05 - Matrix Inverses

Definition: Elementary Matrix

An elementary matrix a matrix obtained by performing a single elementary row operation on the identity I.

1. Determine if each of the following are elementary matrices.
(a) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{lll}0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$
(e) $\left[\begin{array}{rrr}1 & 2 & 0 \\ -2 & 3 & 0 \\ \frac{1}{2} & 3 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$
2. Let $E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$ and let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. Compute $E A$. What do you notice?

Theorem

Let A be $m \times n$. If ρ is an elementary row operation and $E=\rho(I)$ is the corresponding elementary matrix, then $\rho(A)=E A$. Moreover, E is invertible with $E^{-1}=\rho^{-1}(I)$.

Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if its RREF is I_{n}, and this happens if and only if A is a product of elementary matrices. Further, when A is invertible, any sequence of row operations that transforms A to I_{n} will also transform I_{n} to A^{-1}.

Theorem: Algorithm for finding A^{-1}

If A is $n \times n$, row reduce the augmented matrix $\left[A \mid I_{n}\right]$ to RREF.

- If the RREF of $\left[A \mid I_{n}\right]$ is $\left[I_{n} \mid B\right]$, then A is invertible, and $B=A^{-1}$.
- If the RREF of $\left[A \mid I_{n}\right]$ is ["not I_{n} " $\left.\mid B\right]$, then A is not invertible.

3. Find the inverse of A, if it exists.
(a) $\left[\begin{array}{lll}0 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}0 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{rrr}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$
(d) $\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & 0 & 1 \\ 4 & -3 & 7\end{array}\right]$
