1.1 Systems of Linear Equations

We will dive into the math and agree upon some language. Application come soon...

Ex Consider the following system.
$\left.\begin{array}{l}x+2 y=1 \\ 3 x+4 y=-1\end{array}\right\}$ system of aeq. in 2 minnowns

$$
\begin{array}{r}
\gamma \\
\times \xi y
\end{array}
$$

(a) Is $(0,0)$ a solution to the system? what about $(3,-1)$?

- $(0,0)$ is not ,b/c $0+2(0)=1$ is NOT true.
- $(3,-1)$ is not. It is a solution to the first, but not both.
(b) Find all solutions to the linear system We use elimination
- Idea: transform the system into an easier system by "eliminating" some variables.
equivalent : same solution set
these
imply
other
true

$$
\begin{aligned}
& x+2 y=1 \\
& \int \begin{array}{ll}
3 x+4 y=-1 & x+2 y=1
\end{array} \quad x+2 y=1 \\
& -\frac{1}{2} r_{2} \rightarrow r_{2} \quad y=2 \\
& -3 x-6 y=-3 \\
& \text { And } \\
& \left.\begin{array}{rl}
-3 x-6 y & =-3 \\
\left.+-3 r_{1}\right) \\
\frac{3 x+4 y}{}=-1 & \left(r_{2}\right)
\end{array}\right)
\end{aligned}
$$

o now "back substitute" tofind x
there is only I solution: $\begin{aligned} & x=-3 \\ & y=2\end{aligned}$ or $(-3,2)$
(c) Interpret the solution set graphically.

- Solutions to $x+2 y=1$ are the points on this line.

$$
\text { 4 } 3 x+4 y=-1
$$

- Thus, the solutions to the system, lie on the intersection of the lines.

Graphical interpretation

$$
(-3,2)
$$

$$
\begin{aligned}
& x+2 y=1 \leftarrow \text { line }: y=-\frac{1}{2} x+\frac{1}{2} \\
& 3 x+4 y=-1 \leftarrow \text { line: } y=-\frac{3}{4} x-\frac{1}{4}
\end{aligned}
$$

when maniputating linear systems, we do not want to change the solution sets. What are the allowed operations?

Det Elementary Row operation (see book too)

1. (Replacement) Replace a row by itself plus any multiple of another row. $r_{i}+c r_{j} \rightarrow r_{i}$
2. (Interchange) swap any two rows. $r_{i} \longleftrightarrow r_{j}$
3. (Scaling) Multiply any row by a nonzero number. crim $\rightarrow r_{i}$ $c \neq 0$

* In first example, we used replacement and scaling.
* If one system can be trans formed into another using a series of row operations, we say that the systems are row equivalent.

Theorem If two systems are rowequivalent, then they have the same solution set.

Matrix Notation

Let's do this by example.

Ex Convert the following to augmented matrix form and then solve.

$$
\begin{aligned}
x_{1}-3 x_{2} & =5 \\
-x_{1}+x_{2}+5 x_{3} & =2 \\
x_{2}+x_{3} & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { book does not use } \\
& {\left[\begin{array}{ccc:c}
1 & -3 & 0 & 5 \\
-1 & 1 & 5 & 2 \\
0 & 1 & 1 & 0
\end{array}\right] \underset{r_{1}+r_{2} \rightarrow r_{2}}{\sim}\left[\begin{array}{ccc:c}
1 & -3 & 0 & 5 \\
0 & -2 & 5 & 7 \\
0 & 1 & 1 & 0
\end{array}\right]} \\
& \underset{r_{2} \leftrightarrow r_{3}}{\sim}\left[\begin{array}{ccc:c}
1 & -3 & 0 & 5 \\
0 & 1 & 1 & 0 \\
0 & -2 & 5 & 7
\end{array}\right] \\
& \underset{2 r_{2}+r_{3} \rightarrow r_{3}}{\sim}\left[\begin{array}{ccc:c}
1 & -3 & 0 & 5 \\
0 & 1 & 1 & 0 \\
0 & 0 & 7 & 7
\end{array}\right] \\
& \underset{\frac{1}{7} r_{3} \rightarrow r_{3}}{\sim}\left[\begin{array}{ccc:c}
1 & -3 & 0 & 5 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Thus, original system is row equivalent to

$$
\begin{array}{r}
x_{1}-3 x_{2}=5 \\
x_{2}+x_{3}=0 \\
x_{3}=1
\end{array}
$$

Now, we can back substitute.

$$
\begin{aligned}
& x_{3}=1 \\
& x_{2}=-x_{3}=-1 \\
& x_{1}=5+3 x_{2}=2
\end{aligned}
$$

So, only ore solution: $(2,-1,1)$

Q: Can you inter pret this problem geometrically?
A: There are 3 planes and we are looking for common points of intersection use geogelora.org!.

How many solutions can linear systems have?

