01 - Row Echelon Form

Definition: Row Echelon Forms

A matrix A is in row echelon form (REF) provided

1. all nonzero rows lie above any rows of all zeros;
2. the leading entry (from the left) of each nonzero row is strictly to the right of the leading entry of the row above it.

If, additionally, A satisfies
3. the leading entry (from the left) of each nonzero row is a 1 (called the leading one);
4. each leading one is the only nonzero entry in its column
then A is in reduced row echelon form (RREF).

1. Determine if each of the following are in REF or RREF.
(a) $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 7 & 6 \\ 2 & 3 & 4\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 6 & 7\end{array}\right]$
(d) $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{llll}3 & 0 & 1 & 6 \\ 0 & 2 & 4 & 3 \\ 0 & 0 & 1 & 3\end{array}\right]$

Definition: Elementary Row Operations
An elementary row operation on a matrix is any of the following.
Replacement: add to one row any multiple of another row $\left(c r_{i}+r_{j} \rightarrow r_{j}\right)$
Interchange: interchange two rows $\left(r_{i} \leftrightarrow r_{j}\right)$
Scale: multiply a row by a nonzero scalar $\left(c r_{i} \rightarrow r_{i}\right)$
2. Look back at the matrices in the previous example.
(a) For each matrix that was not in REF, find a sequence of elementary row operations that could be used to transform it into REF.
(b) For each matrix that was already in REF, find a sequence of elementary row operations that could be used to transform it into RREF.

