06 - Null and Column Spaces

Definition: Null Space

The null space of a matrix A, is the set of all solutions to $A \mathbf{x}=\mathbf{0}$.

Strategy: Basis for $\operatorname{Nul} A$

Let A be any matrix. To find a basis for $\operatorname{Nul} A$, do the following.

- Solve $A \mathbf{x}=\mathbf{0}$ (usually with row reduction).
- Write the solution set in parametric vector form (using the process from class).
- The vectors appearing in the parametric vector form are a basis for $\operatorname{Nul} A$.

1. Find a basis for the null space of the following matrix.

$$
A=\left[\begin{array}{rrrrr}
1 & 4 & 8 & -3 & -7 \\
-1 & 2 & 7 & 3 & 4 \\
-2 & 2 & 9 & 5 & 5 \\
3 & 6 & 9 & -5 & -2
\end{array}\right]
$$

You can use the fact that

$$
A \sim\left[\begin{array}{rrrrr}
1 & 0 & -2 & 0 & 7 \\
0 & 2 & 5 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Definition: Column Space
The column space of a matrix A, is the set of all linear combinations of the columns of A.

Strategy: Basis for $\operatorname{Col} A$

Let A be any matrix. To find a basis for $\operatorname{Col} A$, do the following.

- Row reduce A to REF, and locate the pivots.
- The columns of the original matrix A that correspond to the pivots form a basis for $\operatorname{Col} A$.

2. Find a basis for the column space of the matrix in the previous exercise.

Strategy: Basis for $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$

Make a matrix A using $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ as the columns, so $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{k}\end{array}\right]$. Then find a basis for $\operatorname{Col} A$.
3. Find a basis for the subspace of \mathbb{R}^{3} spanned by $\left[\begin{array}{r}-1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 4 \\ -2\end{array}\right],\left[\begin{array}{r}3 \\ 9 \\ -6\end{array}\right]$.