Think geometrically. In the case of 2 variables we are thinking of something like...

$$
\begin{array}{ll}
x+2 y=1 \\
3 x+4 y=-1
\end{array} \quad \text { OR } \quad \begin{aligned}
& x+y=1 \\
& x+2 y=2 \\
& -x+3 y=7
\end{aligned}
$$

Then, the question about solutions is the same as asking about where the lines simultateonsly intersect. What are the possibilities:

- intersect in just one point (like the one on left)
o they have no common points of intersection - eg. He one on left
-e.g. parallel lines
- they have infinitely many points of intersection
- e.g. two lines that are the same
- egg. with 3 variables, we could have 2 planes intersecting in a live.

Summary Linear systems must have 0,1 , or ∞-many solutions. If it has at least 1 , we say the system is consistent. Otherwise, it is inconsistent.

Ex Determine if the following system is consistent.

$$
\begin{aligned}
& x+y=1 \\
& x+2 y=2 \\
& -x+3 y=7 \\
& {\left[\begin{array}{cc:c}
1 & 1 & \vdots \\
1 & 2 & 1 \\
-1 & 3 & 2
\end{array}\right] \underset{\substack{-r_{1}+r_{2} \rightarrow r_{2} \\
r_{1}+r_{3} \rightarrow r_{3}}}{\sim}\left[\begin{array}{ll:l}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 4 & 1 \\
0
\end{array}\right] \underset{-4 r_{2}+r_{3} \rightarrow r_{3}}{\sim}\left[\begin{array}{ll:l}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]} \\
& \text { so systern is row equiv. to } \\
& x+y=1 \\
& \begin{array}{l}
0+y=1 \\
0+0=4
\end{array} \text { no solution! } \\
& \text { Inconsistent }
\end{aligned}
$$

Q: Can you inter pret this problem geometrically?
A: There are Three lines with no common point of inter section.
use geogebra.org!.

Ex Find all solutions to the system

$$
\left.\begin{array}{l}
2 x-y+3 z=4 \\
2 x+3 y-5 z=0
\end{array}\right\} \quad 2 \text { ens. in } 3 \text { unknowns }
$$

Sol

$$
\left[\begin{array}{ccc:c}
2 & -1 & 3 & 4 \\
2 & 3 & -5 & 1
\end{array}\right] \sim\left[\begin{array}{ccc:c}
2 & -1 & 3 & 4 \\
0 & 4 & -8 & -4
\end{array}\right] \sim\left[\begin{array}{ccc:c}
2 & -1 & 3 & 4 \\
0 & 1 & -2 & 1
\end{array}\right]
$$

parametric form

$$
\left\{\begin{array}{l}
x=-1 / 2 t+32 \\
y=2 t-1 \\
z=t
\end{array}\right.
$$

every choice for z yields a different solution!
t is any number
what does this represent geometrically?

Q: Can you inter pret this problem geometrically?
A: There are 2 planes that intersect in a line.
use geogelora.org!.
1.2 Row Reduction! Echelon Forms

Goal: Develop an algorithm for solving linear systems.

Suppose you know...

$$
\left[\begin{array}{ccc:c}
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 1 \\
-3 & 2 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{lll:l}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 2 & 6
\end{array}\right] \sim\left[\begin{array}{lll:l}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

which is easiest to solve?
$2^{\text {nd }}$ is not bad

$$
3^{r d} \text { is easiest }
$$

$$
\square
$$

$$
\begin{aligned}
& x_{1}=-2 \\
& x_{2}=-1 \\
& x_{3}=3
\end{aligned}
$$

Echelon forms

Hand out 01

01 - Row Echelon Form

Definition: Row Echelon Forms

A matrix A is in row echelon form (REF) if

1. all nonzero rows lie above any rows of all zeros;
2. the leading entry (from the left) of each nonzero row is strictly to the right of the leading entry of the row above it.

If, additionally, A satisfies
3. the leading entry (from the left) of each nonzero row is a 1 (called the leading one);
4. each leading one is the only nonzero entry in its column
then A is in reduced row echelon form (RREF).

1. Determine if each of the following are in REF or RREF.
(a) $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 7 & 6 \\ 2 & 3 & 4\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 6 & 7\end{array}\right]$
(d) $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{llll}3 & 0 & 1 & 6 \\ 0 & 2 & 4 & 3 \\ 0 & 0 & 1 & 3\end{array}\right]$

Definition: Elementary Row Operations
An elementary row operation on a matrix is any of the following.
Replacement: add to one row any multiple of another row $\left(c r_{i}+r_{j} \rightarrow r_{j}\right)$
Interchange: interchange two rows $\left(r_{i} \leftrightarrow r_{j}\right)$
Scale: multiply a row by a nonzero scalar $\left(c r_{i} \rightarrow r_{i}\right)$
2. Look back at the matrices in the previous example.
(a) For each matrix that was not in REF, find a sequence of elementary row operations that could be used to transform it into REF.
(b) For each matrix that was already in REF, find a sequence of elementary row operations that could be used to transform it into RREF.

