) and 2.70(e).

• S3. See Problem 2.70(f).

• D4. See Problem 2.70(g).

3.1 Subgroups

Problem 3.1. Recall the definition of “subset.” What do you think “subgroup” means?
Try to come up with a potential definition. Try not to read any further before doing this.

Problem 3.2. Examine your Cayley diagrams for D4 (with generating set {r, s}) and R4
(with generating set {r}) and make some observations. How are they similar and how are
they different? Can you reconcile the similarities and differences by thinking about the
actions of each group?

Hopefully, one of the things you noticed in the previous problem is that we can “see”
R4 inside of D4. You may have used different colors in each case and maybe even labeled
the vertices with different words, but the overall structure of R4 is there nonetheless.
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Problem 3.3. If you ignore the labels on the vertices and just pay attention to the config-
uration of arrows, it appears that there are two copies of the Cayley diagram for R4 in the
Cayley diagram for D4. Isolate these two copies by ignoring the edges that correspond to
the generator s. Now, paying close attention to the words that label the vertices from the
original Cayley diagram for D4, are either of these groups in their own right?

Recall that the identity must be one of the elements included in a group. If this didn’t
occur to you when doing the previous problem, you might want to go back and rethink
your answer. Just like in the previous problem, we can often “see” smaller groups living
inside larger groups. These smaller groups are called subgroups.

Definition 3.4. Let G be a group and let H be a subset of G. Then H is a subgroup of
G, written H ≤ G, provided that H is a group in its own right under the binary operation
inherited from G.

The phrase “under the binary operation inherited from G” means that to combine two
elements in H , we should treat the elements as if they were in G and perform the binary
operation of G.

In light of Problem 3.3, we would write R4 ≤ D4. The second sub-diagram of the
Cayley diagram for D4 (using {r, s} as the generating set) that resembles R4 cannot be a
subgroup because it does not contain the identity. However, since it looks a lot like R4,
we call it a clone of R4. For convenience, we also say that a subgroup is a clone of itself.

Problem 3.5. Let G be a group and let H ⊆ G. If we wanted to determine whether H is a
subgroup of G, can we skip checking any of the axioms? Which axioms must we verify?

Let’s make the observations of the previous problem a bit more formal.

Theorem 3.6 (Two Step Subgroup Test). SupposeG is a group andH is a nonempty subset
of G. ThenH ≤ G if and only if (i) for all h ∈H , h−1 ∈H , as well, and (ii)H is closed under
the binary operation of G.

Notice that one of the hypotheses of Theorem 3.6 is that H be nonempty. This means
that if we want to prove that a certain subset H is a subgroup of a group G, then one of
the things we must do is verify that H is in fact nonempty. In light of this, the “Two Step
Subgroup Test” should probably be called the “Three Step Subgroup Test”.

As Theorems 3.7 and 3.9 will illustrate, there are a couple of subgroups that every
group contains.

Theorem 3.7. If G is a group, then {e} ≤ G.

The subgroup {e} is referred to as the trivial subgroup. All other subgroups are called
nontrivial.

Problem 3.8. Let G be a group. What does the Cayley diagram for the subgroup {e} look
like? What are you using as your generating set?

Earlier, we referred to subgroups as being “smaller.” However, our definition does not
imply that this has to be the case.
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Theorem 3.9. If G is a group, then G ≤ G.

We refer to subgroups that are not equal to the whole group as proper subgroups. If
H is a proper subgroup, then we may write H < G.

Recall Theorem 2.50 that states that if G is a group under ∗ and S is a subset of G, then
〈S〉 is also a group under ∗. Let’s take this a step further.

Theorem 3.10. If G is a group and S ⊆ G, then 〈S〉 ≤ G. In particular, 〈S〉 is the smallest
subgroup of G containing S.

The subgroup 〈S〉 is called the subgroup generated by S. In the special case when S
equals a single element, say S = {g}, then

〈g〉 = {gk | k ∈ Z},

which is called the (cyclic) subgroup generated by g. Every subgroup can be written in
the “generated by” form. That is, ifH is a subgroup of a group G, then there always exists
a subset S of G such that 〈S〉 =H . In particular, 〈H〉 =H for H ≤ G, and as a special case,
we have 〈G〉 = G.

Problem 3.11. Consider Spin1×2 with generating set {s11, s22, s12}.

(a) Find the Cayley diagram for the subgroup 〈s11〉 inside the Cayley diagram for Spin1×2.
Identify all of the clones of 〈s11〉 inside Spin1×2.

(b) Find the Cayley diagram for the subgroup 〈s11, s22〉 inside the Cayley diagram of
Spin1×2. Identify the clones of 〈s11, s22〉 inside Spin1×2.

One of the benefits of Cayley diagrams is that they are useful for visualizing sub-
groups. However, recall that if we change our set of generators, we might get a very
different looking Cayley diagram. The upshot of this is that we may be able to see a sub-
group in one Cayley diagram for a given group, but not be able to see it in the Cayley
diagram arising from a different generating set.

Problem 3.12. We currently have two different Cayley diagrams forD3 (see Problems 2.21
and 2.55).

(a) Can you find the Cayley diagram for the trivial subgroup 〈e〉 in either Cayley dia-
gram for D3? Identify all of the clones of 〈e〉 in both Cayley diagrams for D3.

(b) Can you find the Cayley diagram for the subgroup 〈r〉 = R3 in either Cayley diagram
for D3? If possible, identify all of the clones of R3 in the Cayley diagrams for D3.

(c) Can you find the Cayley diagrams for 〈s〉 and 〈s′〉 in either Cayley diagram for D3?
If possible, identify all of the clones of 〈s〉 and 〈s′〉 in the Cayley diagrams for D3.

Problem 3.13. Consider D4. Let h be the reflection of the square over the horizontal
midline and let v be the reflection over the vertical midline. Which of the following are
subgroups of D4? In each case, justify your answer. If a subset is a subgroup, try to find
a minimal generating set. Also, determine whether you can see the subgroups in our
Cayley diagram for D4 with generating set {r, s}.
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(a) {e, r2}

(b) {e,h}

(c) {e,h,v}

(d) {e,h,v, r2}

Perhaps you recognized the set in part (d) of the previous problem as being the Klein
four-group V4. It follows that V4 ≤D4.

Let’s introduce a group we haven’t seen yet. Define the quaternion group to be the
group Q8 = {1,−1, i,−i, j,−j,k,−k} having the Cayley diagram with generating set {i, j,−1}
given in Figure 3.1. In this case, 1 is the identity of the group.

1 i

kj

−1 −i

−k−j

Figure 3.1. Cayley diagram for Q8 with generating set {−1, i, j}.

Notice that I didn’t mention what the actions actually do. For now, let’s not worry
about that. The relationship between the arrows and vertices tells us everything we need
to know. Also, let’s take it for granted that Q8 actually is a group.

Problem 3.14. Consider the Cayley diagram for Q8 given in Figure 3.1.

(a) Which arrows correspond to which generators in our Cayley diagram for Q8?

(b) What is i2 equal to? That is, what element of {1,−1, i,−i, j,−j,k,−k} is i2 equal to?
How about i3, i4, and i5?

(c) What are j2, j3, j4, and j5 equal to?

(d) What is (−1)2 equal to?

(e) What is ij equal to? How about ji?

(f) Can you determine what k2 and ik are equal to?

(g) Can you identify a generating set consisting of only two elements? Can you find
more than one?

(h) What subgroups of Q8 can you see in the Cayley diagram in Figure 3.1?
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(i) Find a subgroup of Q8 that you cannot see in the Cayley diagram.

Problem 3.15. Consider (R3,+), where R3 is the set of all 3-entry row vectors with real
number entries (e.g., (a,b,c) where a,b,c ∈ R) and + is ordinary vector addition. It turns
out that (R3,+) is an abelian group with identity (0,0,0).

(a) Let H be the subset of R3 consisting of vectors with first coordinate 0. Is H a sub-
group of R3? Prove your answer.

(b) Let K be the subset of R3 consisting of vectors whose entries sum to 0. Is K a
subgroup of R3? Prove your answer.

(c) Construct a subset of R3 (different from H and K) that is not a subgroup of R3.

Problem 3.16. Consider the group (Z,+) (under ordinary addition).

(a) Show that the even integers, written 2Z := {2k | k ∈ Z}, form a subgroup of Z.

(b) Show that the odd integers are not a subgroup of Z.

(c) Show that all subsets of the form nZ := {nk | k ∈ Z} for n ∈ Z are subgroups of Z.

(d) Are there any other subgroups besides the ones listed in part (c)? Explain your
answer.

(e) For n ∈ Z, write the subgroup nZ in the “generated by” notation. That is, find a set
S such that 〈S〉 = nZ. Can you find more than one way to do it?

Problem 3.17. Consider the group of symmetries of a regular octagon. This group is
denoted by D8, where the operation is composition of actions. The group D8 consists of
16 elements (8 rotations and 8 reflections). LetH be the subset consisting of the following
clockwise rotations: 0◦, 90◦, 180◦, and 270◦. Determine whether H is a subgroup of D8
and justify your answer.

Problem 3.18. Consider the groups (R,+) and (R \ {0}, ·). Explain why R \ {0} is not a
subgroup of R despite the fact that R \ {0} ⊆ R and both are groups (under the respective
binary operations).

Theorem 3.19. If G is an abelian group such that H ≤ G, then H is an abelian subgroup.

Problem 3.20. Is the converse of the previous theorem true? If so, prove it. Otherwise,
provide a counterexample.

As we’ve seen, some groups are abelian and some are not. If G is a group, then we
define the center of G to be

Z(G) := {z ∈ G | zg = gz for all g ∈ G}.

Notice that if G is abelian, then Z(G) = G. However, if G is not abelian, then Z(G) will be
a proper subset of G. In some sense, the center of a group is a measure of how close G is
to being abelian.
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Theorem 3.21. If G is a group, then Z(G) is an abelian subgroup of G.

Problem 3.22. Find the center of each of the following groups.

(a) S2

(b) V4

(c) S3

(d) D3

(e) D4

(f) R4

(g) R6

(h) Spin1×2

(i) Q8

(j) (Z,+)

(k) (R \ {0}, ·)

3.2 Subgroup Lattices

One of the goals of this section is to gain better understanding of the structure of groups
by studying their subgroups.

Suppose we wanted to find all of the subgroups of a finite group G. Theorems 3.7 and
3.9 tell us that {e} and G itself are subgroups of G, but there may be others. Theorem 3.6
tells us that if we want to find other subgroups of G, we need to find nonempty subsets
of G that are closed and contain all the necessary inverses. So, one method for finding
subgroups would be to find all possible nonempty subsets of G and then go about deter-
mining which subsets are subgroups by verifying whether a given subset is closed under
inverses and closed under the operation of G. This is likely to be fairly time consuming.

Another approach would be to utilize the fact that every subgroup H of G has a gen-
erating set. That is, if H is a subgroup of a group G, then there always exists a subset
S of G such that 〈S〉 = H . Given a subset S of G, 〈S〉 is guaranteed to be closed under
inverses and the operation of the group G. So, we could determine all of the subgroups
of G by generating groups with various subsets S of G. Of course, one drawback is that it
might take a bit of effort to determine what 〈S〉 actually is. Another drawback is that two
different subsets S and T may generate the same subgroup.

Let’s make this a bit more concrete by exploring an example. Consider the group
R4. What are the subgroups of R4? Since the order of R4 is 4, we know that there are
24 − 1 = 15 nonempty subsets of R4. Some of these are subgroups, but most of them are
not. Theorems 3.7 and 3.9 guarantee that {e} and R4 itself are subgroups of R4. That’s
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2 out of 15 so far. Are there any others? Let’s do an exhaustive search by playing with
generating sets. We can certainly be more efficient, but below we list all of the possible
subgroups we can generate using subsets of R4. As you scan the list, you should take a
moment to convince yourself that the list is accurate.

〈e〉 = {e}

〈r〉 = {e, r, r2, r3}

〈r2〉 = {e, r2}

〈r3〉 = {e, r3, r2, r}

〈e, r〉 = {e, r, r2, r3}

〈e, r2〉 = {e, r2}

〈e, r3〉 = {e, r3, r2, r}

〈r, r2〉 = {e, r, r2, r3}

〈r, r3〉 = {e, r, r2, r3}

〈r2, r3〉 = {e, r, r2, r3}

〈e, r, r2〉 = {e, r, r2, r3}

〈e, r, r3〉 = {e, r, r2, r3}

〈e, r2, r3〉 = {e, r, r2, r3}

〈r, r2, r3〉 = {e, r, r2, r3}

〈e, r, r2, r3〉 = {e, r, r2, r3}

Let’s make a few observations. Scanning the list, we see only three distinct subgroups:

{e}, {e, r2}, {e, r, r2, r3}.

Out of 15 nonempty subsets of R4, only 3 subsets are subgroups. Our exhaustive search
guarantees that these are the only subgroups of R4. It is also worth pointing out that
if a subset contains either r or r3, then that subset generates all of R4. The reason for
this is that {r} and {r3} are each minimal generating sets for R4. More generally, observe
that if we increase the size of the generating subset using an element that was already
contained in the subgroup generated by the set, then we don’t get anything new. For
example, consider 〈r2〉 = {e, r2}. Since e ∈ 〈r2〉, we don’t get anything new by including e
in our generating set. We can state this as a general fact.

Theorem 3.23. Let G be a group and let g1, g2, . . . , gn ∈ G. If x ∈ 〈g1, g2, . . . , gn〉, then
〈g1, g2, . . . , gn〉 = 〈g1, g2, . . . , gn,x〉.

In the previous theorem, we are not claiming that {g1, g2, . . . , gn} is a generating set for
G—although this may be the case. Instead, are simply making a statement about the
subgroup 〈g1, g2, . . . , gn〉, whatever it may be.

We can capture the overall relationship between the subgroups of a group G using a
subgroup lattice. Given a group G, the lattice of subgroups of G is the partially ordered
set whose elements are the subgroups of G with the partial order relation being set inclu-
sion. It is common to depict the subgroup lattice for a group using a Hasse diagram. The
Hasse diagram of subgroup lattice is drawn as follows:

(1) Each subgroup H of G is a vertex.

(2) Vertices corresponding to subgroups with smaller order are placed lower in the
diagram than vertices corresponding to subgroups with larger order. In particular,
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the vertex for {e} is placed at the bottom of the diagram and the vertex for G is
placed at the top.

(3) There is an edge going up from H to K if H ≤ K and there is no subgroup L such
that H ≤ L ≤ K with L ,H,K .

Notice that there is an upward path of edges in the Hasse diagram from H to K if and
only if H ≤ K . For convenience we will not make a distinction between the subgroup
lattice for a group G and the corresponding Hasse diagram.

The Hasse diagram for the subgroup lattice for R4 is given in Figure 3.2.

〈e〉 = {e}

〈r2〉 = {e, r2}

〈r〉 = R4

Figure 3.2. Subgroup lattice for R4.

Let’s see what we can do with V4 = {e,v,h,vh}. Using an exhaustive search, we find
that there are five subgroups:

〈e〉 = {e}

〈h〉 = {e,h}

〈v〉 = {e,v}

〈vh〉 = {e,vh}

〈v,h〉 = 〈v,vh〉 = 〈h,vh〉 = {e,v,h,vh} = V4

For each subgroup above, we’ve used minimal generating sets to determine the subgroup.
The subgroup lattice for V4 is given in Figure 3.3. Notice that there are no edges among
〈v〉,〈h〉, and 〈vh〉. The reason for this is that none of these groups are subgroups of each
other.

The next two theorems provide some further insight into the overall structure of sub-
groups of a group.

Theorem 3.24. If G is a group such that H,K ≤ G, then H ∩K ≤ G. Moreover, H ∩K is the
largest subgroup contained in both H and K .
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〈e〉 = {e}

〈h〉 = {e,h}〈v〉 = {e,v} 〈vh〉 = {e,vh}

〈v,h〉 = V4

Figure 3.3. Subgroup lattice for V4.

It turns out that we cannot simply replace “intersection” with “union” in the previous
theorem

Problem 3.25. Provide an example of a group G and subgroups H and K such that H ∪K
is not a subgroup of G.

Theorem 3.26. IfG is a group such thatH,K ≤ G, then 〈H∪K〉 ≤ G. Moreover, 〈H∪K〉 ≤ G
is the smallest subgroup containing both H and K .

Theorems 3.24 and 3.26 justify the use of the word “lattice” in “subgroup lattice”. In
general, a lattice is a partially ordered set in which every two elements have a unique
meet (also called a greatest lower bound or infimum) and a unique join (also called a
least upper bound or supremum). In the case of a subgroup lattice for a group G, the
meet of subgroupsH and K isH∩K and the join is 〈H∪K〉. Figure 3.4 illustrates the meet
(Theorem 3.24) and join (Theorem 3.26) in the case when H and K are not comparable.

In the next few problems, you are asked to create subgroup lattices. As you do this,
try to minimize the amount of work it takes to come up with all the subgroups.

Problem 3.27. Find all the subgroups of R5 = {e, r, r2, r3, r4} (where r is clockwise rotation
of a regular pentagon by 72◦) and then draw the subgroup lattice for R5.

Problem 3.28. Find all the subgroups of R6 = {e, r, r2, r3, r4, r5} (where r is clockwise rota-
tion of a regular hexagon by 60◦) and then draw the subgroup lattice for R6.

Problem 3.29. Find all the subgroups ofD3 = {e, r, r2, s, sr, sr2} (where r and s are the usual
symmetries of an equilateral triangle) and then draw the subgroup lattice for D3.

Problem 3.30. Find all the subgroups of S3 = 〈s1, s2〉 (where s1 is the action is that swaps
the positions of the first and second coins and s2 is the action that swaps the second and
third coins; see Problem 2.57) and then draw the subgroup lattice for S3. How does your
lattice compare to the one in Problem 3.29? You should look back at parts (e) and (f) of
Problem 2.70 and ponder what just happened.
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H ∩K

H K

〈H ∪K〉

Figure 3.4. Meet and join for subgroups H and K .

Problem 3.31. Find all the subgroups of D4 = {e, r, r2, r3, s, sr, sr2, sr3} (where r and s are
the usual symmetries of a square) and then draw the subgroup lattice for D4.

Problem 3.32. Find all the subgroups of Q8 = {1,−1, i,−i, j,−j,k,−k} and then draw the
subgroup lattice for Q8.

