05 - Matrix Inverses

Definition: Elementary Matrix

An **elementary matrix** a matrix obtained by performing a single elementary row operation on the identity I.

1. Determine if each of the following are elementary matrices.

(a)	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	$ (\mathbf{d}) \begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} $

(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (e) $\begin{bmatrix} 1 & 2 & 0 \\ -2 & 3 & 0 \\ \frac{1}{2} & 3 & 0 \end{bmatrix}$

	Fr. 6 67		0	0	0	1	
(c)	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$	(f)	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$\begin{array}{c} 0 \\ 1 \end{array}$	1 0	$\begin{bmatrix} 0\\0 \end{bmatrix}$	
			1	0	0	0	

2. Let
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
 and let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Compute *EA*. What do you notice?

Theorem

Let A be $m \times n$. If ρ is an elementary row operation and $E = \rho(I)$ is the corresponding elementary matrix, then $\rho(A) = EA$. Moreover, E is invertible with $E^{-1} = \rho^{-1}(I)$.

Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if its RREF is I_n , and this happens if and only if A is a product of elementary matrices. Further, when A is invertible, any sequence of row operations that transforms A to I_n will also transform I_n to A^{-1} .

Theorem: Algorithm for finding A^{-1}

If A is $n \times n$, row reduce the augmented matrix $[A \mid I_n]$ to RREF.

- If the RREF of $[A \mid I_n]$ is $[I_n \mid B]$, then A is invertible, and $B = A^{-1}$.
- If the RREF of $[A | I_n]$ is $["not I_n" | B]$, then A is not invertible.
- **3.** Find the inverse of A, if it exists.
 - (a) $\begin{bmatrix} 0 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
 - $(\mathbf{b}) \begin{bmatrix} 0 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
 - $(\mathbf{c}) \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$

(d)
$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 4 & -3 & 7 \end{bmatrix}$$