Row reduction Algorithm
Ho-02 all (seenext page)

Ex Determine how many solutions the corresponding systems have

$$
\text { (a) }\left[\begin{array}{lllll}
(1) & 7 & 1 & 3 \tag{1}\\
0 & \mathbb{D} & 0 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) $\left[\begin{array}{lllll}10 & 7 & 1 & 1 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$ None

$$
\text { (c) }\left[\begin{array}{lllll}
(1) & 7 & 1 & 1 & 3 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

∞-many
亿 consistent with free variable
pivotin last column
so in consistent

Ex (From WeBwork)
For what value of k is the linear system inconsistent

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 4 & -2 \\
1 & 2 & -4 & 2 \\
3 & 9 & k & 19
\end{array}\right]} \\
& {\left[\begin{array}{ccc:c}
1 & 1 & 4 & -2 \\
1 & 2 & -4 & 2 \\
3 & 9 & k & 19
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 4 & -2 \\
0 & 1 & -0 & 4 \\
0 & 6 & k-12 & 25
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 4 & -2 \\
0 & 1 & -8 & 4 \\
0 & 0 & k+36 & 1
\end{array}\right]}
\end{aligned}
$$

inconsistent if and only if $k+36=0 \quad k=-36$

02 - Row Reduction

Strategy: Row Reduction

To transform a matrix to REF or REF, use the following algorithm.

1. Find the leftmost nonzero column -this is called the pivot column.
2. Choose a nonzero entry in the pivot column -this will be called the pivot. If necessary, use INTERCHANGE operations to make sure the pivot is in the top row.
3. Use REPLACEMENT operations to create zeros below the pivot.
4. Cover up (or ignore) the row containing the pivot, and repeat steps $1-3$ on the smaller matrix below. Continue repeating until there are no more nonzero rows to modify.

At this point, the matrix is in REF. To transform to RREF, continue with the process below.
5. Beginning with the rightmost pivot, working up and to the left, use REPLACEMENT operations to create zeros above each pivot. If a pivot is not 1 , use a SCALING operation to make it 1 .

At this point, the matrix is in RREF.

1. Row reduce the following matrix to RREF, and determine if the corresponding linear system caresponging is consistent or not.

$$
A=\left[\begin{array}{llll}
1 & 3 & 5 & 7 \\
3 & 5 & 7 & 9 \\
5 & 7 & 9 & 1
\end{array}\right]
$$

$$
\begin{array}{rlrl}
\text { corresponding } & x_{1}-x_{3} & =0 \\
\text { system is } & x_{2}+2 x_{3} & =0 \\
0 & =1
\end{array}
$$

2. Solve the following linear system by reducing the corresponding augmented matrix to RREF.
3. Solve the system given in augmented matrix form as $\left[\begin{array}{rrrrr}1 & -7 & 0 & 6 & 5 \\ 0 & 0 & 1 & -2 & -3 \\ -1 \text { free } \\ \text { variables } & -3 & 7\end{array}\right]$

$$
\left[\begin{array}{ccccc}
1 & -7 & 0 & 6 & 5 \\
0 & 0 & 1 & -2 & -3 \\
-1 & 7 & -4 & 2 & 7
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -7 & 0 & 6 & 5 \\
0 & 0 & 0 & -2 & -3 \\
0 & 0 & -4 & 8 & 12
\end{array}\right] \sim\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & -7 & 0 & 6 \\
0 & 5 \\
0 & 0 & 1 & -2 \\
0 & -3 \\
0 & 0 & 0 & 0
\end{array} 0\right.
$$

$$
\text { (xi) }-7 x_{2}+6 x_{4}=5 \quad x_{1}=5+7 x_{2}-6 x_{4}
$$

$$
\text { (x3) } 2 x_{4}=-3 \quad x_{3}=-3+2 x_{4}
$$

$$
\begin{aligned}
& x_{1}=5+7 x_{2}-6 x_{4} \\
& x_{2} \text { is free } \\
& x_{3}=-3+2 x_{4} \\
& x_{4} \text { is free }
\end{aligned}
$$

solve for basic variables in terms of
free variables

Definition: Basic and Free Variables

If A is the augmented matrix of a linear system, then

- the variables corresponding to pivot columns are called basic variables, and
- the variables corresponding to columns with NO pivot are called free variables.