3.3 Isomorphisms

As we have been exploring various groups, I’m sure you’ve noticed that some groups
seem to look and behave the same. For example, if we choose the same colors for our
arrows and ignore the labels on the vertices, the Cayley diagram for D3 with generating
set {s, s′} looks the same as the Cayley diagram for S3 with generating set {s1, s2}. That
is, if we pick the appropriate colors and set the Cayley diagram for D3 (with generating
set {s, s′}) on top of the Cayley diagram for S3 (with generating set {s1, s2}) such that the
identities match up, then the two Cayley diagrams are identical up to relabeling the rest
of the vertices. Figure 3.5 should make this clear. This act of matching up the Cayley
diagrams establishes a correspondence between the elements of the two groups:

e 7→ e

s 7→ s1
s′ 7→ s2
ss′ 7→ s1s2
s′s 7→ s2s1
ss′s 7→ s1s2s1

Notice that each correspondence is compatible with the correspondence of the generators,
namely: s 7→ s1 and s′ 7→ s2. Given this correspondence, it should not be surprising that
the subgroup lattices for D3 and S3 have the same structure.
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s′s

s

e

s′

ss′

ss′s

D3

s2s1

s1

e

s2

s1s2

s1s2s1

S3

Figure 3.5. Cayley diagrams for D3 and S3 with generating sets {s, s′} and {s1, s2}, respec-
tively.

The goal of this section is to formalize this phenomenon by introducing the notion of
an isomorphism. First, let’s develop a little more intuition.

If two groups G1 and G2 have generating sets T1 and T2 such that we can color the
edges of the corresponding Cayley diagrams so that the diagrams are identical up to
relabeling of the vertices, then we say that there is a matching betweenG1 andG2. Above,
we showed thatD3 and S3 have a matching. It’s important to emphasize that the existence
of a matching between two groups depends on our choice of generating set. If two Cayley
diagrams do not look alike, it does not immediately imply that there is not a matching
between the groups since it might be the case that choosing different generating sets for
the two groups leads to a matching.

Perhaps you’ve noticed that the Cayley diagram for R4 with generating set {r} looks
like the Cayley diagram for the subgroup 〈j〉 = {±1,±j} with generating set {j} in Q8. That
is, there is a matching between R4 and 〈j〉, which we’ve depicted in Figure 3.6. Similarly,
the Cayley diagram for S2 with generating set {s} looks like the Cayley diagram for the
subgroup 〈−1〉 = {±1} with generating set {−1} in Q8. The matching between S2 and 〈−1〉
is depicted in Figure 3.7. It’s fairly easy to see that there is also a matching between S2
and the subgroup 〈v〉 = {e,v} of V4. Since there is a matching between S2 and 〈−1〉 and a
matching between S2 and 〈v〉, there is a matching between 〈−1〉 and 〈v〉.

Problem 3.33. We have seen two different Cayley diagrams for D3, one with generating
set {s, r} and one with generating set {s, s′}. As Figure 3.5 illustrates, there is a matching
between D3 and S3 that relies on the generating sets {s, s′} and {s1, s2}, respectively. Find a
different matching between D3 and S3 that utilizes the generating set {r, s} for D3.

The next theorem follows immediately from the definition of matching.

Theorem 3.34. If there is a matching between G1 and G2 using the generating sets T1 and
T2, respectively, then |G1| = |G2| and T1 and T2 have the same cardinality.

Unfortunately, the converse of the previous theorem is not true in general. That is,
two groups that have the same order may or may not have a matching.
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1 i

kj

−1 −i

−k−j

Q8

re

r3 r2

R4

Figure 3.6. A matching between R4 = 〈r〉 and 〈j〉 ≤Q8.

1 i

kj

−1 −i

−k−j

es Q8

S2

Figure 3.7. A matching between S2 = 〈s〉 and 〈−1〉 ≤Q8.

Loosely speaking, if two groups have a matching, then the two groups have the same
structure and characteristics. In other words, the two groups essentially do the “same
kind” of thing. In particular, the corresponding elements in each group have the same
characteristics.

On the other hand, if one group has a property that the other does not have, then the
two groups cannot have a matching. For example, if one group is abelian and the other
is not, then the two groups cannot have a matching. Moreover, for each element g in one
group with the property gk = e for some k ∈ Z, there must be a corresponding element in
the other group with the same property. Otherwise, there cannot be a matching between
the two groups.

Problem 3.35. Determine whether there is a matching between D4 and Spin1×2.

Problem 3.36. Determine whether there is a matching between R4 and V4.

Problem 3.37. Determine whether there is a matching between D3 and R6.

Problem 3.38. Determine whether there is a matching between any pair of the following
groups: R8 (i.e., the group of rotational symmetries of a regular octagon), D4, Q8.
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Problem 3.39. Consider two light switches on a wall side by side. Consider the group of
actions that consists of all possible actions that you can do to the two light switches. For
example, one action is toggle the left light switch while leaving the right alone. Let’s call
this group L2.

(a) How many distinct actions does L2 have?

(b) Can you find a minimal generating set for L2? If so, give these actions names and
then write all of the actions of L2 as words in your generator(s).

(c) Using your generating set from part (b), draw the corresponding Cayley diagram
for L2.

(d) Determine whether there is a matching between L2 and either of R4 or V4.

Problem 3.40. Consider three light switches on a wall side by side. Consider the group
of actions that consists of all possible actions that you can do to the three light switches.
Let’s call this group L3. It should be easy to see that L3 has 8 distinct actions.

(a) Can you find a minimal generating set for L3? If so, give these actions names and
then write all of the actions of L3 as words in your generator(s).

(b) Using your generating set from part (a), draw the corresponding Cayley diagram
for L3.

(c) Is L3 cyclic? Briefly justify your answer.

(d) Is L3 abelian? Briefly justify your answer.

(e) Determine whether there is a matching between L3 and any of R8, D4, Spin1×2, or
Q8.

Suppose G is a finite group and consider the group table for G. A coloring for the
group table is an assignment of a unique color to each element of the group. For example,
Figure 3.8 depicts a coloring for the group table of V4.

◦ e v h vh

e e v h vh
v v e vh h
h h vh e v
vh vh h v e

Figure 3.8. A coloring for the group table of V4.

We say that two finite groups have an identical table coloring, if we can arrange the
rows and columns of each table and choose colorings for each table so that the pattern
of colors is the same for both tables. Clearly, this is only possible if the two groups have
the same order. In Problem 2.64, we showed that R4 and V4 never have an identical table
coloring.
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Problem 3.41. Determine whether V4 and L2 have an identical table coloring.

Problem 3.42. Suppose there is a matching between finite groups G1 and G2. Explain
why G1 and G2 must have an identical table coloring.

Problem 3.43. Is the converse of the previous problem true? That is, if G1 and G2 are
finite groups that have an identical table coloring, will there be a matching between G1
and G2?

Problem 3.44. Suppose there is a matching between G1 and G2 and suppose T1 is a gener-
ating set for G1. Explain why there must be a generating set T2 for G2 and an appropriate
choice of colors such that the Cayley diagrams for G1 and G2 using the generating sets T1
and T2, respectively, are identical up to relabeling of the vertices.

The last few problems have led us to the following theorem.

Theorem 3.45. If G1 and G2 are two finite groups, then there is a matching between G1
and G2 if and only if G1 and G2 have an identical table coloring.

As you’ve likely discovered, matchings and identical table coloring (or the lack thereof)
are great for developing intuition about when two groups have identical structure, but
the process of finding matchings and identical table colorings is cumbersome. Moreover,
it turns out to not be a very useful approach for proving theorems. We need a different
approach if we want to develop the general theory any further.

If two finite groups G1 and G2 have an identical table coloring, then

the product of corresponding elements yields the corresponding result.

This is the essence of what it means for two groups to have the same structure.
Let’s try to make this a little more precise. Suppose (G1,∗) and (G2,�) are two finite

groups that have an identical table coloring and let x1, y1 ∈ G1. Then these two elements
have corresponding elements in the group table for G2, say x2 and y2, respectively. In
other words, x1 and x2 have the same color while y1 and y2 have the same color. Since
G1 is closed under its binary operation ∗, there exists z1 ∈ G1 such that z1 = x1 ∗ y1. But
then there must exist a z2 ∈ G2 such that z2 has the same color as z1. What must be true
of x2 � y2? Since the two tables exhibit the same color pattern, it must be the case that
z2 = x2 � y2. This is what it means for the product of corresponding elements to yield the
corresponding result. Figure 3.9 illustrates this phenomenon for group tables.

∗ y1

x1 z1 ←→

� y2

x2 z2

Figure 3.9
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We can describe the identical table matching between G1 and G2 using a function.
Let φ : G1 → G2 be the one-to-one and onto function that maps elements of G1 to their
corresponding elements in G2. Then φ(x1) = x2, φ(y1) = y2, and φ(z1) = z2. Since z2 =
x2 � y2, we obtain

φ(x1 ∗ y1) = φ(z1) = z2 = x2 � y2 = φ(x1)�φ(y1).

In summary, it must be the case that

φ(x1 ∗ y1) = φ(x1)�φ(y1).

We are now prepared to state a formal definition of what it means for two groups to be
isomorphic.

Definition 3.46. Let (G1,∗) and (G2,�) be two groups. Then G1 is isomorphic to G2,
written G1 � G2, if and only if there exists a one-to-one and onto function φ : G1 → G2
such that

φ(x ∗ y) = φ(x)�φ(y). (3.1)

The function φ is referred to as an isomorphism. Equation 3.1 is often referred to as the
homomorphic property.

It should be clear from the development that two finite groups are isomorphic if and
only if they have an identical table coloring. Moreover, since two finite groups have an
identical table coloring if and only if there is a matching between the two groups, it must
be the case that two groups are isomorphic if and only if there is a matching between the
two groups. The upshot is that we have three different ways to think about what it means
for two groups to be isomorphic:

(1) There exists generating sets for the two groups such that the respective Cayley dia-
grams are identical up to relabeling of the vertices.

(2) There exists a choice of colors and an arrangement of the rows and columns of the
group tables such that the two tables exhibit the same pattern of colors.

(3) There exists a bijective function between the two groups that satisfies the homomor-
phic property.

Problem 3.47. Using the work that you did earlier in this section, determine which of the
following groups are isomorphic to each other: S2, 〈−1〉 in Q8, R3, R4, V4, L2, 〈i〉 in Q8,
〈sr, sr2〉 in D4, R5, R6, D3, S3, R7, R8, D4, Spin1×2, Q8, L3.

Problem 3.48. Consider the groups (R,+) and (R+, ·), where R+ is the set of positive real
numbers. It turns out that these two groups are isomorphic, but this would be difficult
to discover using our previous techniques because the groups are infinite. Define φ :
R → R+ via φ(r) = er (where e is the natural base, not the identity). Prove that φ is an
isomorphism.

Problem 3.49. For each of the following pairs of groups, determine whether the given
function is an isomorphism from the first group to the second group.
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(a) (Z,+) and (Z,+), φ(n) = n+ 1.

(b) (Z,+) and (Z,+), φ(n) = −n.

(c) (Q,+) and (Q,+), φ(x) = x/2.

Problem 3.50. Show that the groups (Z,+) and (2Z,+) are isomorphic.

Perhaps one surprising consequence of the previous problem is that when dealing
with infinite groups, a group can have a proper subgroup that it is isomorphic to. Of
course, this never happens with finite groups.

Once we know that two groups are isomorphic, there are lots of interesting things we
can say. The next theorem tells us that isomorphisms map the identity element of one
group to the identity of the second group. This was already clear using Cayley diagrams
and groups tables, but you should try to prove the theorem directly using Definition 3.46.

Theorem 3.51. Suppose φ : G1 → G2 is an isomorphism from the group (G1,∗) to the
group (G2,�). If e1 and e2 are the identity elements of G1 and G2, respectively, then
φ(e1) = e2.

The next theorem tells us that isomorphisms respect inverses.

Theorem 3.52. If φ : G1 → G2 is an isomorphism from the group (G1,∗) to the group
(G2,�), then φ(g−1) = [φ(g)]−1.

It turns out that “isomorphic” (�) determines an equivalence relation on the class of
all possible groups. The next two theorems justify that � is symmetric and transitive.

Theorem 3.53. If φ : G1 → G2 is an isomorphism from the group (G1,∗) to the group
(G2,�), then the function φ−1 : G2→ G1 is an isomorphism.

Theorem 3.54. If φ : G1→ G2 and ψ : G2→ G3 are isomorphisms from the groups (G1,∗)
to (G2,�) and (G2,�) to (G3,?), respectively, then the composite function ψ ◦φ is an iso-
morphism of G1 and G3.

The only thing left to do in order to justify the next theorem is prove that � is reflexive.

Theorem 3.55. If G is any nonempty collection of groups, then the relation � is an equiv-
alence relation on G.

Mathematicians love to classify things. In particular, mathematicians want to classify
groups. One can think of this pursuit as a taxonomy of groups. In order to simplify the
task, one can classify isomorphism classes (i.e., the equivalence classes determined by �)
instead of classifying groups. If two groups are isomorphic, then we say that the groups
are the same up to isomorphism. If there are k isomorphism classes of order n, then we
say that there are k groups of order n up to isomorphism.

Problem 3.56. Explain why all groups with a single element are isomorphic. Justify your
answer using group tables.
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In light of the previous problem, we say that there is one group of order one up to
isomorphism.

Problem 3.57. Suppose that (G,∗) is a group of order 2 such that G = {e,a}. Complete the
following group table for G.

∗ e a

e
a

Explain why every group of order 2 must be isomorphic to S2.

The previous problem implies that up to isomorphism, there is only one group of
order 2.

Problem 3.58. Suppose (G,∗) is a group of order 3 such that G = {e,a,b}. Complete the
following group table for G.

∗ e a b

e
a
b

Explain why every group of order 3 must be isomorphic to R3.

Problem 3.59. Suppose (G,∗) is a group of order 4 such that G = {e,a,b,c}. Assuming that
e is the identity, the first row and first column of the corresponding group table must be
completed as follows.

∗ e a b c

e e a b c
a a ?
b b
c c

The cell with the question mark cannot be filled with an a. So, this entry must be either e,
b, or c. However, it should be easy to see that the cases with b and c are symmetric. Thus,
there are two cases: (i) the entry with the question mark is filled with e, or (ii) the entry
with the question mark is without loss of generality filled with b. Complete the group
table in each of these two cases. Are either of the resulting groups isomorphic to R4 or
V4. What conclusion can you make about groups of order 4?

So far we’ve seen that there are unique groups up to isomorphism of orders 1, 2, and
3, but that there are two groups up to isomorphism of order 4. A natural question to ask
is: how many groups are there of order n?

In a future chapter we will be able to prove that there is only one group up to isomor-
phism of order 5, namely those groups isomorphic to R5.

49



CHAPTER 3. SUBGROUPS AND ISOMORPHISMS

We’ve seen three groups of order 6, namely R6, D3, and S3. However, D3 � S3 while
R6 is not isomorphic to either of these. So, we can conclude that there are at least two
groups up to isomorphism of order 6. But are there others? It turns out that the answer
is no, but why?

The group R7 is the group of rotational symmetries of a regular 7-sided polygon. This
group has order 7. Are there other groups of order 7 that are not isomorphic to R7? It
turns out that the answer is no, but why?

We’ve encountered several groups of order 8, namely D4, Spin1×2, Q8, R8, and L3. Of
these, only D4 and Spin1×2 are isomorphic. Thus, there are at least four groups up to
isomorphism of order 8. Are these the only isomorphism types? It turns out that there
are five groups of order 8 up to isomorphism.

Let’s return to proving some general statements about isomorphisms.

Theorem 3.60. Suppose φ : G1 → G2 is an isomorphism from the group (G1,∗) to the
group (G2,�). If G1 is cyclic, then G2 is cyclic.

Theorem 3.61. Suppose φ : G1 → G2 is an isomorphism from the group (G1,∗) to the
group (G2,�). If G1 is abelian, then G2 is abelian.

If φ : G1→ G2 is a function, not necessarily an isomorphism, and X ⊆ G1, then the set

φ(X) := {y ∈ G2 | there exists x ∈ X such that φ(x) = y}.

is called the image of X. The next theorem tells us that the image of a subgroup under an
isomorphism is also a subgroup.

Theorem 3.62. If φ : G1→ G2 is an isomorphism and H ≤ G1, then φ(H) ≤ G2.

Suppose G is a group and let g ∈ G. Define φg : G→ G via φ(x) = gxg−1. The map φg
is called conjugation by g.

Theorem 3.63. If G is a group and g ∈ G, then conjugation by g is an isomorphism from
G to G.

Now that you’ve proved the above theorems, it’s a good idea to review the key themes.
If you were really paying attention, you may have noticed that in a few of the proofs, we
did not use the fact that the function was one-to-one and onto despite assuming that the
function was an isomorphism.

Problem 3.64. For which of the recent theorems could we remove either the assumption
that the function is one-to-one or the assumption that the function is onto?

A function that satisfies the homomorphic property and may or may not be one-to-one
or onto is called a homomorphism and will be the subject of a future chapter.

Problem 3.65. What claims can be made about the subgroup lattices of two groups that
are isomorphic? What claims can be made about the subgroup lattices of two groups that
are not isomorphic? What claims can be made about two groups if their subgroup lattices
look nothing alike?
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Chapter 4

Families of Groups

In this chapter we will explore a few families of groups, some of which we are already
familiar with.

4.1 Cyclic Groups

Recall that if G is a group and g ∈ G, then the cyclic subgroup generated by g is given by

〈g〉 = {gk | k ∈ Z}.

It is important to point out that 〈g〉may be finite or infinite. In the finite case, the Cayley
diagram with generator g gives us a good indication of where the word “cyclic” comes
from (see Problem 4.21). If there exists g ∈ G such that G = 〈g〉, then we say that G is a
cyclic group.

Problem 4.1. List all of the elements in each of the following cyclic subgroups.

(a) 〈r〉, where r ∈D3

(b) 〈r〉, where r ∈ R4

(c) 〈rs〉, where rs ∈D4

(d) 〈r2〉, where r2 ∈ R6

(e) 〈i〉, where i ∈Q8

(f) 〈6〉, where 6 ∈ Z and the operation is ordinary addition

Problem 4.2. Consider the group of invertible 2 × 2 matrices with real number entries
under the operation of matrix multiplication. This group is denoted by GL2(R). List the
elements in the cyclic subgroups generated by each of the following matrices.
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(a)
[

0 −1
−1 0

]
(b)

[
0 −1
1 0

]
(c)

[
2 0
0 1

]
Problem 4.3. Determine whether each of the following groups is cyclic. If the group is
cyclic, find at least one generator.

(a) S2

(b) R3

(c) R4

(d) V4

(e) R5

(f) R6

(g) D3

(h) R7

(i) R8

(j) Spin1×2

(k) D4

(l) Q8

Problem 4.4. Determine whether each of the following groups is cyclic. If the group is
cyclic, find at least one generator. If you believe that a group is not cyclic, try to sketch
an argument.

