01 - Row Echelon Form

Definition: Row Echelon Forms

A matrix A is in row echelon form (REF) provided

- 1. all nonzero rows lie above any rows of all zeros;
- 2. the leading entry (from the left) of each nonzero row is strictly to the right of the leading entry of the row above it.

If, additionally, A satisfies

- **3.** the leading entry (from the left) of each nonzero row is a 1 (called the **leading one**);
- 4. each leading one is the only nonzero entry in its column

then A is in reduced row echelon form (**RREF**).

1. Determine if each of the following are in REF or RREF.

	$\begin{bmatrix} 1 & 2 & 3 & 0 \end{bmatrix}$		$\begin{bmatrix} 1 & 0 & 1 & 0 & 7 \end{bmatrix}$	$) \begin{bmatrix} 0\\0\\2 \end{bmatrix}$	0	1]
(a)	0 1 3 1	(c)	$0 \ 0 \ 0 \ 1 \ 3$ (e) 0	$\overline{7}$	6
			0 0 0 0 0	$\lfloor 2$	3	4

	$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$		0 0 0 0	$\begin{bmatrix} 3 & 0 & 1 & 6 \\ 0 & 2 & 4 & 3 \\ 0 & 0 & 1 & 3 \end{bmatrix}$
(b)	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 6 & 7 \end{bmatrix}$	(d)	0 1 0 1 (f)	0 2 4 3
	0 6 7		0 0 0 1	$\begin{bmatrix} 0 & 0 & 1 & 3 \end{bmatrix}$

Definition: Elementary Row OperationsAn elementary row operation on a matrix is any of the following.Replacement: add to one row any multiple of another row $(cr_i + r_j \rightarrow r_j)$ Interchange: interchange two rows $(r_i \leftrightarrow r_j)$ Scale: multiply a row by a nonzero scalar $(cr_i \rightarrow r_i)$

- 2. Look back at the matrices in the previous example.
 - (a) For each matrix that was not in REF, find a sequence of elementary row operations that could be used to transform it into REF.

(b) For each matrix that was already in REF, find a sequence of elementary row operations that could be used to transform it into RREF.