Theorem: Existence and Uniqueness Theorem

- A linear system is inconsistent if and only if the RREF has a row of the form $\left[\begin{array}{lllll}0 & 0 & \cdots & 0 & b\end{array}\right]$ with $b \neq 0$.
- If a linear system is consistent, then it has infinitely-many solutions if and only if there are free variables.

$$
\begin{aligned}
& x_{2}+x_{3}=2 \\
& -3 x_{1}+2 x_{2}=4 \\
& x_{1}+x_{3}=1 \\
& {\left[\begin{array}{cccc}
0 & 1 & 1 & i \\
1 & 0 & 1 & 1 \\
-3 & 2 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2 \\
-3 & 2 & 0 & 4
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 2 & 3 & 7
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right] \Longrightarrow \begin{array}{l}
x_{1}=-2 \\
x_{2}=-1 \\
x_{3}=3
\end{array}
\end{aligned}
$$

1.3 Vector Equations

Goal: to have some other ways to view linear systems.

Notation

- \mathbb{R} denotes the set of real numbers.

I in linear algebra, the se are also called scalars.

- \mathbb{R}^{2} denotes the set of 2×1 matrices
e.g. $\left[\begin{array}{l}7 \\ 2\end{array}\right],\left[\begin{array}{c}\pi+1 \\ -3\end{array}\right]$
called column vectors (or just vectors)
- \mathbb{R}^{n} denotes the set of $n \times 1$ matrices s
operations on \mathbb{R}^{n}
(1) Scalar multiplication (by example)

$$
\begin{aligned}
& \text { • } 7\left[\begin{array}{c}
-2 \\
5
\end{array}\right]=\left[\begin{array}{c}
-14 \\
35
\end{array}\right] \\
& 0 \quad c\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
c a_{1} \\
c a_{2}
\end{array}\right]
\end{aligned}
$$

(2) vector addition (by example)

$$
\begin{aligned}
& \cdot\left[\begin{array}{c}
2 \\
-5
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-7
\end{array}\right] \\
& \cdot\left[\begin{array}{c}
a_{1} \\
a_{2}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1}+b_{1} \\
a_{2}+b_{2}
\end{array}\right]
\end{aligned}
$$

Ex Let $\bar{v}_{1}=\left[\begin{array}{c}-2 \\ 2\end{array}\right], \bar{v}_{2}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$. Graph $\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{1}+\bar{v}_{2}, 3 v_{1}$.
think

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$\underline{E_{x}}$ Let $\bar{v}_{1}=\left[\begin{array}{c}-2 \\ 2\end{array}\right], \bar{v}_{2}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$.
(1) Compute $-3 v_{1}-2 v_{2}$.

$$
-3\left[\begin{array}{c}
-2 \\
2
\end{array}\right]-2\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-6
\end{array}\right]
$$

vector equation
(2) Cam you solve $x \bar{v}_{1}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$ for x ?

Algebraically

$$
x \bar{v}_{1}=\left[\begin{array}{c}
-2 x \\
2 x
\end{array}\right]=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \Rightarrow \begin{aligned}
& -2 x=1 \\
& -2 x=5
\end{aligned} \Rightarrow \begin{aligned}
& x=-\frac{1}{2} \\
& x=-\frac{5}{2}
\end{aligned}
$$

No solution!
Graphically
$x \bar{v}$. lies on the line through $(0,0)$ and $(-2,2)$. (See picture above.)
But (1,5) is not on this live.
No solution!
(3) Can you solve $x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$?

$$
\begin{aligned}
& x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \Longleftrightarrow\left[\begin{array}{c}
-2 x_{1} \\
2 x_{1}
\end{array}\right]+\left[\begin{array}{l}
3 x_{2} \\
0 x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \\
& \Longleftrightarrow\left[\begin{array}{l}
-2 x_{1}+3 x_{2} \\
2 x_{1}+0 x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
5
\end{array}\right] \\
& \Longleftrightarrow-2 x_{1}+3 x_{2}=1 \\
& 2 x_{1}+0 x_{2}=5 \\
& \left.\left[\begin{array}{cc|c}
-2 & 3 & 1 \\
2 & 0 & 5
\end{array}\right] \sim\left[\begin{array}{rr|r}
-2 & 3 & 1 \\
0 & 3 & 6
\end{array}\right] \sim\left[\begin{array}{rr|r}
-2 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]\right) \\
& \sim\left[\begin{array}{cc|c}
-2 & 0 & -5 \\
0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{ll|c}
1 & 0 & 5 / 2 \\
0 & 1 & 2
\end{array}\right] \\
& x_{1}=5 / 2 \\
& x_{2}=2 \text {. }
\end{aligned}
$$

Fact A vector equation $x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}+\cdots+x_{n} \bar{v}_{n}=\bar{b}$
important has the same solution set as the linear system with augmented matrix $\left[\begin{array}{llll}\bar{v}_{1} & \bar{v}_{2} & \ldots & \bar{v}_{n} \\ \bar{b}\end{array}\right]$

$$
\underset{i^{s+} \text { col. is } v_{1}}{\uparrow} 2^{\text {nd }} \text { col is } v_{2} \cdots
$$

Ex Make up a linear system. Then write ane quivalent vectorequation.

$$
\begin{gathered}
4 x_{1}-x_{2}=7 \\
x_{1}-x_{2}+x_{3}=0 \\
3 x_{2}-x_{3}=1
\end{gathered} \leadsto x_{1}\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
-1 \\
3
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 \\
0 \\
1
\end{array}\right]
$$

Linear combination S

Deft If $\bar{v}_{1}, \ldots, \bar{v}_{k}$ are in \mathbb{R}^{n}, then for any scalars c_{1}, \ldots, c_{k} in \mathbb{R}, the new vector $c_{1} \bar{v}_{1}+\cdots+c_{k} \bar{v}_{k}$ is called a linear combination of $\bar{V}_{1}, \ldots, \bar{v}_{k}$ with weights c_{1}, \ldots, c_{k}.