(a) (Z,+)

(b) (R,+)

(c) (R+, ·)

(d) ({6n | n ∈ Z}, ·)

(e) GL2(R) under matrix multiplication

(f) {(cos(π/4) + i sin(π/4))n | n ∈ Z} under multiplication of complex numbers

Theorem 4.5. If G is a cyclic group, then G is abelian.

Problem 4.6. Provide an example of a finite group that is abelian but not cyclic.

Problem 4.7. Provide an example of an infinite group that is abelian but not cyclic.

Theorem 4.8. If G is a group and g ∈ G, then 〈g〉 = 〈g−1〉.

Theorem 4.9. If G is a cyclic group such that G has exactly one element that generates all
of G, then the order of G is at most order 2.

Theorem 4.10. If G is a group such that G has no proper nontrivial subgroups, then G is
cyclic.

Recall that the order of a group G, denoted |G|, is the number of elements in G. We
define the order of an element g, written |g |, to be the order of 〈g〉. That is, |g | = |〈g〉|. It is
clear that G is cyclic with generator g if and only if |G| = |g |.

Problem 4.11. What is the order of the identity in any group?

Problem 4.12. Find the orders of each of the elements in each of the groups in Prob-
lem 4.3.
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Problem 4.13. Consider the group (Z,+). What is the order of 1? Are there any elements
in Z with finite order?

Problem 4.14. Find the order of each of the matrices in Problem 4.2.

The next result follows immediately from Theorem 4.8.

Theorem 4.15. If G is a group and g ∈ G, then |g | = |g−1|.

The next result should look familiar and will come in handy a few times in this chap-
ter. We’ll take the result for granted and not worry about proving it.

Theorem 4.16 (Division Algorithm). If n is a positive integer and m is any integer, then
there exist unique integers q (called the quotient) and r (called the remainder) such that
m = nq+ r, where 0 ≤ r < n.

Theorem 4.17. Suppose G is a group and let g ∈ G. The subgroup 〈g〉 is finite if and only
if there exists n ∈ N such that gn = e.∗

Corollary 4.18. If G is a finite group, then for all g ∈ G, there exists n ∈ N such that gn = e.

Theorem 4.19. Suppose G is a group and let g ∈ G such that 〈g〉 is a finite group. If n
is the smallest positive integer such that gn = e, then 〈g〉 = {e,g,g2, . . . , gn−1} and this set
contains n distinct elements.†

The next result provides an extremely useful interpretation of the order of an element.

Corollary 4.20. If G is a group and g ∈ G such that 〈g〉 is a finite group, then the order of
g is the smallest positive integer n such that gn = e.

Problem 4.21. Suppose G is a finite cyclic group such that G = 〈g〉. Using the generating
set {g}, what does the Cayley diagram for G look like?

Problem 4.22. Suppose G is a finite cyclic group of order n with generator g. If we write
down the group table for G using e,g,g2, . . . , gn−1 as the labels for the rows and columns,
are there any interesting patterns in the table?

Problem 4.23. Notice that in the definition for 〈g〉, we allow the exponents on g to be
negative. Explain why we only need to use positive exponents when 〈g〉 is a finite group.

The Division Algorithm should come in handy when proving the next theorem.

Theorem 4.24. Suppose G is a group and let g ∈ G such that |g | = n. Then g i = gj if and
only if n divides i − j.
∗For the forward implication, if 〈g〉 is finite, then there exists distinct positive integers i and j such that
g i = gj . Can you find a useful way to rewrite this equation? For the reverse implication, let m ∈ Z and use
the Division Algorithm with m and n.
†Note that Theorem 4.17 together with the Well-Ordering Principle guarantees the existence of a smallest
positive integer n such that gn = e. The claim that the set contains n distinct elements is not immediate.
You need to argue that there are no repeats in the list. Choose distinct i, j ∈ {0,1, . . . ,n − 1} such that i , j
and then show that g i , gj . Consider a proof by contradiction and try to contradict the minimality of n.
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Corollary 4.25. Suppose G is a group and let g ∈ G such that |g | = n. If gk = e, then n
divides k.

Recall that for n ≥ 3, Rn is the group of rotational symmetries of a regular n-gon,
where the operation is composition of actions.

Theorem 4.26. For all n ≥ 3, Rn is cyclic.

Theorem 4.27. Suppose G is a finite cyclic group of order n. Then G is isomorphic to Rn
if n ≥ 3, S2 if n = 2, and the trivial group if n = 1.

Most of the previous results have involved finite cyclic groups. What about infinite
cyclic groups?

Theorem 4.28. Suppose G is a group and let g ∈ G. The subgroup 〈g〉 is infinite if and
only if each gk is distinct for all k ∈ Z.‡

Theorem 4.29. If G is an infinite cyclic group, then G is isomorphic to Z (under the
operation of addition).

The upshot of Theorems 4.29 and 4.27 is that up to isomorphism, we know exactly
what all of the cyclic groups are.

We now turn our attention to two new groups. Recall that two integers are relatively
prime if the only positive integer that divides both of them is 1. That is, integers n and k
are relatively prime if and only if gcd(n,k) = 1.

Definition 4.30. Let n ∈ N and define the following sets.

(a) Zn := {0,1, . . . ,n− 1}

(b) Un := {k ∈ Zn | gcd(n,k) = 1}

Example 4.31. For example, Z12 = {0,1,2,3,4,5,6,7,8,9,10,11} while U12 = {1,5,7,11}
since 1, 5, 7, and 11 are the only elements in Z12 that are relatively prime to 12.

For each set in Definition 4.30, the immediate goal is to determine a binary operation
that will yield a group. The key is to use modular arithmetic. Let n be a positive integer.
To calculate the sum (respectively, product) of two integers modulo n (we say “mod n”
for short), add (respectively, multiply) the two numbers and then find the remainder after
dividing the sum (respectively, product) by n. For example, 4 + 9 is 3 mod 5 since 13 has
remainder 3 when divided by 5. Similarly, 4 ·9 is 1 mod 5 since 36 has remainder 1 when
divided by 5. The hope is that these two operations turn Zn and Un into groups.

We write i ≡ j (mod n), and say “i is equivalent to j modulo n” or “i is equal to j
modulo n”, if i and j both have the same remainder when divided by n. It is common
to abbreviate “modulo” as “mod”. It is also common to write i ≡n j, or even i = j if the
context is perfectly clear.

‡For the forward implication, try a proof by contradiction and suppose there exists integers i and j such
that g i = gj .
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It is well-known, and not too hard to prove, that ≡n is an equivalence relation on Z.
The corresponding equivalence classes are called congruence classes. The elements of a
single congruence class are the integers that all have the same remainder when divided
by n. According to the Division Algorithm, there are n congruence classes modulo n,
one for each of the remainders 0,1, . . . ,n − 1. We can think of Zn as the set of canonical
representatives of these equivalence classes.

Theorem 4.32. Let n be a positive integer and let i, j ∈ Z. Then i ≡ j (mod n) if and only
if n divides i − j.

The next result follows immediately from Theorems 4.32 and 4.24.

Corollary 4.33. Suppose G is a group and let g ∈ G such that |g | = n. Then g i = gj if and
only if i ≡ j (mod n).

Theorem 4.34. The set Zn is a group under addition mod n.

Theorem 4.35. The set Un is a group under multiplication mod n.

Problem 4.36. Consider Z4.

(a) Find the group table for Z4.

(b) Is Z4 cyclic? If so, list elements of Z4 that individually generate Z4. If Z4 is not
cyclic, explain why.

(c) Is Z4 isomorphic to either of R4 or V4? Justify your answer.

(d) Draw the subgroup lattice for Z4.

Problem 4.37. Consider U10 = {1,3,7,9}.

(a) Find the group table for U10.

(b) Is U10 cyclic? If so, list elements of U10 that individually generate U10. If U10 is not
cyclic, explain why.

(c) Is U10 isomorphic to either of R4 or V4? Justify your answer.

(d) Is U10 isomorphic to Z4? Justify your answer.

(e) Draw the subgroup lattice for U10.

Problem 4.38. Consider U12 = {1,5,7,11}.

(a) Find the group table for U12.

(b) Is U12 cyclic? If so, list elements of U12 that individually generate U12. If U12 is not
cyclic, explain why.

(c) Is U12 isomorphic to either of R4 or V4? Justify your answer.
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(d) Draw the subgroup lattice for U12.

In light of Exercises 4.37 and 4.38, Un may or may not be cyclic. Nonetheless, as the
next theorem illustrates, Un is always abelian.

Theorem 4.39. For all n, Un is abelian.

The upshot of the next theorem is that for n ≥ 3, Zn is just the set of exponents in the
set Rn = {e, r, r2, . . . , rn−1} (where e = r0).

Theorem 4.40. For n ≥ 3, Zn � Rn. Moreover, Z2 � S2 and Z1 is isomorphic to the trivial
group.

One consequence of the previous theorem is that Zn is always cyclic. Combining the
results of Theorems 4.27 and 4.29 together with Theorem 4.40, we immediately obtain
the following.

Theorem 4.41. Let G be a cyclic group. If the order of G is infinite, then G is isomorphic
to Z. If G has finite order n, then G is isomorphic to Zn.

Now that we have a complete description of the cyclic groups, let’s focus our attention
on subgroups of cyclic groups.

Theorem 4.42. Suppose G is a cyclic group. If H ≤ G, then H is also cyclic.

It turns out that for proper subgroups, the converse of Theorem 4.42 is not true.

Problem 4.43. Provide an example of a group G such that G is not cyclic, but all proper
subgroups of G are cyclic.

The next result officially settles Problem 3.16(d) and also provides a complete descrip-
tion of the subgroups of infinite cyclic groups up to isomorphism.

Corollary 4.44. The subgroups of Z are precisely the groups nZ for n ∈ Z.

Let’s further explore finite cyclic groups.

Theorem 4.45. If G is a finite cyclic group with generator g such that |G| = n, then for all

m ∈ Z, |gm| = n
gcd(n,m)

.§

Theorem 4.46. If G is a finite cyclic group with generator g such that |G| = n, then 〈gm〉 =
〈gk〉 if and only if gcd(m,n) = gcd(k,n).¶

Problem 4.47. Suppose G is a cyclic group of order 12 with generator g.

§By Corollary 4.20, the order of gm is the smallest positive exponent k such that (gm)k = e. First, verify that
k = n

gcd(n,m) has the desired property and then verify that it is the smallest such exponent.
¶Use Theorem 4.45 for the forward implication. For the reverse implication, first prove that for all m ∈ Z,
〈gm〉 = 〈ggcd(m,n)〉 by proving two set containments. To show 〈gm〉 ⊆ 〈ggcd(m,n)〉, use the fact that there exists
an integer q such that m = q · gcd(m,n). For the reverse containment, you may freely use a fact known as
Bezout’s Lemma, which states that gcd(m,n) = nx+my for some integers x and y.

56



CHAPTER 4. FAMILIES OF GROUPS

(a) Find the orders of each of the following elements: g2, g7, g8.

(b) Which elements of G individually generate G?

Corollary 4.48. SupposeG is a finite cyclic group with generator g such that |G| = n. Then
〈g〉 = 〈gk〉 if and only if n and k are relatively prime. That is, gk generates G if and only if
n and k are relatively prime.

Problem 4.49. Consider Z18.

(a) Find all of the elements of Z18 that individually generate all of Z18.

(b) Draw the subgroup lattice for Z18. For each subgroup, list the elements of the corre-
sponding set. Moreover, circle the the elements in each subgroup that individually
generate that subgroup. For example, 〈2〉 = {0,2,4,6,8,10,12,14,16}. In this case,
we should circle 2, 4, 8, 10, 14, and 16 since each of these elements individually
generate 〈2〉 and none of the remaining elements do. I’ll leave it to you to figure out
why this is true.

Problem 4.50. Repeat the above exercise, but this time use Z12 instead of Z18.

Corollary 4.51. If G is a finite cyclic group such that |G| = p, where p is prime, then G has
no proper nontrivial subgroups.

Problem 4.52. If there is exactly one group up to isomorphism of order n, then to what
group are all the groups of order n isomorphic?

We conclude this section with a couple interesting counting problems involving the
number of generators of certain cyclic groups.

Problem 4.53. Let p and q be distinct primes. Find the number of generators of Zpq.

Problem 4.54. Let p be a prime. Find the number of generators of Zpr , where r is an
integer greater than or equal to 1.

4.2 Dihedral Groups

We can think of finite cyclic groups as groups that describe rotational symmetry. In par-
ticular, Rn is the group of rotational symmetries of a regular n-gon. Dihedral groups are
those groups that describe both rotational and reflectional symmetry of regular n-gons.

Definition 4.55. For n ≥ 3, the dihedral groupDn is defined to be the group consisting of
the symmetry actions of a regular n-gon, where the operation is composition of actions.

For example, as we’ve seen, D3 and D4 are the symmetry groups of equilateral trian-
gles and squares, respectively. The symmetry group of a regular pentagon is denoted by
D5. It is a well-known fact from geometry that the composition of two reflections in the
plane is a rotation by twice the angle between the reflecting lines.
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Theorem 4.56. The group Dn is a non-abelian group of order 2n.

Theorem 4.57. For n ≥ 3, Rn ≤Dn.

Theorem 4.58. Fix n ≥ 3 and consider Dn. Let r be rotation clockwise by 360◦/n and let s
and s′ be any two adjacent reflections of a regular n-gon. Then

(a) Dn = 〈r, s〉 = {e, r, r2, . . . , rn−1︸           ︷︷           ︸
rotations

, s, sr, sr2, . . . , srn−1︸               ︷︷               ︸
reflections

} and

(b) Dn = 〈s, s′〉 = all possible products of s and s′.

Theorem 4.59. Fix n ≥ 3 and consider Dn. Let r be rotation clockwise by 360◦/n and let
s and s′ be any two adjacent reflections of a regular n-gon. Then the following relations
hold.

(a) rn = s2 = (s′)2 = e,

(b) r−k = rn−k (special case: r−1 = rn−1),

(c) srk = rn−ks (special case: sr = rn−1s),

(d) ss′s · · ·︸︷︷︸
n factors

= s′ss′ · · ·︸ ︷︷ ︸
n factors

.

Problem 4.60. From Theorem 4.58, we know

Dn = 〈r, s〉 = {e, r, r2, . . . , rn−1︸           ︷︷           ︸
rotations

, s, sr, sr2, . . . , srn−1︸               ︷︷               ︸
reflections

}.

If you were to create the group table forDn so that the rows and columns of the table were
labeled by e, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1 (in exactly that order), do any patterns arise?
Where are the rotations? Where are the reflections?

Problem 4.61. What does the Cayley diagram for Dn look like if we use {r, s} as the gen-
erating set? What if we use {s, s′} as the generating set?

4.3 Symmetric Groups

Recall the groups S2 and S3 from Problems 2.61 and 2.23. These groups act on two and
three coins, respectively, that are in a row by rearranging their positions (but not flipping
them over). These groups are examples of symmetric groups. In general, the symmetric
group on n objects is the set of permutations that rearranges the n objects. The group
operation is composition of permutations. Let’s be a little more formal.

Definition 4.62. A permutation of a set A is a function σ : A→ A that is both one-to-one
and onto.
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You should take a moment to convince yourself that the formal definition of a permu-
tation agrees with the notion of rearranging the set of objects. The do-nothing action is
the identity permutation, i.e., σ (a) = a for all a ∈ A. There are many ways to represent a
permutation. One visual way is using permutation diagrams, which we will introduce
via examples.

Consider the following diagrams:

α =

1 2 3 4 5r
r
r

r
r

r
r

r
r

r
β =

1 2 3 4 5r
r
r

r
r

r
r
r

r
r

σ =

1 2 3 4 5r
r
r

r
r

r
r

r
r

r
γ =

1 2 3 4 5r
r
r

r
r
r

r
r

r
r

Each of these diagrams represents a permutation on five objects. I’ve given the permu-
tations the names α, β, σ , and γ . The intention is to read the diagrams from the top
down. The numbers labeling the nodes along the top are identifying position. Following
an edge from the top row of nodes to the bottom row of nodes tells us what position an
object moves to. It is important to remember that the numbers are referring to the posi-
tion of an object, not the object itself. For example, β is the permutation that sends the
object in the second position to the fourth position, the object in the third position to the
second position, and the object in the fourth position to the third position. Moreover, the
permutation β doesn’t do anything to the objects in positions 1 and 5.

Problem 4.63. Describe in words what the permutations σ and γ do.

Problem 4.64. Draw the permutation diagram for the do-nothing permutation on 5 ob-
jects. This is called the identity permutation. What does the identity permutation dia-
gram look like in general for arbitrary n?

Definition 4.65. The set of all permutations on n objects is denoted by Sn.

Problem 4.66. Draw all the permutation diagrams for the permutations in S3.

Problem 4.67. How many distinct permutations are there in S4? How about Sn for any
n ∈ N?

If Sn is going to be a group, we need to know how to compose permutations. This
is easy to do using the permutation diagrams. Consider the permutations α and β from
earlier. We can represent the composition α ◦ β via

α ◦ β =

1 2 3 4 5

β

r
r
r

r
r

r
r
r

r
r

α

r
r
r

r
r

r
r

r
r

r
=

1 2 3 4 5r
r
r

r
r

r
r
r

r
r .

59



CHAPTER 4. FAMILIES OF GROUPS

As you can see by looking at the figure, to compose two permutations, you stack the
one that goes first in the composition (e.g., β in the example above) on top of the other
and just follow the edges from the top through the middle to the bottom. If you think
about how function composition works, this is very natural. The resulting permutation
is determined by where we begin and where we end in the composition.

We already know that the order of composition matters for functions, and so it should
matter for the composition of permutations. To make this crystal clear, let’s compose α
and β in the opposite order. We see that

β ◦α =

1 2 3 4 5

α

r
r
r

r
r

r
r

r
r

r
β

r
r
r

r
r

r
r
r

r
r

=

1 2 3 4 5r
r
r

r
r

r
r
r

r
r .

The moral of the story is that composition of permutations does not necessarily commute.

Problem 4.68. Consider α, β, σ , and γ from earlier. Can you find a pair of permutations
that do commute? Can you identify any features about your diagrams that indicate why
they commuted?

Problem 4.69. Fix n ∈ N. Convince yourself that any ρ ∈ Sn composed with the identity
permutation (in either order) equals ρ.

If Sn is going to be a group, we need to know what the inverse of a permutation is.

Problem 4.70. Given a permutation ρ ∈ Sn, describe a method for constructing ρ−1.
Briefly justify that ρ ◦ ρ−1 will yield the identity permutation.

At this point, we have all the ingredients we need to prove that Sn forms a group under
composition of permutations.

Theorem 4.71. The set of permutations on n objects forms a group under the operation
of composition. That is, (Sn,◦) is a group. Moreover, |Sn| = n!.

Note that it is standard convention to omit the composition symbol when writing
down compositions in Sn. For example, we will simply write αβ to denote α ◦ β.