Ex Let $\bar{v}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right], \bar{v}_{2}=\left[\begin{array}{l}0 \\ 5 \\ 5\end{array}\right], \bar{v}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 8\end{array}\right]$.
(1) Write 2 different linear combinations of $\bar{v}_{1}, \bar{v}_{2} \bar{v}_{3}$.

Many possibilities, e.g. $i v_{1}+2 v_{2}+3 v_{3}=\left[\begin{array}{c}7 \\ 8 \\ 45\end{array}\right]$
(2) Is $\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]$ a lin. comb. $\cos \bar{v}_{1} \bar{v}_{2}, \bar{v}_{3}$?

Yes! $\quad\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]=-1 v_{1}+O v_{2}+O v_{3}$
(3) Is $\left[\begin{array}{c}-5 \\ 11 \\ -7\end{array}\right]$ a lin. comb. of $\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}$?
\ldots is there a solution to $x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}+x_{3} \bar{v}_{3}=\left[\begin{array}{c}-5 \\ 11 \\ -7\end{array}\right]$?

$$
\left[\begin{array}{ccc|c}
1 & 0 & 2 & -5 \\
-2 & 5 & 0 & 11 \\
2 & 5 & 8 & -7
\end{array}\right] \sim\left[\begin{array}{lll|c}
1 & 0 & 2 & -5 \\
0 & 5 & 4 & 1 \\
0 & 5 & 4 & 3
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 2 & -5 \\
0 & 5 & 4 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

No
Ex Describe the collection of all linear combinations of $\left[\begin{array}{r}-3 \\ 3\end{array}\right]$ algebraically and geometrically.

Algebraically
Geometrically

$$
x\left[\begin{array}{c}
-3 \\
3
\end{array}\right]=\left[\begin{array}{c}
-3 x \\
3 x
\end{array}\right]
$$

 through the origin and $(-3,3)$

Ex Show that every vector in \mathbb{R}^{3} is a linear combination of $\bar{v}_{1}=\left[\begin{array}{c}-2 \\ 2 \\ 0\end{array}\right]$, $\bar{v}_{2}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$, and $\bar{v}_{3}=\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$.
Span
Deft The collection of all possible live ar combinations of $\bar{v}_{1}, \ldots, \bar{v}_{k}$ is written $S_{p a n}\left\{\bar{v}_{1}, \ldots, \bar{v}_{k}\right\}$. It is called the subset spanned by $\bar{v}_{1} \ldots, \bar{v}_{k}$.

Ex we have seen that...
(1) $\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\right\}=\mathbb{R}^{3}$. (seeprev. exmple)
(2) $\operatorname{Span}\left\{\left[\begin{array}{c}-3 \\ 3\end{array}\right]\right\}$ can be described as the subset of \mathbb{R}^{2} lying on the line through $(0,0)$ and $(-3,3)$. (See example 2 back)
(3) $\left[\begin{array}{c}-5 \\ 11 \\ -7\end{array}\right]$ is not in $\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 8\end{array}\right]\right\}$. (see example 3 back)
Ex Suppose you want to determine if $\left[\begin{array}{c}a_{2} \\ 4 \\ 1 \\ -21\end{array}\right]$ is in $\operatorname{span}\left\{\left[\begin{array}{c}a_{1} \\ 0 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{l}a_{2} \\ 0 \\ 3 \\ 6\end{array}\right]\right\}$. what is the process? Thinking to self... need to determine if

$$
x_{1} \underset{\substack{1 \\
0 \\
-2 \\
a_{1} \\
\left[\begin{array}{c}
10
\end{array} \\
a_{2}\right.}}{\left[\begin{array}{l}
0 \\
3 \\
6
\end{array}\right]}=\frac{\left[\begin{array}{c}
4 \\
1 \\
-4 \\
b
\end{array}\right]}{[}
$$

has a solution.
(1) Create the augmented matrix $\left[\bar{a}_{1} \bar{a}_{2} \bar{b}\right]$

$$
\left[\begin{array}{cc|c}
1 & 0 & 4 \\
0 & 3 & 1 \\
-2 & 6 & -4
\end{array}\right]
$$

(2) Row reduce and solve the corresponding system.