Permutation diagrams are fun to play with, but we need a more efficient way of en-
coding information. One way to do this is using cycle notation. Consider α,β,σ , and γ in
S5 from the previous examples. Below I have indicated what each permutation is equal
to using cycle notation.
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α =

r
r
r

r
r

r
r

r
r

r = (1,2,3,4,5)

β =

r
r
r

r
r

r
r
r

r
r = (2,4,3)

σ =

r
r
r

r
r

r
r

r
r

r = (1,3)(2,5,4)

γ =

r
r
r

r
r
r

r
r

r
r = (1,5)

Each string of numbers enclosed by parentheses is called a cycle and if the string of
numbers has length k, then we call it a k-cycle. For example, α consists of a single 5-
cycle, whereas σ consists of one 2-cycle and one 3-cycle. In the case of σ , we say that σ is
the product of two disjoint cycles.

One observation that you hopefully made is that if an object in position i remains
unchanged, then we don’t bother listing that number in the cycle notation. However, if
we wanted to, we could use the 1-cycle (i) to denote this. For example, we could write
β = (1)(2,4,3)(5). In particular, we could denote the identity permutation in S5 using
(1)(2)(3)(4)(5). Yet, it is common to simply use (1) to denote the identity in Sn for all n.

Notice that the first number we choose to write down for a given cycle is arbitrary.
However, the numbers that follow are not negotiable. Typically, we would use the small-
est possible number first, but this is not necessary. For example, the cycle (2,4,7) could
also be written as (4,7,2) or (7,2,4).

Problem 4.72. Write down all 6 elements in S3 using cycle notation.

Problem 4.73. Write down all 24 elements in S4 using cycle notation.

Suppose σ ∈ Sn. Since σ is one-to-one and onto, it is clear that it is possible to write σ
as a product of disjoint cycles such that each i ∈ {1,2, . . . ,n} appears exactly once.

Let’s see if we can figure out how to multiply elements of Sn using cycle notation.
Consider the permutations α = (1,3,2) and β = (3,4) in S4. To compute the composition
αβ = (1,3,2)(3,4), let’s explore what happens in each position. Since we are doing func-
tion composition, we should work our way from right to left. Since 1 does not appear in
the cycle notation for β, we know that β(1) = 1 (i.e., β maps 1 to 1). Now, we see what
α(1) = 3. Thus, the composition αβ maps 1 to 3 (since αβ(1) = α(β(1)) = α(1) = 3). Next,
we should return to β and see what happens to 3—which is where we ended a moment
ago. We see that β maps 3 to 4 and then α maps 4 to 4 (since 4 does not appear in the
cycle notation for α). So, αβ(3) = 4. Continuing this way, we see that β maps 4 to 3 and α
maps 3 to 2, and so αβ maps 4 to 2. Lastly, since β(2) = 2 and α(2) = 1, we have αβ(2) = 1.
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Putting this altogether, we see that αβ = (1,3,4,2). Now, you should try a few. Things get
a little trickier if the composition of two permutations results in a permutation consisting
of more than a single cycle.

Problem 4.74. Consider α, β, σ , and γ for which we drew the permutation diagrams.
Using cycle notation, compute each of the following.

(a) αγ

(b) α2

(c) α3

(d) α4

(e) α5

(f) σα

(g) α−1σ−1

(h) β2

(i) β3

(j) βγα

(k) σ3

(l) σ6

Problem 4.75. Write down the group table for S3 using cycle notation.

In Problem 4.73, one of the permutations you should have written down is (1,2)(3,4).
This is a product of two disjoint 2-cycles. It is worth pointing out that each cycle is a
permutation in its own right. That is, (1,2) and (3,4) are each permutations. It just so
happens that their composition does not “simplify” any further. Moreover, these two dis-
joint 2-cycles commute since (1,2)(3,4) = (3,4)(1,2). In fact, this phenomenon is always
true.

Theorem 4.76. Suppose α and β are two disjoint cycles. Then αβ = βα. That is, products
of disjoint cycles commute.

Problem 4.77. Compute the orders of all the elements in S3. See Problem 4.72.

Problem 4.78. Compute the orders of any twelve of the elements in S4. See Problem 4.73.

Computing the order of a permutation is fairly easy using cycle notation once we
figure out how to do it for a single cycle. In fact, you’ve probably already guessed at the
following theorem.

Theorem 4.79. If α ∈ Sn such that α consists of a single k-cycle, then |α| = k.

Theorem 4.80. Suppose α ∈ Sn such that α consists ofm disjoint cycles of lengths k1, . . . , km.
Then |α| = lcm(k1, . . . , km).‖

Problem 4.81. Is the previous theorem true if we do not require the cycles to be disjoint?
Justify your answer.

Problem 4.82. What is the order of (1,4,7)(2,5)(3,6,8,9)?
‖Recall that lcm(k1, . . . , km) is the least common multiple of {k1, . . . , km}.
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Problem 4.83. Draw the subgroup lattice for S3.

Problem 4.84. Now, using (1,2) and (1,2,3) as generators, draw the Cayley diagram for
S3. Look familiar?

Problem 4.85. Consider S3.

(a) Using (1,2), (1,3), and (2,3) as generators, draw the Cayley diagram for S3.

(b) In the previous part, we used a generating set with three elements. Is there a smaller
generating set? If so, what is it?

Problem 4.86. Recall that there are 4! = 24 permutations in S4.

(a) Pick any 12 permutations from S4 and verify that you can write them as words in the
2-cycles (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). In most circumstances, your words will
not consist of products of disjoint 2-cycles. For example, the permutation (1,2,3)
can be decomposed into (1,2)(2,3), which is a word consisting of two 2-cycles that
happen to not be disjoint.

(b) Using your same 12 permutations, verify that you can write them as words only in
the 2-cycles (1,2), (2,3), (3,4).

By the way, it might take some trial and error to come up with a way to do this. Moreover,
there is more than one way to do it.

As the previous exercises hinted at, the 2-cycles play a special role in the symmetric
groups. In fact, they have a special name. A transposition is a single cycle of length 2. In
the special case that the transposition is of the form (i, i + 1), we call it an adjacent trans-
position. For example, (3,7) is a (non-adjacent) transposition while (6,7) is an adjacent
transposition.

It turns out that the set of transpositions in Sn is a generating set for Sn. In fact, the
adjacent transpositions form an even smaller generating set for Sn. To get some intuition,
let’s play with a few examples.

Problem 4.87. Try to write each of the following permutations as a product of transposi-
tions. You do not necessarily need to use adjacent transpositions.

(a) (3,1,5)

(b) (2,4,6,8)

(c) (3,1,5)(2,4,6,8)

(d) (1,6)(2,5,3)

The products you found in the previous exercise are called transposition representa-
tions of the given permutation.

Problem 4.88. Consider the arbitrary k-cycle (a1, a2, . . . , ak) from Sn (with k ≤ n). Find a
way to write this permutation as a product of 2-cycles.
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Problem 4.89. Consider the arbitrary 2-cycle (a,b) from Sn. Find a way to write this
permutation as a product of adjacent 2-cycles.

The previous two problems imply the following theorem.

Theorem 4.90. Consider Sn.

(a) Every permutation in Sn can be written as a product of transpositions.

(b) Every permutation in Sn can be written as a product of adjacent transpositions.

Corollary 4.91. The set of transpositions (respectively, the set of adjacent transpositions)
from Sn forms a generating set for Sn.

It is important to point out that the transposition representation of a permutation
is not unique. That is, there are many words in the transpositions that will equal the
same permutation. However, as we shall see in the next section, given two transposition
representations for the same permutation, the number of transpositions will have the
same parity (i.e., even versus odd).

Remark 4.92. Here are two interesting facts that I will let you ponder on your own time.

(a) The group of rigid motion symmetries for a cube is isomorphic to S4. To convince
yourself of this fact, first prove that this group has 24 actions and then ponder the
action of S4 on the four long diagonals of a cube.

(b) It turns out that you can generate S4 with (1,2) and (1,2,3,4). Moreover, you can
arrange the Cayley diagram for S4 with these generators on a truncated cube, which
is depicted in Figure 4.1. Try it.

Figure 4.1. Truncated cube. [Image source: Wikipedia]

It turns out that the subgroups of symmetric groups play an important role in group
theory.

Definition 4.93. Every subgroup of a symmetric group is called a permutation group.
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The proof of the following theorem isn’t too bad, but we’ll take it for granted. After
tinkering with a few examples, you should have enough intuition to see why the theorem
is true and how a possible proof might go.

Theorem 4.94 (Cayley’s Theorem). Every finite group is isomorphic to some permutation
group. In particular, if G is a group of order n, then G is isomorphic to a subgroup of Sn.

Cayley’s Theorem guarantees that every finite group is isomorphic to a permutation
group and it turns out that there is a rather simple algorithm for constructing the cor-
responding permutation group. I’ll briefly explain an example and then let you try a
couple.

Consider the Klein four-group V4 = {e,v,h,vh}. Recall that V4 has the following group
table.

∗ e v h vh

e e v h vh
v v e vh h
h h vh e v
vh vh h v e

If we number the elements e,v,h, and vh as 1,2,3, and 4, respectively, then we obtain
the following table.

1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

Comparing each of the four columns to the leftmost column, we can obtain the corre-
sponding permutations. In particular, we obtain

e↔ (1)
v↔ (1,2)(3,4)
h↔ (1,3)(2,4)
vh↔ (1,4)(2,3).

Do you see where these permutations came from? The claim is that the set of permu-
tations {(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} is isomorphic to V4. In this particular case,
it’s fairly clear that this is true. However, it takes some work to prove that this process
will always result in an isomorphic permutation group. In fact, verifying the algorithm
is essentially the proof of Cayley’s Theorem.

Since there are potentially many ways to rearrange the rows and columns of a given
table, it should be clear that there are potentially many isomorphisms that could result
from the algorithm described above.
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Here’s another way to obtain a permutation group that is isomorphic to a given group.
Let’s consider V4 again. Recall that V4 is a subset of D4, which is the symmetry group for
a square. Alternatively, V4 is the symmetry group for a non-square rectangle. Label the
corners of the rectangle 1, 2, 3, and 4 by starting in the upper left corner and continuing
clockwise. Recall that v is the action that reflects the rectangle over the vertical midline.
The result of this action is that the corners labeled by 1 and 2 switch places and the cor-
ners labeled by 3 and 4 switch places. Thus, v corresponds to the permutation (1,2)(3,4).
Similarly, h swaps the corners labeled by 1 and 4 and the corners labeled by 2 and 3, and
so h corresponds to the permutation (1,4)(2,3). Notice that this is not the same answer
we got earlier and that’s okay as there may be many permutation representations for a
given group. Lastly, vh rotates the rectangle 180◦ which sends ends up swapping corners
labeled 1 and 3 and swapping corners labeled by 2 and 4. Therefore, vh corresponds to
the permutation (1,3)(2,4).

Problem 4.95. Consider D4.

(a) Using the method outlined above, find a subgroup of S8 that is isomorphic to D4.

(b) Label the corners of a square 1–4. Find a subgroup of S4 that is isomorphic to D4 by
considering the natural action of D4 on the labels on the corners of the square.

Problem 4.96. Consider Z6.

(a) Using the method outlined earlier, find a subgroup of S6 that is isomorphic to Z6.

(b) Label the corners of a regular hexagon 1–6. Find a subgroup of S6 that is isomorphic
to Z6 by considering the natural action of Z6 on the labels on the corners of the
hexagon.

4.4 Alternating Groups

In this section, we describe a special class of permutation groups. To get started, let’s play
with a few exercises.

Problem 4.97. Write down every permutation in S3 as a product of 2-cycles in the most
efficient way you can find (i.e., use the fewest possible transpositions). Now, write every
permutation in S3 as a product of adjacent 2-cycles, but don’t worry about whether your
decompositions are efficient. Any observations about the number of transpositions you
used in each case? Think about even versus odd.

Lemma 4.98. If α1,α2, . . . ,αk is a collection of 2-cycles in Sn such that α1α2 · · ·αk = (1),
then k must be even.∗∗

Theorem 4.99. If σ ∈ Sn, then every transposition representation of σ has the same parity.

The previous theorem tells us that the following definition is well-defined.

∗∗Use strong induction on k. Start by showing that k , 1 but that the statement is true when k = 2. Then
assume that k > 2 and proceed by induction.
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Definition 4.100. A permutation is even (respectively, odd) if one of its transposition
representations consists of an even (respectively, odd) number of transpositions.

Problem 4.101. Classify all of the permutations in S3 as even or odd.

Problem 4.102. Classify all of the permutations in S4 as even or odd.

Problem 4.103. Determine whether (1,4,2,3,5) is even or odd. How about (1,4,2,3,5)(7,9)?

Problem 4.104. Consider the arbitrary k-cycle (a1, a2, . . . , ak) from Sn (with k ≤ n). When
will this cycle be odd versus even? Briefly justify your answer.

Problem 4.105. Conjecture a statement about when a permutation will be even versus
odd. Briefly justify your answer.

And finally, we are ready to introduce the alternating groups.

Definition 4.106. The set of all even permutations in Sn is denoted by An and is called
the alternating group.

Since we referred to An as a group, it darn well better be a group!

Theorem 4.107. The set An forms a group under composition of permutations and has
order n!/2.

Problem 4.108. Find A3. What group is A3 isomorphic to?

Problem 4.109. Find A4 and then draw its subgroup lattice. Is A4 abelian?

Problem 4.110. What is the order of A5? Is A5 abelian?

Problem 4.111. What are the possible orders for elements in S6 and A6? What about S7
and A7?

Problem 4.112. Does A8 contain an element of order 15? If so, find one. If not, explain
why no such element exists.

Remark 4.113. Below are a few interesting facts about A4 and A5, which we will state
without proof.

(a) The group of rigid motion symmetries for a regular tetrahedron is isomorphic to
A4.

(b) You can arrange the Cayley diagram for A4 with generators (1,2)(3,4) and (2,3,4)
on a truncated tetrahedron, which is depicted in Figure 4.2(a).

(c) You can arrange the Cayley diagram forA5 with generators (1,2)(3,4) and (1,2,3,4,5)
on a truncated icosahedron, which is given in Figure 4.2(b). You can also arrange
the Cayley diagram for A5 with generators (1,2,3) and (1,5)(2,4) on a truncated
dodecahedron seen in Figure 4.2(c).
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(a) (b) (c)

Figure 4.2. Truncated tetrahedron, truncated icosahedron, and truncated dodecahedron.
[Image source: Wikipedia]
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Chapter 5

Cosets, Lagrange’s Theorem, and Normal
Subgroups

5.1 Cosets

Undoubtably, you’ve noticed numerous times that if G is a group with H ≤ G and g ∈ G,
then both |H | and |g | divide |G|. The theorem that says this is always the case is called
Lagrange’s theorem and we’ll prove it towards the end of this chapter. We begin with a
definition.

Definition 5.1. Let G be a group and let H ≤ G and a ∈ G. The subsets

aH := {ah | h ∈H}
and

Ha := {ha | h ∈H}
are called the left and right cosets of H containing a, respectively.

To gain some insight, let’s tinker with an example. Consider the dihedral group D3 =
〈r, s〉 and let H = 〈s〉 ≤ D3. To compute the right cosets of H , we need to multiply all of
the elements of H on the right by the elements of G. We see that

He = {ee, se} = {e, s} =H
Hr = {er, sr} = {r, sr}
Hr2 = {er2, sr2} = {r2, rs}
Hs = {es, ss} = {s, e} =H
Hsr = {esr, ssr} = {sr, r}
Hrs = {ers, srs} = {rs, ssr2} = {rs, r2}.

Despite the fact that we made six calculations (one for each element in D3), if we scan the
list, we see that there are only 3 distinct cosets, namely

H =He =Hs = {e, s}
Hr =Hsr = {r, sr}
Hr2 =Hrs = {r2, rs}.
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We can make a few more observations. First, the resulting cosets formed a partition of
D3. That is, every element of D3 appears in exactly one coset. Moreover, all the cosets are
the same size—two elements in each coset in this case. Lastly, each coset can be named
in multiple ways. In particular, the elements of the coset are exactly the elements of D3
we multiplied H by. For example, Hr = Hsr and the elements of this coset are r and sr.
Shortly, we will see that these observations hold, in general.

Here is another significant observation we can make. Consider the Cayley diagram
for D3 with generating set {r, s} that is given in Figure 5.1. Given this Cayley diagram,
we can visualize the subgroup H and its clones. Moreover, H and its clones are exactly
the 3 right cosets of H . We’ll see that, in general, the right cosets of a given subgroup are
always the subgroup and its clones (see Problem 5.15).

e

rr2

s

rs sr

Figure 5.1. Cayley diagram for D3 with generating set {r, s}.

Problem 5.2. Consider the group D3. Find all the left cosets for H = 〈s〉. Are they the
same as the right cosets? Are they the same as the subgroup H and its clones that we can
see in the Cayley graph for D3 with generating set {r, s}?

As the previous exercise indicates, the collections of left and right cosets may not be
the same and when they are not the same, the subgroup and its clones do not coincide
with the left cosets.

You might be thinking that somehow right cosets are “better” than left cosets since we
were able to visualize them in the Cayley graph. However, this is just a consequence of
our convention of composing actions from right to left. If we had adopted a left to right
convention, then we would be able to visualize the left cosets in Cayley diagrams.

Computing left and right cosets using a group table is fairly easy. Hopefully, you
figured out in Problem 5.2 that the left cosets of H = 〈s〉 in D3 are H = {e, s}, srH = {r2, sr},
and rsH = {r, rs}. Now, consider the following group table for D3 that has the rows and
columns arranged according to the left cosets of H .
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∗ e s sr r2 rs r

e e s sr r2 rs r
s s e r rs r2 sr
sr sr r2 e s r rs
r2 r2 sr rs r s e
rs rs r r2 sr e s
r r rs s e sr r2

The left coset srH must appear in the row labeled by sr and in the columns labeled by the
elements of H = {e, s}. We’ve depicted this below.

∗ e s sr r2 rs r

e e s sr r2 rs r
s s e r rs r2 sr
sr sr r2 e s r rs
r2 r2 sr rs r s e
rs rs r r2 sr e s
r r rs s e sr r2

On the other hand, the right coset Hsr must appear in the column labeled by sr and the
rows labeled by the elements of H = {e, s}:

∗ e s sr r2 rs r

e e s sr r2 rs r
s s e r rs r2 sr
sr sr r2 e s r rs
r2 r2 sr rs r s e
rs rs r r2 sr e s
r r rs s e sr r2

As we can see from the tables, srH ,Hsr since {sr, r2} , {sr, r}. If we color the entire group
table for D3 according to which left coset an element belongs to, we get the following.