- \bar{b} is in $\operatorname{span}\left\{\bar{a}_{1}, \bar{a}_{2}\right\}$ if there is a solution.
- otherwise, \bar{b} is not in the span.

Geometric interpretation of s pan
(1) Assume $\bar{v}_{1} \neq \overline{0}$.

$S_{\text {pan }\left\{\bar{v}_{1}\right\} \text { is all vectors }}$ on the live through \bar{v}_{1} and the origin
Q : what if $\bar{u}_{1}=0$?
(2) Assume $\bar{v}_{1} \neq 0, \bar{v}_{2} \neq 0$ AND \bar{v}_{2} is not in $\operatorname{Span}\{u$,

Span $\left\{\bar{v}_{1}, \bar{v}_{2}\right\}$ is all vectors on the plane determined by \bar{v}_{1}, \bar{v}_{2}, and $\bar{\sigma}$.

Q: what if \bar{v}_{2} is in $S_{\operatorname{pan}}\left\{\bar{v}_{2}\right\}$
1.4 The Matrix Equation $A x=b$

Goal: another (important) view ot linear systems ... first, the beginnings of matrix multiplication

HO-03 Dat MUP, $\# 1$ (See next page)

Ex Rewrite the linear combination as a matrixvector product.

$$
x_{1}\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]+x_{2}\left[\begin{array}{c}
2 \\
1 \\
-4
\end{array}\right]+x_{3}\left[\begin{array}{c}
4 \\
5 \\
-3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 5 \\
-2 & -4 & -3
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Notice that the following problems all have the same solution sets.
(1) Solve

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=4 \\
-5 x_{2}+3 x_{3}=1
\end{array}
$$

(1) 'Solve

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 4 \\
0 & -5 & 3 & 1
\end{array}\right]
$$

(3) Solve

HO-O3 Theorem (p gr) (See nett page)

03 - Matrix-Vector Products

Definition: Matrix-Vector Product (MVP)

Suppose that A is an $m \times n \underbrace{\text { matrix, and let } \mathbf{x}}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x\end{array}\right]$ be in \mathbb{R}. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}$ be the columns of
A. Then we define the product $A \mathbf{x}$ by must match!

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

1. Compute the following \quad match!
(a) $\left[\begin{array}{rrr}1 & 2 \times 3 \\ 0 & -5 & -1\end{array}\right]\left[\begin{array}{l}3 \times 1 \\ 3 \\ 7\end{array}\right]=4\left[\begin{array}{l}1 \\ 0\end{array}\right]+3\left[\begin{array}{c}2 \\ -5\end{array}\right]+7\left[\begin{array}{c}-1 \\ 3\end{array}\right]=\left[\begin{array}{l}3 \\ 6\end{array}\right]$

(b) $\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 3\end{array}\right]$ undefined of
(c) $\left[\begin{array}{rr}7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2\end{array}\right]\left[\begin{array}{c}-2 \\ 2 \times 1 \\ -5\end{array}\right]=-2\left[\begin{array}{c}7 \\ 2 \\ 9 \\ -3\end{array}\right]-5\left[\begin{array}{c}-3 \\ 1 \\ -6 \\ 2\end{array}\right]=\left[\begin{array}{c}1 \\ -9 \\ 12 \\ -4\end{array}\right]$

Theorem

Suppose that A is an $m \times n$ matrix, and let \mathbf{b} be in \mathbb{R}. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}$ be the columns of A. Then each of the following have exactly the same solution sets.

- Matrix equation: $A \mathrm{x}=\mathrm{b}$
- Vector equation (with columns of A): $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}$
- Linear system (as an augmented matrix): $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n} \mid \mathbf{b}\end{array}\right]$

Theorem

Suppose that A is an $m \times n$ matrix. Then the following are logically equivalent. (If one is true, they all are; if one is not true, none are.)
(a) For every \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.

- In other words, the system with augmented matrix $[A \mid \mathbf{b}]$ always has a solution.
(b) For every \mathbf{b} in $\mathbb{R}^{m}, \mathbf{b}$ is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
- In other words, if $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}$ are the columns of $A, \operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}\right\}=\mathbb{R}^{m}$.
(d) A has a pivot position in every row.