∗ e s sr r2 rs r

e e s sr r2 rs r
s s e r rs r2 sr
sr sr r2 e s r rs
r2 r2 sr rs r s e
rs rs r r2 sr e s
r r rs s e sr r2

We would get a similar table (but in this case, not identical) if we colored the elements
according to the right cosets.

Let’s tackle a few more examples.

Problem 5.3. Consider D3 and let K = 〈r〉.
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(a) Find all of the left cosets of K and then find all of the right cosets of K in D3. Any
observations?

(b) Write down the group table for D3, but this time arrange the rows and columns
according to the left cosets for K . Color the entire table according to which left coset
an element belongs to. Can you visualize the observations you made in part (a)?

Problem 5.4. Consider Q8. Let H = 〈i〉 and K = 〈−1〉.

(a) Find all of the left cosets of H and all of the right cosets of H in Q8.

(b) Write down the group table for Q8 so that rows and columns are arranged accord-
ing to the left cosets for H . Color the entire table according to which left coset an
element belongs to.

(c) Find all of the left cosets of K and all of the right cosets of K in Q8.

(d) Write down the group table for Q8 so that rows and columns are arranged accord-
ing to the left cosets for K . Color the entire table according to which left coset an
element belongs to.

Problem 5.5. Consider S4. Find all of the left cosets and all of the right cosets of A4 in
S4. Instead of doing brute-force, try to be clever. Hint: What happens when you compose
two even permutations versus an even permutation and an odd permutation?

Problem 5.6. Consider Z8. Find all of the left cosets and all of the right cosets of 〈4〉 in
Z8. Why do you know the left and right cosets are the same without actually verifying?

Problem 5.7. Consider (Z,+). Find all of the left cosets and all of the right cosets of 3Z in
Z. Why do you know the left and right cosets are the same without actually verifying?

Theorem 5.8. Let G be a group and let H ≤ G. If G is abelian, then for all a ∈ G, aH =Ha.
That is, if G is abelian, then the left cosets of H are the same as the right cosets of H .

Exercises 5.2 and 5.3 illustrate that if a group is non-abelian, then the cosets of a
subgroup may or may not coincide. That is, knowing that the group is non-abelian is not
enough to determine whether the left and right cosets are different.

In all of the examples we’ve seen so far, the left and right cosets partitioned G into
equal-sized chunks. We need to prove that this is true in general. To prove that the cosets
form a partition, we will define an appropriate equivalence relation.

Theorem 5.9. Let G be a group and let H ≤ G. Define ∼L and ∼R via

a ∼L b if and only if a−1b ∈H

and

a ∼R b if and only if ab−1 ∈H .

Then both ∼L and ∼R are equivalence relations.∗

∗You only need to prove that either ∼L or ∼R is an equivalence relation as the proof for the other is similar.
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Since ∼L and ∼R are equivalence relations, the corresponding equivalence classes form
a partition of G. If a ∈ G, then the “left” and “right” equivalence classes containing a are
given by

[a]∼L = {g ∈ G | a ∼L g}
and

[a]∼R = {g ∈ G | a ∼R g}.
The next theorem tells us that the equivalence classes determined by ∼L and ∼R are in-
deed the left and right cosets of H ≤ G, respectively.

Theorem 5.10. If G is a group and H ≤ G, then [a]∼L = aH and [a]∼R =Ha for all a ∈ G.

Corollary 5.11. If G is a group and H ≤ G, then the left (respectively, right) cosets of H
form a partition of G.

Next, we argue that all of the cosets have the same size.

Theorem 5.12. Let G be a group, H ≤ G, and a ∈ G. Define φ : H → aH via φ(h) = ah.
Then φ is one-to-one and onto.

Corollary 5.13. Let G be a group and let H ≤ G. Then all of the left and right cosets of H
are the same size as H . In other words #(aH) = |H | = #(Ha) for all a ∈ G.†

The next theorem provides a useful characterization of cosets. Each part can either be
proved directly or by appealing to previous results in this section.

Theorem 5.14. Let G be a group and let H ≤ G.

(a) If a ∈ G, then a ∈ aH (respectively, Ha).

(b) We have b ∈ aH (respectively, Ha) if and only if aH = bH (respectively, Ha =Hb).

(c) If a ∈H , then aH =H =Ha.

(d) If a <H , then for all h ∈H , ah <H (respectively, ha <H).

The upshot of part (b) of Theorem 5.14 is that cosets can have different names. In
particular, if b is an element of the left coset aH , then we could have just as easily called
the coset by the name bH . In this case, both a and b are called coset representatives.

The final result of this section verifies that the clones of a subgroup in a Cayley dia-
gram coincide with the right cosets of the subgroup.

Problem 5.15. Let G be a finite group with generating set S and let H be a proper sub-
group of G and suppose we can visualize the subgroup for H in the Cayley diagram for G
using S as the generating set.

(a) If g ∈ G, verify that the right coset Hg is a clone of H . Hint: Suppose s ∈ S and
h1,h2 ∈ H such that there is an arrow labeled by s that points from h1 to h2. Argue
that there is an arrow labeled by s pointing from h1g to h2g.

(b) If C is a clone of H , prove that C is a right coset of H .
†As you probably expect, #(aH) denotes the size of aH . Note that everything works out just fine even if H
has infinite order.
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5.2 Lagrange’s Theorem

We’re finally ready to state Lagrange’s Theorem, which is named after the Italian born
mathematician Joseph Louis Lagrange. It turns out that Lagrange did not actually prove
the theorem that is named after him. The theorem was actually proved by Carl Friedrich
Gauss in 1801.

Theorem 5.16 (Lagrange’s Theorem). Let G be a finite group and let H ≤ G. Then |H |
divides |G|.

This simple sounding theorem is extremely powerful. One consequence is that groups
and subgroups have a fairly rigid structure. Suppose G is a finite group and let H ≤ G.
Since G is finite, there must be a finite number of distinct left cosets, say H,a2H,. . . ,anH .
Corollary 5.13 tells us that each of these cosets is the same size. In particular, Lagrange’s
Theorem implies that for each i ∈ {1, . . . ,n}, |aiH | = |G|/n, or equivalently n = |G|/ |aiH |.
This is depicted in Figure 5.2, where each rectangle represents a coset and we’ve labeled
a single coset representative in each case.

e a2 an

H a2H anH

· · ·

Figure 5.2

One important consequence of Lagrange’s Theorem is that it narrows down the possi-
ble sizes for subgroups.

Problem 5.17. Suppose G is a group of order 48. What are the possible orders for sub-
groups of G?

Lagrange’s Theorem tells us what the possible orders of a subgroup are, but if k is a
divisor of the order of a group, it does not guarantee that there is a subgroup of order k.
It’s not too hard to show that the converse of Lagrange’s Theorem is true for cyclic groups.
However, it’s not true, in general.

Problem 5.18. Provide an example of a finite group G such that |G| has a divisor k but G
does not have a subgroup of order k.

Using Lagrange’s Theorem, we can quickly prove both of the following theorems.

Theorem 5.19. Let G be a finite group and let a ∈ G. Then |a| divides |G|.

Since the converse of Lagrange’s Theorem is not true, the converse of Theorem 5.19 is
not true either. However, it is much easier to find a counterexample.

Problem 5.20. Argue that S4 does not have any elements of order 8.
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Theorem 5.21. For every prime p, if G has order p, then G � Zp.

Corollary 5.22. For every prime p, there is a unique group of order p up to isomorphism.

Lagrange’s Theorem motivates the following definition.

Definition 5.23. Let G be a group and let H ≤ G. The index of H in G is the number of
cosets (left or right) of H in G. Equivalently, if G is finite, then the index of H in G is
equal to |G|/ |H |. We denote the index via [G :H].

Problem 5.24. Let H = 〈(1,2)(3,4), (1,3)(2,4)〉.

(a) Find [A4 :H].

(b) Find [S4 :H].

Problem 5.25. Find [Z : 4Z].

5.3 Normal Subgroups

We’ve seen an example where the left and right cosets of a subgroup were different and a
few examples where they coincided. In the latter case, the subgroup has a special name.

Definition 5.26. Let G be a group and let H ≤ G. If aH = Ha for all a ∈ G, then we say
that H is a normal subgroup. If H is a normal subgroup of G, then we write H E G.

Problem 5.27. Provide an example of group that has a subgroup that is not normal.

Problem 5.28. Suppose G is a finite group and let H ≤ G. If H E G and we arrange the
rows and columns of the group table for G according to the left cosets ofH and then color
the corresponding cosets, what property will the table have? Is the converse true? That
is, if the table has the property you discovered, will H be normal in G?

There are a few instances where we can guarantee that a subgroup will be normal.

Theorem 5.29. Suppose G is a group. Then {e}E G and G E G.

Theorem 5.30. If G is an abelian group, then all subgroups of G are normal.

A group does not have to be abelian in order for all the proper subgroups to be normal.

Problem 5.31. Argue that all of the proper subgroups of Q8 are normal in Q8.

Theorem 5.32. Suppose G is a group and let H ≤ G such that [G :H] = 2. Then H E G.

It turns out that normality is not transitive.

Problem 5.33. Consider 〈s〉 = {e, s} and 〈r2, sr2〉 = {e, r2, sr2, s}. It is clear that

〈s〉 ≤ 〈r2, sr2〉 ≤D4.

Show that 〈s〉E 〈r2, sr2〉 and 〈r2, sr2〉ED4, but 〈s〉5D4.
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The previous problem illustrates that H E K E G does not imply H E G.

Definition 5.34. Suppose G is a group and let H ≤ G. For g ∈ G, we define the conjugate
of H by g to be the set

gHg−1 := {ghg−1 | h ∈H}.

Theorem 5.35. Suppose G is a group and letH ≤ G. ThenH E G if and only if gHg−1 ⊆H
for all g ∈ G.

Another way of thinking about normal subgroups is that they are “closed under con-
jugation.” It’s not too hard to show that if gHg−1 ⊆ H for all g ∈ G, then we actually have
gHg−1 = H for all g ∈ G. This implies that H E G if and only if gHg−1 = H for all g ∈ G.
This seemingly stronger version of Theorem 5.35 is sometimes used as the definition of
normal subgroup. This discussion motivates the following definition.

Definition 5.36. Let G be a group and letH ≤ G. The normalizer ofH inG is defined via

NG(H) := {g ∈ G | gHg−1 =H}.

Theorem 5.37. If G is a group and H ≤ G, then NG(H) is a subgroup of G.

Theorem 5.38. If G is a group and H ≤ G, then H E NG(H). Moreover, NG(H) is the
largest subgroup of G in which H is normal.

It is worth pointing out that the “smallest” NG(H) can be is H itself—certainly a sub-
group is a normal subgroup of itself. Also, the “largest” that NG(H) can be is G, which
happens precisely when H is normal in G.

Problem 5.39. Find ND4
(V4).

Problem 5.40. Find ND3
(〈s〉).

We conclude this chapter with a few remarks. We’ve seen examples of groups that
have subgroups that are normal and subgroups that are not normal. In an abelian group,
all the subgroups are normal. It turns out that there are examples of groups that have no
normal subgroups. These groups are called simple groups. The smallest simple group
is A5, which has 60 elements and lots of proper nontrivial subgroups, none of which are
normal.

The classification of the finite simple groups is a theorem stating that every finite
simple group belongs to one of four categories:

1. A cyclic group with prime order;

2. An alternating group of degree at least 5;

3. A simple group of Lie type, including both

(a) the classical Lie groups, namely the simple groups related to the projective
special linear, unitary, symplectic, or orthogonal transformations over a finite
field;
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(b) the exceptional and twisted groups of Lie type (including the Tits group);

4. The 26 sporadic simple groups.

These groups can be seen as the basic building blocks of all finite groups, in a way remi-
niscent of the way the prime numbers are the basic building blocks of the natural num-
bers.

The classification theorem has applications in many branches of mathematics, as ques-
tions about the structure of finite groups (and their action on other mathematical objects)
can sometimes be reduced to questions about finite simple groups. Thanks to the clas-
sification theorem, such questions can sometimes be answered by checking each family
of simple groups and each sporadic group. The proof of the theorem consists of tens
of thousands of pages in several hundred journal articles written by about 100 authors,
published mostly between 1955 and 2004.

The classification of the finite simple groups is a modern achievement in abstract
algebra and I highly encourage you to go learn more about it. You might be especially
interested in learning about one of the sporadic groups called the Monster Group.
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Chapter 6

Products and Quotients of Groups

6.1 Products of Groups

In this section, we will discuss a method for using existing groups as building blocks to
form new groups.

Suppose (G,∗) and (H,�) are two groups. Recall that the Cartesian product of G and
H is defined to be

G ×H = {(g,h) | g ∈ G,h ∈H}
Using the binary operations for the groups G and H , we can define a binary operation on
the set G ×H . Define ? on G ×H via

(g1,h1) ? (g2,h2) = (g1 ∗ g2,h1 � h2).

This looks fancier than it is. We’re just doing the operation of each group in the appro-
priate component. It turns out that (G ×H,?) is a group.

Theorem 6.1. Suppose (G,∗) and (H,�) are two groups, where e and e′ are the identity
elements of G and H , respectively. Then (G × H,?) is a group, where ? is defined as
above. Moreover, (e,e′) is the identity of G×H and the inverse of (g,h) ∈ G×H is given by
(g,h)−1 = (g−1,h−1).

We refer toG×H as the direct product of the groupsG andH . Note that we abbreviate
(g1,h1) ? (g2,h2) = (g1 ∗ g2,h1 � h2) by (g1,h1)(g2,h2) = (g1g2,h1h2).

There’s no reason we can’t do this for more than two groups. If A1,A2, . . . ,An is a
collection of sets, we define

n∏
i=1

Ai := A1 ×A2 × · · · ×An.

Each element of
∏n
i=1Ai is of the form (a1, a2, . . . , an), where ai ∈ Ai .

Theorem 6.2. Let G1,G2, . . . ,Gn be groups. For (a1, a2, . . . , an), (b1,b2, . . . , bn) ∈
∏n
i=1Gi , de-

fine
(a1, a2, . . . , an)(b1,b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

Then
∏n
i=1Gi , the direct product of G1, . . . ,Gn, is a group under this binary operation.
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Note that each Gi above is called a factor of the direct product. One way to think
about direct products is that we can navigate the product by navigating each factor si-
multaneously but independently.

Theorem 6.3. Let G1,G2, . . . ,Gn be finite groups. Then

|G1 ×G2 × · · · ×Gn| = |G1| · |G2| · · · |Gn|.

Theorem 6.4. Let G1,G2, . . . ,Gn be groups. Then |G1 ×G2 × · · · ×Gn| is infinite if and only
if at least one |Gi | is infinite.

The following theorem should be clear.

Theorem 6.5. Let G1,G2, . . . ,Gn be groups. Then
∏n
i=1Gi is abelian if and only if each Gi

is abelian.

If each Gi is abelian, then we may use additive notation. For example, consider Z2×Z3
under the operation of addition mod 2 in the first component and addition mod 3 in the
second component. Then

Z2 ×Z3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}.

Since Z2 and Z3 are cyclic, both groups are abelian, and hence Z2 ×Z3 is abelian. In this
case, we will use additive notation in Z2 ×Z3. For example,

(0,1) + (1,2) = (1,0)

and
(1,2) + (0,2) = (1,1).

There is a very natural generating set for Z2×Z3, namely, {(1,0), (0,1)} since 1 ∈ Z2 and
1 ∈ Z3 generate Z2 and Z3, respectively.

Problem 6.6. Draw the Cayley diagram for Z2 ×Z3 using {(1,0), (0,1)} as the generating
set. Do you see a subgroup of Z2 ×Z3 isomorphic to Z2 in the Cayley diagram? What is
this subgroup? How about a subgroup isomorphic to Z3?

Problem 6.7. Prove that Z2 ×Z3 is a cyclic group of order 6 and hence isomorphic to R6.

Let’s play with a few more examples.

Problem 6.8. Consider Z2×Z2 under the operation of addition mod 2 in each component.
Find a generating set for Z2 ×Z2 and then create a Cayley diagram for this group. What
well-known group is Z2 ×Z2 isomorphic to?

Consider the similarities and differences between Z2×Z3 and Z2×Z2. Both groups are
abelian by Theorem 6.5, but only the former is cyclic. Here’s another exercise.

Problem 6.9. Consider Z2×Z4 under the operation of addition mod 2 in the first compo-
nent and addition mod 4 in the second component.
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(a) Using {(1,0), (0,1)} as the generating set, draw the Cayley diagram for Z2 ×Z4.

(b) Draw the subgroup lattice for Z2 ×Z4.

(c) Show that Z2 ×Z4 is abelian but not cyclic.

(d) Argue that Z2 ×Z4 cannot be isomorphic to any of D4, R8, and Q8.

The upshot of the previous problem is that there are at least four groups of order
8 up to isomorphism. It turns out that there are exactly five groups of order 8 up to
isomorphism. Three of these groups are non-abelian and two are abelian. Problem 6.24
asks you to find the remaining abelian group of order 8. Unfortunately, we will not
develop the tools necessary to prove that there are not more than 3 non-abelian groups of
order 8 up to isomorphism.

The next theorem tells us how to compute the order of an element in a direct product
of groups.

Theorem 6.10. Suppose G1,G2, . . . ,Gn are groups and let (g1, g2, . . . , gn) ∈
∏n
i=1Gi . If |gi | =

ri <∞, then |(g1, g2, . . . , gn)| = lcm(r1, r2, . . . , rn).

Problem 6.11. Find the order of each of the following elements.

(a) (6,5) ∈ Z12 ×Z7.

(b) (r, i) ∈D3 ×Q8.

(c) ((1,2)(3,4),3) ∈ S4 ×Z15.

Problem 6.12. Find the largest possible order of elements in each of the following groups.

(a) Z6 ×Z8

(b) Z9 ×Z12

(c) Z4 ×Z18 ×Z15

Theorem 6.13. The group Zm ×Zn is cyclic if and only if m and n are relatively prime.

Corollary 6.14. The group Zm ×Zn is isomorphic to Zmn if and only if m and n are rela-
tively prime.

The previous results can be extended to more than two factors.

Theorem 6.15. The group
∏n
i=1Zmi is cyclic and isomorphic to Zm1m2···mn if and only if

every pair from the collection {m1,m2, . . . ,mn} is relatively prime.

Problem 6.16. Determine whether each of the following groups is cyclic.

(a) Z7 ×Z8

(b) Z7 ×Z7
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(c) Z2 ×Z7 ×Z8

(d) Z5 ×Z7 ×Z8

Theorem 6.17. Suppose n = pn1
1 p

n2
2 · · ·p

nr
r , where each pi is a distinct prime number. Then

Zn � Zpn1
1
×Zpn2

2
× · · · ×Zpnrr .