2. Determine if $A \mathbf{x}=\mathbf{b}$ has a solution for every choice of \mathbf{b} in each case below.
(a) $A=\left[\begin{array}{rrr}1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8\end{array}\right]$
(b) $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ -5 & 6 & 11 \\ 3 & -4 & -2 \\ 3 & 0.5 & 0\end{array}\right]$
when is $A x=\bar{b}$ consistent for all \bar{b} ?
Thus far ne have asked some thing like
Is $\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ consistent?
Now, we'll ask
$A \bar{x}=\bar{b}$
Is $\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 3 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ consist tent
for every choice of b_{1}, b_{2} ?
Let's explore this. In this example,

$$
\left.\left.\begin{array}{rl}
\begin{array}{c}
\bar{x} \\
{\left[\begin{array}{cc}
-1 & 0 \\
-1 & 3 \\
\text { is consist tent for } \\
\text { all } \bar{b}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]}
\end{array} & \Longleftrightarrow
\end{array} \begin{array}{ccc|c}
1 & 1 & 0 & b_{1} \\
-1 & 3 & 4 & b_{2}
\end{array}\right] . \begin{array}{ccc}
\text { is consistent for } \\
\text { all } \bar{b}
\end{array}\right] \text { RREF }
$$

is consistent for all \bar{b}

So, it is consistent for all \bar{b}
b / c pivot in each row of coeff. matrix A

But, what if it had been $\left[\begin{array}{ccc}1 & -1 & 0 \\ -3 & 3 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$?

$$
\left.\left.\left.\begin{array}{rl}
{\left[\begin{array}{ccc}
1-1 & 0 \\
-3 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]}
\end{array} \stackrel{\Longleftrightarrow}{ } \begin{array}{l}
\text { is consist tent for } \\
\text { all } \bar{b}
\end{array}\right] \begin{array}{ccc|c}
1 & -1 & 0 & b_{1} \\
-3 & 3 & 0 & b_{2}
\end{array}\right] \quad \begin{array}{l}
\text { is consistent for } \\
a l l \\
b
\end{array}\right] \text { PREF }
$$

is consistent for all \bar{b}

So, it is NOT consistent for all \bar{b} b / c there is Not a pius ot in each row of coeff. matrix A

HO- O3 Theorem 2 (p gr), \#2 (see 2pages back)
1.5 Solution Sets of Linear Systems

Homo generous systems

Det A linear system of the form $A \bar{x}=\overline{0}$ is called homogeneous.

* Notice that homogene on syr stems ane always consistent : $\bar{x}=\overline{0}$ is always a solution.

Called the trivial solution

* A homogeneous system has a no h trivial Solution precisely when there is at least one free variable.

Parametric Vector Form for solution sets

Ex Show that the following homogeneous system has nontrivial solutions and describe the solution set parametrically.

$$
\begin{aligned}
3 x_{1}+5 x_{2}-4 x_{3} & =0 \\
-3 x_{1}-2 x_{2}+4 x_{3} & =0 \\
6 x_{1}+x_{2}-8 x_{3} & =0
\end{aligned}
$$

Observe that

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccc|c}
1 & 0 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
x_{1}-4 / 3 x_{3}=0 \\
x_{2}=0 \\
x_{3} \text { is free }
\end{gathered} \quad \begin{aligned}
& x_{1}=4 / 3 x_{3} \\
& x_{2}=0 \\
& x_{3} \text { is free }
\end{aligned} \quad \begin{array}{lll}
x_{1}=4 / 35 \\
x_{2}=0 & \text { for } 5 \\
x_{3}=5 & \text { in } \mathbb{R}
\end{array}
$$

C rector form

$$
\bar{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 / 35 \\
0 \\
5
\end{array}\right]=5\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right] \text { so }
$$

Solution set is

$$
\bar{x}=S\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right] \quad(S \text { in } \mathbb{R})
$$

Notice:

* Here are ∞-many solutions.
* the solution set is represented by a line!
* the solution set is $\operatorname{Span}\left\{\left[\begin{array}{c}4 / 3 \\ 0 \\ 1\end{array}\right]\right\}$.

Ex Describe all solutions to $A \bar{x}=\overline{0}$ in parametric vector form, assuming that

$$
A \sim\left[\begin{array}{ccccc}
1 & -4 & -2 & 0 & 3 \\
0 & 0 & 1 & -7 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Now,

$$
\begin{aligned}
& {[A \mid \bar{O}] \sim\left[\begin{array}{ccccc|c}
1 & -4 & 0 & -14 & 0 & 0 \\
0 & 0 & 1 & -7 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right]} \\
& \begin{array}{l}
x_{1}=4 x_{2}-2 x_{4} \\
x_{2} \text { is free } \\
x_{3}=7 x_{4} \\
x_{4} \text { is free } \\
x_{5}=0
\end{array} \\
& \qquad \bar{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
4 s-2 t \\
5 \\
7 t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
4 s \\
5 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 t \\
0 \\
7 t \\
t \\
0
\end{array}\right] \\
& \bar{x}=5\left[\begin{array}{l}
4 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
0 \\
7 \\
1 \\
0
\end{array}\right] \quad(5, t \text { in } \mathbb{R})
\end{aligned}
$$

* Solution set is a plane (in $\left.\mathbb{R}^{5}\right)$
* solution set is span $\left\{\left[\begin{array}{l}4 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 7 \\ 1 \\ 0\end{array}\right]\right\}$

OR S_{1} and S_{2} (as in WeBwork)