Theorem 6.18. Suppose G and H are two groups. Then G ×H �H ×G.

Theorem 6.19. Suppose G1 and G2 are groups such that H1 ≤ G1 and H2 ≤ G2. Then
H1 ×H2 ≤ G1 ×G2.

However, not every subgroup of a direct product has the form above.

Problem 6.20. Find an example that illustrates that not every subgroup of a direct prod-
uct is the direct product of subgroups of the factors.

Theorem 6.21. SupposeG1 andG2 are groups with identities e1 and e2, respectively. Then
{e1} ×G2 E G1 ×G2 and G1 × {e2}E G1 ×G2.

Theorem 6.22. SupposeG1 andG2 are groups with identities e1 and e2, respectively. Then
{e1} ×G2 � G2 and G1 × {e2} � G1.

The next theorem describes precisely the structure of finite abelian groups. We will
omit its proof, but allow ourselves to utilize it as needed.

Theorem 6.23 (Fundamental Theorem of Finitely Generated Abelian Groups). Every finitely
generated abelian group G is isomorphic to a direct product of cyclic groups of the form

Zpn1
1
×Zpn2

2
× · · · ×Zpnrr ×Z

k ,

where each pi is a prime number (not necessarily distinct). The product is unique up to
rearrangement of the factors.

Note that the number k is called the Betti number. A finitely generated abelian group
is finite if and only if the Betti number is 0.

Problem 6.24. Find all abelian groups up to isomorphism of order 8. How many different
groups up to isomorphism (both abelian and non-abelian) have we seen and what are
they?

Problem 6.25. Find all abelian groups up to isomorphism for each of the following or-
ders.

(a) 16

(b) 12

(c) 25

(d) 30

(e) 60
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6.2 Quotients of Groups

In the previous section, we discussed a method for constructing “larger” groups from
“smaller” groups using a direct product construction. In this section, we will in some
sense do the opposite.

Problem 5.28 hinted that if H ≤ G and we arrange the group table according to the
left cosets of H , then the group table will have checkerboard pattern if and only if H is
normal in G (i.e., the left and right cosets ofH are the same). For example, see the colored
table prior to Problem 5.3 versus the ones you created in Exercises 5.3, 5.4. If we have
the checkerboard pattern in the group table that arises from a normal subgroup, then by
“gluing together” the colored blocks, we obtain a group table for a smaller group that has
the cosets as the elements.

For example, let’s consider K = 〈−1〉 ≤ Q8. Problem 5.4 showed us that K is normal
Q8. The left (and right) cosets of K in Q8 are

K = {1,−1}, iK = {i,−i}, jK = {j,−j}, and kK = {k,−k}.

As you found in Problem 5.4, if we arrange the rows and columns of Q8 according to
these cosets, we obtain the following group table.

∗ 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
−k −k k −j j i −i 1 −1

If we consider the 2 × 2 blocks as elements, it appears that we have a group table for
a group with 4 elements. Closer inspection reveals that this looks like the table for V4. If
the table of 2× 2 blocks is going to represent a group, we need to understand the binary
operation. How do we “multiply” cosets? For example, the table suggest that the coset
jK (colored in red) times the coset iK (colored in blue) is equal to kK (colored in purple)
despite the fact that ji = −k , k. Yet, it is true that the product ji = −k is an element in the
coset kK . In fact, if we look closely at the table, we see that if we pick any two cosets, the
product of any element of the first coset times any element of the second coset will always
result in an element in the same coset regardless of which representatives we chose.

In other words, it looks like we can multiply cosets by choosing any representative
from each coset and then seeing what coset the product of the representatives lies in.
However, it is important to point out that this will only work if we have a checkerboard
pattern of cosets, which we have seen evidence of only happening when the correspond-
ing subgroup is normal.

Before continuing, let’s continue tinkering with the same example. Consider the Cay-
ley diagram for Q8 with generators {i, j,−1} that is given in Figure 6.1(a).
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1 i

kj

−1 −i

−k−j

(a)

K iK

kKjK

(b)

Figure 6.1. The left subfigure shows the Cayley diagram for Q8 with generating set
{i, j,−1}. The right subfigure shows the collapsed Cayley diagram for Q8 according to
the left cosets of K = 〈−1〉.

We can visualize the right cosets of K as the clumps of vertices connected together
with the two-way green arrows. In this case, we are also seeing the left cosets since K is
normal in Q8. If we collapse the cosets onto each other and collapse the corresponding
arrows, we obtain the diagram given in Figure 6.1(b). It is clear that this diagram is
the Cayley diagram for a group that is isomorphic to V4. For reasons we will understand
shortly, this processing of collapsing a Cayley diagram according to the cosets of a normal
subgroup is called the “quotient process.”

Problem 6.26. Let’s see what happens if we attempt the quotient process for a subgroup
that is not normal. Consider H = 〈s〉 ≤ D3. In Problem 5.2, we discovered that the left
cosets of H are not the same as the right cosets of H . This implies that H is not normal in
D3. Consider the standard Cayley diagram for D3 that uses the generators r and s. Draw
the diagram that results from attempting the quotient process on D3 using the subgroup
H . Explain why this diagram cannot be the diagram for a group.

The problem that arises in Problem 6.26 is that if the same arrow types (i.e., those
representing the same generator) leaving a coset do not point at elements in the same
coset, attempting the quotient process will result in a diagram that cannot be a Cayley
diagram for a group since we have more than one arrow of the same type leaving a vertex.
In Figure 6.2(a), we illustrate what goes wrong if all the arrows for a generator pointing
out of a coset do not unanimously point to elements in the same coset. In Figure 6.2(b), all
the arrows point to elements in the same coset, and in this case, it appears that everything
works out just fine.

Problem 6.27. In Problem 5.3, we learned that the subgroup K = 〈r〉 is normal in D3
since the left cosets are equal to the right cosets. Note that this follows immediately from
Theorem 5.32 since [D3 : K] = 2. Draw the diagram that results from performing the
quotient process to D3 using the subgroup K . Does the resulting diagram represent a
group? If so, what group is it isomorphic to?
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g2H g3H

g1H
• • • •

• • • •

−→

g1H

g2H g3H

(a)

g2H

g1H
• • • •

•
• •

•

−→

g1H

g2H

(b)

Figure 6.2. In the left subfigure, blue arrows go from elements of the left coset g1H to
elements of multiple left cosets, which results in ambiguous blue arrows in the collapsed
diagram. This implies that left coset multiplication is not well-defined in this case. In the
right subfigure, blue arrows go from elements of the left coset g1H to elements inside a
unique left coset, which does not result in any ambiguity.

Now, suppose G is an arbitrary group and let H ≤ G. Consider the set of left cosets of
H . We define

(aH)(bH) := (ab)H.

The natural question to ask is whether this operation is well-defined. That is, does the re-
sult of multiplying two left cosets depend on our choice of representatives? More specif-
ically, suppose c ∈ aH and d ∈ bH . Then cH = aH and dH = bH . According to the
operation defined above, (cH)(dH) = cdH . It better be the case that cdH = abH , otherwise
the operation is not well-defined.

Problem 6.28. Let H = 〈s〉 ≤D3. Find specific examples of a,b,c,d ∈D3 such that

(aH)(bH) , (cH)(dH)

even though aH = cH and bH = dH .

Theorem 6.29. Let G be a group and let H ≤ G. Then left coset multiplication (as defined
above) is well-defined if and only if H E G.

Theorem 6.30. Let G be a group and letH E G. Then the set of left cosets ofH in G forms
a group under left coset multiplication.

The group from Theorem 6.30 is denoted by G/H , read “G mod H”, and is referred
to as the quotient group (or factor group) of G by H . If G is a finite group, then G/H is
exactly the group that arises from “gluing together” the colored blocks in a checkerboard-
patterned group table. It’s also the group that we get after applying the quotient process
to the Cayley diagram. It’s important to point out once more that this only works properly
if H is a normal subgroup.

Theorem 6.31. Let G be a group and let H E G. Then |G/H | = [G : H]. In particular, if G
is finite, then |G/H | = |G|/ |H |.

Problem 6.32. Find the order of the given element in the quotient group. You may assume
that we are taking the quotient by a normal subgroup.
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(a) s〈r〉 ∈D4/〈r〉

(b) j〈−1〉 ∈Q8/〈−1〉

(c) 5 + 〈4〉 ∈ Z12/〈4〉

(d) (2,1) + 〈(1,1)〉 ∈ (Z3 ×Z6)/〈(1,1)〉

Problem 6.33. For each quotient group below, describe the group. If possible, state what
group each is isomorphic to. You may assume that we are taking the quotient by a normal
subgroup.

(a) Q8/〈−1〉

(b) Q8/〈i〉

(c) Z4/〈2〉

(d) V4/〈h〉

(e) A4/〈(1,2)(3,4), (1,3)(2,4)〉

(f) (Z2 ×Z2)/〈(1,1)〉

(g) Z/4Z

(h) S4/A4

(i) (Z4 ×Z2)/({0} ×Z2)

Theorem 6.34. Let G be a group. Then

(a) G/{e} � G

(b) G/G � {e}

Theorem 6.35. For all n ∈ N, we have the following.

(a) Sn/An � Z2 (for n ≥ 3)

(b) Z/nZ � Zn

(c) R/nR � {e}

Theorem 6.36. Let G be a group and let H E G. If G is abelian, then so is G/H .

Problem 6.37. Show that the converse of the previous theorem is not true by providing a
specific counterexample.

Problem 6.38. Consider the quotient group (Z4 ×Z6)/〈(0,1)〉.

(a) What is the order of (Z4 ×Z6)/〈(0,1)〉?
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(b) Is the group abelian? Why?

(c) Write down all the elements of (Z4 ×Z6)/〈(0,1)〉.

(d) Does one of the elements generate the group?

(e) What well-known group is (Z4 ×Z6)/〈(0,1)〉 isomorphic to?

Theorem 6.39. Let G be a group and let H E G. If G is cyclic, then so is G/H .

Problem 6.40. Show that the converse of the previous theorem is not true by providing a
specific counterexample.

Here are few additional exercises. These ones are a bit tougher.

Problem 6.41. For each quotient group below, describe the group. If possible, state what
group each is isomorphic to. You may assume that we are taking the quotient by a normal
subgroup.

(a) (Z4 ×Z6)/〈(0,2)〉

(b) (Z×Z)/〈(1,1)〉

(c) Q/〈1〉 (the operation on Q is addition)
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Chapter 7

Homomorphisms and the Isomorphism
Theorems

7.1 Homomorphisms

Let G1 and G2 be groups. Recall that φ : G1→ G2 is an isomorphism if and only if φ

(a) is one-to-one,

(b) is onto, and

(c) satisfies the homomorphic property.

We say that G1 is isomorphic to G2 and write G1 � G2 if such a φ exists. Loosely speaking,
two groups are isomorphic if they have the “same structure.” What if we drop the one-to-
one and onto requirement?

Definition 7.1. Let (G1,∗) and (G2,�) be groups. A function φ : G1→ G2 is a homomor-
phism if and only if φ satisfies the homomorphic property:

φ(x ∗ y) = φ(x)�φ(y)

for all x,y ∈ G1. At the risk of introducing ambiguity, we will usually omit making explicit
reference to the binary operations and write the homomorphic property as

φ(xy) = φ(x)φ(y).

Group homomorphisms are analogous to linear transformations on vector spaces that
one encounters in linear algebra.

Figure 7.1 captures a visual representation of the homomorphic property. We encoun-
tered this same representation in Figure 3.9. If φ(x) = x′, φ(y) = y′, and φ(z) = z′ while
z′ = x′ � y′, then the only way G2 may respect the structure of G1 is for

φ(x ∗ y) = φ(z) = z′ = x′ � y′ = φ(x)�φ(y).
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∗ y

x z −→

� y′

x′ z′

Figure 7.1

Problem 7.2. Define φ : Z3 → D3 via φ(k) = rk. Prove that φ is a homomorphism and
then determine whether φ is one-to-one or onto. Also, try to draw a picture of the homo-
morphism in terms of Cayley diagrams.

Problem 7.3. Let G and H be groups. Prove that the function φ : G ×H → G given by
φ(g,h) = g is a homomorphism. This function is an example of a projection map.

There is always at least one homomorphism between two groups.

Theorem 7.4. Let G1 and G2 be groups. Define φ : G1 → G2 via φ(g) = e2 (where e2 is
the identity of G2). Then φ is a homomorphism. This function is often referred to as the
trivial homomorphism or the 0-map.

Back in Section 3.3, we encountered several theorems about isomorphisms. However,
at the end of that section we remarked that some of those theorems did not require that
the function be one-to-one and onto. We collect those results here for convenience.

Theorem 7.5. Let G1 and G2 be groups and suppose φ : G1→ G2 is a homomorphism.

(a) If e1 and e2 are the identity elements of G1 and G2, respectively, then φ(e1) = e2.

(b) For all g ∈ G1, we have φ(g−1) = [φ(g)]−1.

(c) If H ≤ G1, then φ(H) ≤ G2, where

φ(H) := {y ∈ G2 | there exists h ∈H such that φ(h) = y}.

Note that φ(H) is called the image of H . A special case is when H = G1. Notice that
φ is onto exactly when φ(G1) = G2.

The following theorem is a consequence of Lagrange’s Theorem.

Theorem 7.6. LetG1 andG2 be groups such thatG2 is finite and letH ≤ G1. Ifφ : G1→ G2
is a homomorphism, then |φ(H)| divides |G2|.

The next theorem tells us that under a homomorphism, the order of the image of an
element must divide the order of the pre-image of that element.

Theorem 7.7. Let G1 and G2 be groups and suppose φ : G1→ G2 is a homomorphism. If
g ∈ G1 such that |g | is finite, then |φ(g)| divides |g |.
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Every homomorphism has an important subset of the domain associated with it.

Definition 7.8. Let G1 and G2 be groups and suppose φ : G1→ G2 is a homomorphism.
The kernel of φ is defined via

ker(φ) := {g ∈ G1 | φ(g) = e2}.

The kernel of a homomorphism is analogous to the null space of a linear transforma-
tion of vector spaces.

Problem 7.9. Identify the kernel and image for the homomorphism given in Problem 7.2.

Problem 7.10. What is the kernel of a trivial homomorphism (see Theorem 7.4).

Theorem 7.11. Let G1 and G2 be groups and suppose φ : G1 → G2 is a homomorphism.
Then ker(φ)E G1.

Theorem 7.12. Let G be a group and let H E G. Then the map γ : G → G/H given
by γ(g) = gH is a homomorphism with ker(γ) = H . This map is called the canonical
projection map.

The upshot of Theorems 7.11 and 7.12 is that kernels of homomorphisms are always
normal and every normal subgroup is the kernel of some homomorphism. It turns out
that the kernel can tell us whether φ is one-to-one.

Theorem 7.13. Let G1 and G2 be groups and suppose φ : G1 → G2 is a homomorphism.
Then φ is one-to-one if and only if ker(φ) = {e1}, where e1 is the identity in G1.

Remark 7.14. Let G1 and G2 be groups and suppose φ : G1 → G2 is a homomorphism.
Given a generating set for G1, the homomorphism φ is uniquely determined by its action
on the generating set for G1. In particular, if you have a word for a group element written
in terms of the generators, just apply the homomorphic property to the word to find the
image of the corresponding group element.

Problem 7.15. Suppose φ : Q8 → V4 is a group homomorphism satisfying φ(i) = h and
φ(j) = v.

(a) Find φ(1), φ(−1), φ(k), φ(−i), φ(−j), and φ(−k).

(b) Find ker(φ).

(c) What well-known group is Q8/ ker(φ) isomorphic to?

Problem 7.16. Find a non-trivial homomorphism from Z10 to Z6.

Problem 7.17. Find all non-trivial homomorphisms from Z3 to Z6.

Problem 7.18. Prove that the only homomorphism from D3 to Z3 is the trivial homomor-
phism.

Problem 7.19. Let F be the set of all functions from R to R and let D be the subset of
differentiable functions on R. It turns out that F is a group under addition of functions
and D is a subgroup of F (you do not need to prove this). Define φ : D → F via φ(f ) = f ′

(where f ′ is the derivative of f ). Prove that φ is a homomorphism. You may recall facts
from calculus without proving them. Is φ one-to-one? Onto?
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7.2 The Isomorphism Theorems

The next theorem is arguably the crowning achievement of the course.

Theorem 7.20 (The First Isomorphism Theorem). Let G1 and G2 be groups and suppose
φ : G1→ G2 is a homomorphism. Then

G1/ ker(φ) � φ(G1).

If φ is onto, then
G1/ ker(φ) � G2.

Problem 7.21. Let φ : Q8 → V4 be the homomorphism described in Problem 7.15. Use
the First Isomorphism Theorem to prove that Q8/〈−1〉 � V4.

Problem 7.22. Define φ : Sn→ Z2 via

φ(σ ) =

0, σ even
1, σ odd.

Use the First Isomorphism Theorem to prove that Sn/An � Z2.

Problem 7.23. Use the First Isomorphism Theorem to prove that Z/6Z � Z6. Attempt to
draw a picture of this using Cayley diagrams.

Problem 7.24. Use the First Isomorphism Theorem to prove that (Z4×Z2)/({0}×Z2) � Z4.

The next theorem is a generalization of Theorem 7.7 and follows from the First Iso-
morphism Theorem together with Lagrange’s Theorem.

Theorem 7.25. Let G1 and G2 be groups and suppose φ : G1 → G2 is a homomorphism.
If G1 is finite, then |φ(G1)| divides |G1|.

We finish the chapter by listing a few of the remaining isomorphism theorems.

Theorem 7.26 (The Second Isomorphism Theorem). Let G be a group with H ≤ G and
N E G. Then

(a) HN := {hn | h ∈H,n ∈N } ≤ G;

(b) H ∩N EH ;

(c) H/(H ∩N ) �HN/N .

Theorem 7.27 (The Third Isomorphism Theorem). Let G be a group with H,K E G and
K ≤H . Then H/K E G/K and

G/H � (G/K)/(H/K).

The last isomorphism theorem is sometimes called the Lattice Isomorphism Theorem or
the Correspondence Theorem.
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Theorem 7.28 (The Fourth Isomorphism Theorem). Let G be a group with N E G. Then
there is a bijection from the set of subgroups ofG that containN onto the set of subgroups
of G/N . In particular, every subgroup G is of the form H/N for some subgroup H of G
containing N (namely, its pre-image in G under the canonical projection homomorphism
from G to G/N .) This bijection has the following properties: for all H,K ⊆ G with N ⊆ H
and N ⊆ K , we have

(a) H ⊂ K if and only if H/N ⊂ K/N

(b) If H ⊂ K , then |K :H | = |K/N :H/N |

(c) 〈H,K〉/N = 〈H/N,K/N 〉

(d) (H ∩K)/N =H/N ∩K/N

(e) H E G if and only if H/N E G/N .
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Chapter 8

An Introduction to Rings

8.1 Definitions and Examples

Recall that a group is a set together with a single binary operation, which together satisfy
a few modest properties. Loosely speaking, a ring is a set together with two binary oper-
ations (called addition and multiplication) that are related via a distributive property.

Definition 8.1. A ring R is a set together with two binary operations + and · (called
addition and multiplication, respectively) satisfying the following:

(i) (R,+) is an abelian group.

(ii) · is associative: (a · b) · c = a · (b · c) for all a,b,c ∈ R.

(iii) The distributive property holds: a · (b+ c) = (a ·b) + (a · c) and (a+b) · c = (a · c) + (b · c)
for all a,b,c ∈ R.

Remark 8.2. We make a couple comments about notation.

(a) We often write ab in place of a · b.

(b) The additive inverse of the ring element a ∈ R is denoted −a.

Theorem 8.3. If R is a ring, then for all a,b ∈ R:

(a) 0a = a0 = 0

(b) (−a)b = a(−b) = −(ab)

(c) (−a)(−b) = ab

Definition 8.4. A ring R is called commutative if multiplication is commutative.

Definition 8.5. A ring R is said to have an identity (or called a ring with 1) if there is an
element 1 ∈ R such that 1a = a1 = a for all a ∈ R.

Problem 8.6. Justify that Z is a commutative ring with 1 under the usual operations of
addition and multiplication. Which elements have multiplicative inverses in Z?
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Problem 8.7. Justify that Zn is a commutative ring with 1 under addition and multipli-
cation mod n.

Problem 8.8. Consider the set Z10 = {0,1,2,3,4,5,6,7,8,9}. Which elements have multi-
plicative inverses in Z10?

Problem 8.9. For each of the following, find a positive integer n such that the ring Zn
does not have the stated property.

(a) a2 = a implies a = 0 or a = 1.

(b) ab = 0 implies a = 0 or b = 0.

(c) ab = ac and a , 0 imply b = c.

Theorem 8.10. If R is a ring with 1, then the multiplicative identity is unique and −a =
(−1)a.

Problem 8.11. Requiring (R,+) to be a group is fairly natural, but why require (R,+) to be
abelian? Suppose R has a 1. Compute (1 + 1)(a+ b) in two different ways.

Definition 8.12. A ring R with 1 (with 1 , 0) is called a division ring if every nonzero
element in R has a multiplicative inverse: if a ∈ R \ {0}, then there exists b ∈ R such that
ab = ba = 1.

Definition 8.13. A commutative division ring is called a field.

Definition 8.14. A nonzero element a in a ring R is called a zero divisor if there is a
nonzero element b ∈ R such that either ab = 0 or ba = 0.

Problem 8.15. Are there any zero divisors in Z10? If so, find all of them.

Problem 8.16. Are there any zero divisors in Z5? If so, find all of them.

Problem 8.17. Provide an example of a ring R and elements a,b ∈ R such that ax = b has
more than one solution. How does this compare with groups?

Theorem 8.18 (Cancellation Law). Assume a,b,c ∈ R such that a is not a zero divisor. If
ab = ac, then either a = 0 or b = c.

Definition 8.19. Assume R is a ring with 1 with 1 , 0. An element u ∈ R is called a unit
in R if u has a multiplicative inverse (i.e., there exists v ∈ R such that uv = vu = 1). The
set of units in R is denoted U (R).

Problem 8.20. Consider the ring Z20.

(a) Find U (Z20).

(b) Find the zero divisors of Z20.

(c) Any observations?
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Theorem 8.21. If U (R) , ∅, then U (R) forms a group under multiplication.

Remark 8.22. We make a few observations.

(a) A field is a commutative ring F with identity 1 , 0 in which every nonzero element
is a unit, i.e., U (F) = F \ {0}.

(b) Zero divisors can never be units.

(c) Fields never have zero divisors.

Definition 8.23. A commutative ring with identity 1 , 0 is called an integral domain if
it has no zero divisors.

Remark 8.24. The Cancellation Law (Theorem 8.18) holds in integral domains for any
three elements.

Theorem 8.25. Any finite integral domain is a field.

Example 8.26. Here are a few examples. Details left as an exercise.

(a) Zero Ring: If R = {0}, we can turn R into a ring in the obvious way. The zero
ring is a finite commutative ring with 1. It is the only ring where the additive and
multiplicative identities are equal. The zero ring is not a division ring, not a field,
and not an integral domain.

(b) Trivial Ring: Given any abelian group R, we can turn R into a ring by defining
multiplication via ab = 0 for all a,b ∈ R. Trivial rings are commutative rings in
which every nonzero element is a zero divisor. Hence a trivial ring is not a division
ring, not a field, and not a integral domain.

(c) The integers form an integral domain, but Z is not a division ring, and hence not a
field.

(d) The rational numbers Q, the real numbers R, and the complex numbers C are fields
under the usual operations of addition and multiplication.

(e) The group of units U (Zn) is the set of elements in Zn that are relatively prime to n.
All other nonzero elements are zero divisors. It turns out that Zn forms a finite field
if and only if n is prime.

(f) The set of even integers 2Z forms a commutative ring under the usual operations of
addition and multiplication. However, 2Z does not have a 1, and hence cannot be a
division ring nor a field nor an integral domain.

(g) Polynomial Ring: Fix a commutative ring R. Let R[x] denote the set of polynomials
in the variable x with coefficients in R. Then R[x] is a commutative ring. Moreover,
R[x] is a ring with 1 if and only if R is a ring with 1. The units of R[x] are exactly the
units of R (if there are any). So, R[x] is never a division ring nor a field. However, if
R is an integral domain, then so is R[x].
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(h) Matrix Ring: Fix a ring R and let n be a positive integer. Let Mn(R) be the set of
n×n matrices with entries from R. Then Mn(R) forms a ring under ordinary matrix
addition and multiplication. If R is nontrivial and n ≥ 2, thenMn(R) always has zero
divisors andMn(R) is not commutative even if R is. If R has a 1, then the matrix with
1’s down the diagonal and 0’s elsewhere is the multiplicative identity in Mn(R). In
this case, the group of units is the set of invertible n × n matrices, denoted GLn(R)
and called the general linear group of degree n over R.

(i) Quadratic Field: Define Q(
√

2) = {a + b
√

2 | a,b ∈ Q}. It turns out that Q(
√

2) is a
field. In fact, we can replace 2 with any rational number that is not a perfect square
in Q.

(j) Hamilton Quaternions: Define H = {a+ bi + cj + dk | a,b,c,d ∈ R, i, j,k ∈Q8} Then H
forms a ring, where addition is definite componentwise in i, j, and k and multipli-
cation is defined by expanding products and the simplifying using the relations of
Q8. It turns out that H is a non-commutative ring with 1.

Problem 8.27. Find an example of a ring R and an element a ∈ R\{0} such that a is neither
a zero divisor nor a unit.

Definition 8.28. A subring of a ring R is a subgroup of R under addition that is also
closed under multiplication.

Remark 8.29. The property “is a subring” is clearly transitive. To show that a subset S of
a ring R is a subring, it suffices to show that S , ∅, S is closed under subtraction, and S is
closed under multiplication.

Example 8.30. Here are a few quick examples.

(a) Z is a subring of Q, which is a subring of R, which in turn is a subring of C.

(b) 2Z is a subring of Z.

(c) The set Z(
√

2) = {a+ b
√

2 | a,b ∈ Z} is a subring of Q(
√

2).

(d) The ring R is a subring of R[x] if we identify R with set of constant functions.

(e) The set of polynomials with zero constant term in R[x] is a subring of R[x].

(f) Z[x] is a subring of Q[x].

(g) Zn is not a subring of Z as the operations are different.

Problem 8.31. Consider the ring Z10 from Problem 8.8. Let S = {0,2,4,6,8}.

(a) Argue that S is a subring of Z10.

(b) Is S a ring with 1? If so, find the multiplicative identity. If not, explain why.

(c) Is S a field? Justify your answer.
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Problem 8.32. Suppose R is a ring and let a ∈ R. Define S = {x ∈ R | ax = 0}. Prove that S
is a subring of R.

Problem 8.33. Consider the ring Z. It turns out that 2Z and 3Z are subrings (but you
don’t need to prove this). Determine whether 2Z ∪ 3Z is a subring of Z. Justify your
answer.

8.2 Ring Homomorphisms

Definition 8.34. Let R and S be rings. A ring homomorphism is a map φ : R→ S satis-
fying

(a) φ(a+ b) = φ(a) +φ(b)

(b) φ(ab) = φ(a)φ(b)

for all a,b ∈ R. The kernel of φ is defined via ker(φ) = {a ∈ R | φ(a) = 0}. If φ is a bijection,
then φ is called an isomorphism, in which case, we say that R and S are isomorphic rings
and write R � S.

Example 8.35.

(a) For n ∈ Z, define φn : Z → Z via φn(x) = nx. We see that φn(x + y) = n(x + y) =
nx+ny = φn(x)+φn(y). However, φn(xy) = n(xy) while φn(x)φn(y) = (nx)(ny) = n2xy.
It follows that φn is a ring homomorphism exactly when n ∈ {0,1}.

(b) Define φ : Q[x]→Q via φ(p(x)) = p(0) (called evaluation at 0). It turns out that φ is
a ring homomorphism, where ker(φ) is the set of polynomials with 0 constant term.

Problem 8.36. For each of the following, determine whether the given function is a ring
homomorphism. Justify your answers.

(a) Define φ : Z4→ Z12 via φ(x) = 3x.

(b) Define φ : Z10→ Z10 via φ(x) = 5x.

(c) Let S =
{(
a b
−b a

)
| a,b ∈ R

}
. Define φ : C→ S via φ(a+ ib) =

(
a b
−b a

)
.

(d) Let T =
{(
a b
0 c

)
| a,b ∈ Z

}
. Define φ : T → Z via φ

((
a b
0 c

))
= a.

Theorem 8.37. Let φ : R→ S be a ring homomorphism.

(a) φ(R) is a subring of S.

(b) ker(φ) is a subring of R.
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Problem 8.38. Suppose φ : R→ S is a ring homomorphism such that R is a ring with 1,
call it 1R. Prove that φ(1R) is the multiplicative identity in φ(R) (which is a subring of
S). Can you think of an example of a ring homomorphism where S has a multiplicative
identity that is not equal to φ(1R)?

Theorem 8.37(b) states that the kernel of a ring homomorphism is a subring. This is
analogous to the kernel of a group homomorphism being a subgroup. However, recall
that the kernel of a group homomorphism is also a normal subgroup. Like the situation
with groups, we can say something even stronger about the kernel of a ring homomor-
phism. This will lead us to the notion of an ideal.

Theorem 8.39. Let φ : R → S be a ring homomorphism. If α ∈ ker(φ) and r ∈ R, then
αr,rα ∈ ker(φ). That is, ker(φ) is closed under multiplication by elements of R.

8.3 Ideals and Quotient Rings

Recall that in the case of a homomorphism φ of groups, the cosets of ker(φ) have the
structure of a group (that happens to be isomorphic to the image of φ by the First Iso-
morphism Theorem). In this case, ker(φ) is the identity of the associated quotient group.
Moreover, recall that every kernel is a normal subgroup of the domain and every normal
subgroup can be realized as the kernel of some group homomorphism. Can we do the
same sort of thing for rings?

Let φ : R→ S be a ring homomorphism with ker(φ) = I . Note that φ is also a group
homomorphism of abelian groups and the cosets of ker(φ) are of the form r + I . More
specifically, if φ(r) = a, then φ−1(a) = r + I .

These cosets naturally have the structure of a ring isomorphic to the image of φ:

(r + I) + (s+ I) = (r + s) + I (8.1)
(r + I)(s+ I) = (rs) + I (8.2)

The reason for this is that if φ−1(a) = X and φ−1(b) = Y , then the inverse image of a + b
and ab are X +Y and XY , respectively.

The corresponding ring of cosets is called the quotient ring of R by I = ker(φ) and
is denoted by R/I . The additive structure of the quotient ring R/I is exactly the additive
quotient group of the additive abelian group R by the normal subgroup I (all subgroups
are normal in abelian groups). When I is the kernel of some ring homomorphism φ,
the additive abelian quotient group R/I also has a multiplicative structure defined in (2)
above, making R/I into a ring.

Can we make R/I into a ring for any subring I?

The answer is “no” in general, just like in the situation with groups. But perhaps this
isn’t obvious because if I is an arbitrary subring of R, then I is necessarily an additive
subgroup of the abelian group R, which implies that I is an additive normal subgroup of
the group R. It turns out that the multiplicative structure of R/I may not be well-defined
if I is an arbitrary subring.
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Let I be an arbitrary subgroup of the additive group R. Let r + I and s + I be two
arbitrary cosets. In order for multiplication of the cosets to be well-defined, the product
of the two cosets must be independent of choice of representatives. Let r +α and s + β be
arbitrary representatives of r + I and s + I , respectively (α,β ∈ I), so that r + I = (r +α) + I
and s+ I = (s+ β) + I . We must have

(r +α)(s+ β) + I = rs+ I. (8.3)

This needs to be true for all possible choices of r, s ∈ R and α,β ∈ I . In particular, it must
be true when r = s = 0. In this case, we must have

αβ + I = I. (8.4)

But this only happens when αβ ∈ I . That is, one requirement for multiplication of cosets
to be well-defined is that I must be closed under multiplication, making I a subring.

Next, if we let s = 0 and let r be arbitrary, we see that we must have rβ ∈ I for every
r ∈ R and every β ∈ I . That is, it must be the case that I is closed under multiplication on
the left by elements from R. Similarly, letting r = 0, we can conclude that we must have I
closed under multiplication on the right by elements from R.

On the other hand, if I is closed under multiplication on the left and on the right by
elements from R, then it is clear that relation (4) above is satisfied.

It is easy to verify that if the multiplication of cosets defined in (2) above is well-
defined, then this multiplication makes the additive quotient group R/I into a ring (just
check the axioms for being a ring).

We have shown that the quotient R/I of the ring R by a subgroup I has a natural ring
structure if and only if I is closed under multiplication on the left and right by elements
of R (which also forces I to be a subring). Such subrings are called ideals.

Definition 8.40. Let R be a ring and let I be a subset of R.

(a) I is a left ideal (respectively, right ideal) of R if I is a subring and rI ⊆ I (respec-
tively, Ir ⊆ I) for all r ∈ R.

(b) I is an ideal (or two-sided ideal) if I is both a left and a right ideal.

Here’s a summary of everything that just happened.

Theorem 8.41. Let R be a ring and let I be an ideal of R. Then the additive quotient group
R/I is a ring under the binary operations:

(r + I) + (s+ I) = (r + s) + I (8.5)
(r + I)(s+ I) = (rs) + I (8.6)

for all r, s ∈ R. Conversely, if I is any subgroup such that the above operations are well-
defined, then I is an ideal of R.

Theorem 8.42. If R a commutative ring and I is an ideal of R, then R/I is a commutative
ring.
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Theorem 8.43. Suppose I and J are ideals of the ring R. Then I ∩ J is an ideal of R.

As you might expect, we have some isomorphism theorems.

Theorem 8.44 (First Isomorphism Theorem for Rings). If φ : R→ S is a ring homomor-
phism, then ker(φ) is an ideal of R and R/ ker(φ) � φ(R).

We also have the expected Second, Third, and Fourth Isomorphism Theorems for
rings. The next theorem tells us that a subring is an ideal if and only if it is a kernel
of a ring homomorphism.

Theorem 8.45. If I is any ideal of R, then the natural projection π : R→ R/I defined via
π(r) = r + I is a surjective ring homomorphism with ker(π) = I .

For the remainder of this section, assume that R is a ring with identity 1 , 0.

Definition 8.46. Let A be any subset of R. Let (A) denote the smallest ideal of R contain-
ing A, called the ideal generated by A. If A consists of a single element, say A = {a}, then
(a) := ({a}) is called a principal ideal.

Remark 8.47. The following facts are easily verified.

(a) (A) is the intersection of all ideals containing A.

(b) If R is commutative, then (a) = aR := {ar | r ∈ R}.

Example 8.48. In Z, nZ = (n) = (−n). In fact, these are the only ideals in Z (since these are
the only subgroups). So, all the ideals in Z are principal. If m and n are positive integers,
then nZ ⊆ mZ if and only if m divides n. Moreover, we have (m,n) = (d), where d is the
greatest common divisor of m and n.

Problem 8.49. Consider the ideal (2,x) in Z[x]. Note that (2,x) = {2p(x)+xq(x) | p(x),q(x) ∈
Z[x]}. Argue that (2,x) is not a principal ideal, i.e., there is no single polynomial in Z[x]
that we can use to generate (2,x).

Theorem 8.50. Assume R is a commutative ring with 1 , 0. Let I be an ideal of R. Then
I = R if and only if I contains a unit.

Theorem 8.51. Assume R is a commutative ring with 1 , 0. Then R is a field if and only
if its only ideals are (0) and R.

Loosely speaking, the previous results say that fields are “like simple groups” (i.e,
groups with no non-trivial normal subgroups).

Corollary 8.52. If R is a field, then every nonzero ring homomorphism from R into an-
other ring is an injection.
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8.4 Maximal and Prime Ideals

In this section of notes, we will study two important classes of ideals, namely maximal
and prime ideals, and study the relationship between them. Throughout this entire sec-
tion, we assume that all rings have a multiplicative identity 1 , 0.

Definition 8.53. Assume R is a commutative ring with 1. An ideal M in a ring R is called
a maximal ideal if M , R and the only ideals containing M are M and R.

Example 8.54. Here are a few examples. Checking the details is left as an exercise.

(a) In Z, all the ideals are of the form nZ for n ∈ Z+. The maximal ideals correspond to
the ideals pZ, where p is prime.

(b) Consider the integral domain Z[x]. The ideals (x) (i.e., the subring containing poly-
nomials with 0 constant term) and (2) (i.e, the set of polynomials with even coeffi-
cients) are not maximal since both are contained in the proper ideal (2,x). However,
as we shall see soon, (2,x) is maximal in Z[x].

(c) The zero ring has no maximal ideals.

(d) Consider the abelian group Q under addition. We can turn Q into a trivial ring
by defining ab = 0 for all a,b ∈ Q. In this case, the ideals are exactly the additive
subgroups of Q. However, Q has no maximal subgroups, and so Q has no maximal
ideals.

The next result states that rings with an identity 1 , 0 always have maximal ideals. It
turns out that we won’t need this result going forward, so we’ll skip its proof. However,
it is worth noting that all known proofs make use of Zorn’s Lemma (equivalent to the
Axiom of Choice), which is also true for the proofs that a finitely generated group has
maximal subgroups or that every vector spaces has a basis.

Theorem 8.55. In a ring with 1, every proper ideal is contained in a maximal ideal.

For commutative rings, there is a very nice characterization about maximal ideals in
terms of the structure of their quotient rings.

Theorem 8.56. Assume R is a commutative ring with 1. ThenM is a maximal ideal if and
only if the quotient ring R/M is a field.

Example 8.57. We can use the previous theorem to verify whether an ideal is maximal.

(a) Recall that Z/nZ � Zn and that Zn is a field if and only if n is prime. We can conclude
that nZ is a maximal ideal precisely when n is prime.

(b) Define φ : Z[x]→ Z via φ(p(x)) = p(0). Then φ is surjective and ker(φ) = (x). By the
First Isomorphism Theorem for Rings, we see that Z[x]/(x) � Z. However, Z is not a
field. Hence (x) is not maximal in Z[x]. Now, define ψ : Z→ Z2 via ψ(x) = x mod 2
and consider the composite homomorphism ψ ◦φ : Z→ Z2. It is clear that ψ ◦φ is
onto and the kernel of ψ ◦φ is given by {p(x) ∈ Z[x] | p(0) ∈ 2Z} = (2,x). Again by the
First Isomorphism Theorem for Rings, Z[x]/(2,x) � Z2. Since Z2 is a field, (2,x) is a
maximal ideal.
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Definition 8.58. Assume R is a commutative ring with 1. An ideal P is called a prime
ideal if P , R and whenever the product ab ∈ P for a,b ∈ R, then at least one of a or b is in
P .

Example 8.59. In any integral domain, the 0 ideal (0) is a prime ideal. What if the ring is
not an integral domain?

Remark 8.60. The notion of a prime ideal is a generalization of “prime” in Z. Suppose
n ∈ Z+ \ {1} such that n divides ab. In this case, n is guaranteed to divide either a or b
exactly when n is prime. Now, let nZ be a proper ideal in Z with n > 1 and suppose ab ∈ Z
for a,b ∈ Z. In order for nZ to be a prime ideal, it must be true that n divides either a or
b. However, this is only guaranteed to be true for all a,b ∈ Z when p is prime. That is, the
nonzero prime ideals of Z are of the form pZ, where p is prime. Note that in the case of
the integers, the maximal and nonzero prime ideals are the same.

Theorem 8.61. Assume R is a commutative ring with 1. Then P is a prime ideal in R if
and only if the quotient ring R/P is an integral domain.

Corollary 8.62. Assume R is a commutative ring with 1. Every maximal ideal of R is a
prime ideal.

Example 8.63. Recall that Z[x]/(x) � Z. Since Z is an integral domain, it must be the
case that (x) is a prime ideal in Z[x]. However, as we saw in an earlier example, (x) is
not maximal in Z[x] since Z is not a field. This shows that the converse of the previous
corollary is not true.
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Appendix A

Elements of Style for Proofs

Years of elementary school math taught us incorrectly that the answer to a math problem
is just a single number, “the right answer.” It is time to unlearn those lessons; those days
are over. From here on out, mathematics is about discovering proofs and writing them
clearly and compellingly.

The following rules apply whenever you write a proof. I may refer to them, by number,
in my comments on your homework and exams. Keep these rules handy so that you may
refer to them as you write your proofs.

1. The writing process. Use the same writing process that you would for any writing
project.

(a) Prewriting. This is the most mathematical step of the process. Often this step
takes place on scratch paper. Figure out the mathematics: test conjectures,
work out examples, try various proof techniques, etc.

(b) Writing. When you understand the mathematics it is time to write the first
draft. The draft may have extraneous information, be missing information, be
written in the wrong order, contain some minor mathematical errors, etc.

(c) Revising. Once you have a first draft, go back and revise the writing. Focus on
large changes such as adding, removing, rearranging, and replacing. Fix any
mathematical errors.

(d) Editing/proofreading. At this stage you must attend to the fine details. Fix any
problems with spelling, grammar, word choice, punctuation, etc. Make sure
all of the mathematics is typeset correctly.

(e) Publishing. Make the final changes so that you can submit your work. You
may need to fit it to a style guide (get the margins correct, add a title page,
etc.), convert it to a certain file type, or print it.

2. The burden of communication lies on you, not on your reader. It is your job to ex-
plain your thoughts; it is not your reader’s job to guess them from a few hints. You
are trying to convince a skeptical reader who doesn’t believe you, so you need to ar-
gue with airtight logic in crystal clear language; otherwise the reader will continue
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to doubt. If you didn’t write something on the paper, then (a) you didn’t commu-
nicate it, (b) the reader didn’t learn it, and (c) the grader has to assume you didn’t
know it in the first place.

3. Tell the reader what you’re proving. The reader doesn’t necessarily know or re-
member what “Theorem 2.13” is. Even a professor grading a stack of papers might
lose track from time to time. Therefore, the statement you are proving should be on
the same page as the beginning of your proof. For an exam this won’t be a problem,
of course, but on your homework, recopy the claim you are proving. This has the
additional advantage that when you study for exams by reviewing your homework,
you won’t have to flip back in the notes/textbook to know what you were proving.

4. Use English words. Although there will usually be equations or mathematical
statements in your proofs, use English sentences to connect them and display their
logical relationships. If you look in your notes/textbook, you’ll see that each proof
consists mostly of English words.

5. Use complete sentences. If you wrote a history essay in sentence fragments, the
reader would not understand what you meant; likewise in mathematics you must
use complete sentences, with verbs, to convey your logical train of thought.

Some complete sentences can be written purely in mathematical symbols, such as
equations (e.g., a3 = b−1), inequalities (e.g., x < 5), and other relations (like 5

∣∣∣10 or
7 ∈ Z). These statements usually express a relationship between two mathematical
objects, like numbers or sets. However, it is considered bad style to begin a sentence
with symbols. A common phrase to use to avoid starting a sentence with mathemat-
ical symbols is “We see that...”

6. Show the logical connections among your sentences. Use phrases like “Therefore”
or “because” or “if. . . , then. . . ” or “if and only if” to connect your sentences.

7. Know the difference between statements and objects. A mathematical object is a
thing, a noun, such as a group, an element, a vector space, a number, an ordered
pair, etc. Objects either exist or don’t exist. Statements, on the other hand, are
mathematical sentences: they can be true or false.

When you see or write a cluster of math symbols, be sure you know whether it’s an
object (e.g., “x2 + 3”) or a statement (e.g., “x2 + 3 < 7”). One way to tell is that every
mathematical statement includes a verb, such as =, ≤, “divides”, etc.

8. “=” means equals. Don’t write A = B unless you mean that A actually equals B.
This rule seems obvious, but there is a great temptation to be sloppy. In calculus,
for example, some people might write f (x) = x2 = 2x (which is false), when they
really mean that “if f (x) = x2, then f ′(x) = 2x.”

9. Don’t interchange = and =⇒ . The equals sign connects two objects, as in “x2 = b”;
the symbol “ =⇒ ” is an abbreviation for “implies” and connects two statements, as
in “a+ b = a =⇒ b = 0.” You should avoid using =⇒ in your formal write-ups.
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10. Say exactly what you mean. Just as the = is sometimes abused, so too people some-
times write A ∈ B when they mean A ⊆ B, or write aij ∈ A when they mean that aij is
an entry in matrix A. Mathematics is a very precise language, and there is a way to
say exactly what you mean; find it and use it.

11. Don’t write anything unproven. Every statement on your paper should be some-
thing you know to be true. The reader expects your proof to be a series of statements,
each proven by the statements that came before it. If you ever need to write some-
thing you don’t yet know is true, you must preface it with words like “assume,”
“suppose,” or “if” (if you are temporarily assuming it), or with words like “we need
to show that” or “we claim that” (if it is your goal). Otherwise the reader will think
they have missed part of your proof.

12. Write strings of equalities (or inequalities) in the proper order. When your reader
sees something like

A = B ≤ C =D,

he/she expects to understand easily why A = B, why B ≤ C, and why C = D, and
he/she expects the point of the entire line to be the more complicated fact that A ≤
D. For example, if you were computing the distance d of the point (12,5) from the
origin, you could write

d =
√

122 + 52 = 13.

In this string of equalities, the first equals sign is true by the Pythagorean theorem,
the second is just arithmetic, and the point is that the first item equals the last item:
d = 13.

A common error is to write strings of equations in the wrong order. For example,
if you were to write “

√
122 + 52 = 13 = d”, your reader would understand the first

equals sign, would be baffled as to how we know d = 13, and would be utterly per-
plexed as to why you wanted or needed to go through 13 to prove that

√
122 + 52 = d.

13. Avoid circularity. Be sure that no step in your proof makes use of the conclusion!

14. Don’t write the proof backwards. Beginning students often attempt to write “proofs”
like the following, which attempts to prove that tan2(x) = sec2(x)− 1:

tan2(x) =sec2(x)− 1(
sin(x)
cos(x)

)2

=
1

cos2(x)
− 1

sin2(x)
cos2(x)

=
1− cos2(x)

cos2(x)

sin2(x) =1− cos2(x)

sin2(x) + cos2(x) =1
1 =1
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Notice what has happened here: the writer started with the conclusion, and deduced
the true statement “1 = 1.” In other words, he/she has proved “If tan2(x) = sec2(x)−
1, then 1 = 1,” which is true but highly uninteresting.

Now this isn’t a bad way of finding a proof. Working backwards from your goal
often is a good strategy on your scratch paper, but when it’s time to write your proof,
you have to start with the hypotheses and work to the conclusion.

15. Be concise. Most students err by writing their proofs too short, so that the reader
can’t understand their logic. It is nevertheless quite possible to be too wordy, and
if you find yourself writing a full-page essay, it’s probably because you don’t really
have a proof, but just an intuition. When you find a way to turn that intuition into
a formal proof, it will be much shorter.

16. Introduce every symbol you use. If you use the letter “k,” the reader should know
exactly what k is. Good phrases for introducing symbols include “Let n ∈ N,” “Let k
be the least integer such that. . . ,” “For every real number a. . . ,” and “Suppose that
X is a counterexample.”

17. Use appropriate quantifiers (once). When you introduce a variable x ∈ S, it must
be clear to your reader whether you mean “for all x ∈ S” or just “for some x ∈ S.” If
you just say something like “y = x2 where x ∈ S,” the word “where” doesn’t indicate
whether you mean “for all” or “some”.

Phrases indicating the quantifier “for all” include “Let x ∈ S”; “for all x ∈ S”; “for
every x ∈ S”; “for each x ∈ S”; etc. Phrases indicating the quantifier “some” (or
“there exists”) include “for some x ∈ S”; “there exists an x ∈ S”; “for a suitable
choice of x ∈ S”; etc.

On the other hand, don’t introduce a variable more than once! Once you have said
“Let x ∈ S,” the letter x has its meaning defined. You don’t need to say “for all x ∈ S”
again, and you definitely should not say “let x ∈ S” again.

18. Use a symbol to mean only one thing. Once you use the letter x once, its meaning
is fixed for the duration of your proof. You cannot use x to mean anything else.

19. Don’t “prove by example.” Most problems ask you to prove that something is true
“for all”—You cannot prove this by giving a single example, or even a hundred. Your
answer will need to be a logical argument that holds for every example there possibly
could be.

20. Write “Let x = . . . ,” not “Let · · · = x.” When you have an existing expression, say a2,
and you want to give it a new, simpler name like b, you should write “Let b = a2,”
which means, “Let the new symbol b mean a2.”This convention makes it clear to the
reader that b is the brand-new symbol and a2 is the old expression he/she already
understands.

If you were to write it backwards, saying “Let a2 = b,” then your startled reader
would ask, “What if a2 , b?”
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21. Make your counterexamples concrete and specific. Proofs need to be entirely gen-
eral, but counterexamples should be absolutely concrete. When you provide an
example or counterexample, make it as specific as possible. For a set, for example,
you must name its elements, and for a function you must give its rule. Do not say
things like “θ could be one-to-one but not onto”; instead, provide an actual function
θ that is one-to-one but not onto.

22. Don’t include examples in proofs. Including an example very rarely adds anything
to your proof. If your logic is sound, then it doesn’t need an example to back it up.
If your logic is bad, a dozen examples won’t help it (see rule 19). There are only two
valid reasons to include an example in a proof: if it is a counterexample disproving
something, or if you are performing complicated manipulations in a general setting
and the example is just to help the reader understand what you are saying.

23. Use scratch paper. Finding your proof will be a long, potentially messy process,
full of false starts and dead ends. Do all that on scratch paper until you find a real
proof, and only then break out your clean paper to write your final proof carefully.
Do not hand in your scratch work!

Only sentences that actually contribute to your proof should be part of the proof.
Do not just perform a “brain dump,” throwing everything you know onto the paper
before showing the logical steps that prove the conclusion. That is what scratch paper
is for.
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Fancy Mathematical Terms

Here are some important mathematical terms that you will encounter in this course and
throughout your mathematical career.

1. Definition—a precise and unambiguous description of the meaning of a mathemat-
ical term. It characterizes the meaning of a word by giving all the properties and
only those properties that must be true.

2. Theorem—a mathematical statement that is proved using rigorous mathematical
reasoning. In a mathematical paper, the term theorem is often reserved for the
most important results.

3. Lemma—a minor result whose sole purpose is to help in proving a theorem. It is a
stepping stone on the path to proving a theorem. Very occasionally lemmas can take
on a life of their own (Zorn’s lemma, Urysohn’s lemma, Burnside’s lemma, Sperner’s
lemma).

4. Corollary—a result in which the (usually short) proof relies heavily on a given the-
orem (we often say that “this is a corollary of Theorem A”).

5. Proposition—a proved and often interesting result, but generally less important
than a theorem.

6. Conjecture—a statement that is unproved, but is believed to be true (Collatz con-
jecture, Goldbach conjecture, twin prime conjecture).

7. Claim—an assertion that is then proved. It is often used like an informal lemma.

8. Axiom/Postulate—a statement that is assumed to be true without proof. These are
the basic building blocks from which all theorems are proved (Euclid’s five postu-
lates, Zermelo-Frankel axioms, Peano axioms).

9. Identity—a mathematical expression giving the equality of two (often variable)
quantities (trigonometric identities, Euler’s identity).
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10. Paradox—a statement that can be shown, using a given set of axioms and defini-
tions, to be both true and false. Paradoxes are often used to show the inconsistencies
in a flawed theory (Russell’s paradox). The term paradox is often used informally
to describe a surprising or counterintuitive result that follows from a given set of
rules (Banach-Tarski paradox, Alabama paradox, Gabriel’s horn).
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Definitions in Mathematics

It is difficult to overstate the importance of definitions in mathematics. Definitions play
a different role in mathematics than they do in everyday life.

Suppose you give your friend a piece of paper containing the definition of the rarely-
used word rodomontade. According to the Oxford English Dictionary∗ (OED) it is:

A vainglorious brag or boast; an extravagantly boastful, arrogant, or bombastic
speech or piece of writing; an arrogant act.

Give your friend some time to study the definition. Then take away the paper. Ten min-
utes later ask her to define rodomontade. Most likely she will be able to give a reasonably
accurate definition. Maybe she’d say something like, “It is a speech or act or piece of
writing created by a pompous or egotistical person who wants to show off how great they
are.” It is unlikely that she will have quoted the OED word-for-word. In everyday En-
glish that is fine—you would probably agree that your friend knows the meaning of the
rodomontade. This is because most definitions are descriptive. They describe the common
usage of a word.

Let us take a mathematical example. The OED† gives this definition of continuous.

Characterized by continuity; extending in space without interruption of sub-
stance; having no interstices or breaks; having its parts in immediate connec-
tion; connected, unbroken.

Likewise, we often hear calculus students speak of a continuous function as one whose
graph can be drawn “without picking up the pencil.” This definition is descriptive. (As
we learned in calculus the picking-up-the-pencil description is not a perfect description
of continuous functions.) This is not a mathematical definition.

Mathematical definitions are prescriptive. The definition must prescribe the exact and
correct meaning of a word. Contrast the OED’s descriptive definition of continuous with
the the definition of continuous found in a real analysis textbook.

A function f : A→ R is continuous at a point c ∈ A if, for all ε > 0, there exists
δ > 0 such that whenever |x−c| < δ (and x ∈ A) it follows that |f (x)−f (c)| < ε. If f

∗http://www.oed.com/view/Entry/166837
†http://www.oed.com/view/Entry/40280
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is continuous at every point in the domain A, then we say that f is continuous
on A.‡

In mathematics there is very little freedom in definitions. Mathematics is a deductive
theory; it is impossible to state and prove theorems without clear definitions of the math-
ematical terms. The definition of a term must completely, accurately, and unambiguously
describe the term. Each word is chosen very carefully and the order of the words is crit-
ical. In the definition of continuity changing “there exists” to “for all,” changing the
orders of quantifiers, changing < to ≤ or >, or changing R to Z would completely change
the meaning of the definition.

What does this mean for you, the student? Our recommendation is that at this stage
you memorize the definitions word-for-word. It is the safest way to guarantee that you
have it correct. As you gain confidence and familiarity with the subject you may be ready
to modify the wording. You may want to change “for all” to “given any” or you may want
to change |x − c| < δ to −δ < x − c < δ or to “the distance between x and c is less than δ.”

Of course, memorization is not enough; you must have a conceptual understanding of
the term, you must see how the formal definition matches up with your conceptual un-
derstanding, and you must know how to work with the definition. It is perhaps with the
first of these that descriptive definitions are useful. They are useful for building intuition
and for painting the “big picture.” Only after days (weeks, months, years?) of experience
does one get an intuitive feel for the ε,δ-definition of continuity; most mathematicians
have the “picking-up-the-pencil” definitions in their head. This is fine as long as we
know that it is imperfect, and that when we prove theorems about continuous functions
mathematics we use the mathematical definition.

We end this discussion with an amusing real-life example in which a descriptive defi-
nition was not sufficient. In 2003 the German version of the game show Who wants to be
a millionaire? contained the following question: “Every rectangle is: (a) a rhombus, (b) a
trapezoid, (c) a square, (d) a parallelogram.”

The confused contestant decided to skip the question and left with e4000. Afterward
the show received letters from irate viewers. Why were the contestant and the viewers
upset with this problem? Clearly a rectangle is a parallelogram, so (d) is the answer. But
what about (b)? Is a rectangle a trapezoid? We would describe a trapezoid as a quadrilat-
eral with a pair of parallel sides. But this leaves open the question: can a trapezoid have
two pairs of parallel sides or must there only be one pair? The viewers said two pairs is
allowed, the producers of the television show said it is not. This is a case in which a clear,
precise, mathematical definition is required.

‡This definition is taken from page 109 of Stephen Abbott’s Understanding Analysis, but the definition
would be essentially the same in any modern real analysis textbook.
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