Solutions to Nonhomogeneous Systems

Ex Describe all solutions to $A \bar{x}=\bar{b}$ in parametric vector form where

$$
A=\left[\begin{array}{cccc}
3 & -4 & 5 & 0 \\
-3 & 4 & -2 & 3 \\
6 & -8 & 1 & -9
\end{array}\right]
$$

$$
\text { and } \bar{b}=\left[\begin{array}{c}
7 \\
-1 \\
-4
\end{array}\right]
$$

As betere, observe that

$$
A=\left[\begin{array}{cccc|c}
3 & -4 & 5 & 0 & 7 \\
-3 & 4 & -2 & 3 & -1 \\
6 & -8 & 1 & -9 & -4
\end{array}\right] \sim \cdots \sim\left[\begin{array}{cccc|c}
1 & -4 / 3 & 0 & -5 / 3 & -1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
x_{1}=-1+4 / 3 x_{2}+5 / 3 x_{4}
$$

si - x_{2} free

$$
x_{3}=2-x_{4}
$$

$s_{2}-x_{4}$ free

* The solutions to $A \bar{x}=\bar{b}$ are of the form $A \bar{x}=\overline{0}$ $\bar{P}+\bar{V}_{n}$ where \bar{U}_{n} isasolution to $A \bar{x}=\bar{O}$.
* Graphically the solution set is a plane through the origin shifted by the vector \bar{P}

Theorem Suppose that $A \bar{x}=\bar{b}$ is consistent and that \bar{P} is any one particular solution. Then the setat all solutions to $A \bar{x}=\bar{b}$ are the vectors of the form $\bar{w}=\bar{p}+\bar{v}_{n}$ where \bar{v}_{n} is any solution to the homogene on s equation $A \bar{x}=\bar{O}$.
1.6 Applications

Several applications are presented. We will only look at network flow.

HO- OM
See next page.

04 - Applications

1. The network below shows the approximate traffic flow in vehicles per hour over various one-way streets in downtown Sacramento near the capitol building.

$$
\begin{aligned}
& \text { Main Idea: } \\
& \text { Flow in }=\text { Flow ont } \\
& \text { ateach intersection. } \\
& \text { A } x_{2}+300=x_{3}+200 \\
& \text { B } \quad x_{1}+300=x_{2}+500 \\
& \text { C } x_{3}+100=x_{4}+300 \\
& D \quad x_{4}+300=x_{1}
\end{aligned}
$$

(a) Determine the general flow pattern.

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
0 & 1 & -1 & 0 & -10 \\
1 & -1 & 0 & 0 & 20
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & -1 & 0 & 0 & 20 \\
0 & 0 & 1 & -1 & 20 \\
0 & 1 & -1 & 0 & -100 \\
0 & 0 & 1 & -1 & 200 \\
-1 & 0 & 0 & 1 & -300
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & -1 & 0 & 0 & 20 \\
0 & 1 & -1 & 0 & -10 \\
0 & 0 & 0 & 1 & -300
\end{array}\right] \sim\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 0 \\
0 & 1 & -10
\end{array}\right]} \\
& \sim\left[\begin{array}{cccc|cc}
1 & 0 & -1 & 0 & 1 & 0
\end{array} 0\right.
\end{aligned}
$$

(b) What is the smallest possible value for x_{1} ? Why?

- $x_{1} \geqslant 300 \quad 6 / c \quad x_{4} \geqslant 0$
(c) Suppose that $x_{4}=150$. Determine the values for the remaining roads.

$$
\begin{aligned}
& x_{1}=450 \\
& x_{2}=250 \\
& x_{3}=350
\end{aligned}
$$

1.7 Linear Independence

Ex Consider the vectors:

$$
\begin{aligned}
& \text { sider the vectors: } \\
& \bar{v}_{1}=\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right], \bar{v}_{2}=\left[\begin{array}{c}
7 \\
2 \\
-6
\end{array}\right], \bar{v}_{3}=\left[\begin{array}{c}
9 \\
4 \\
-8
\end{array}\right]
\end{aligned}
$$

(a) How many possible solutions ane there to

$$
x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}+x_{3} \bar{v}_{3}=\overline{0}
$$

Ans. There is at least 1, since it is homogeneous. Thus 1 or ∞-many
(b) Determine if $x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}+x_{3} \bar{v}_{3}=\overline{0}$ has a nontrivial solution.

$$
\left[\begin{array}{ccc|c}
5 & 7 & 9 & 0 \\
0 & 2 & 4 & 0 \\
0 & -6 & -8 & 0
\end{array}\right] \sim\left[\begin{array}{lll|l}
5 & 7 & 9 & 0 \\
0 & 2 & 4 & 0 \\
0 & 0 & 4 & 0
\end{array}\right]
$$

wo free variables so only one solution which must be $\bar{x}=\overline{0}$.
Thus, in this case, there are no nontrivial solutions.

Det the vectors $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{k}$ are called linearly independent if $x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}+\cdots+x_{k} \bar{v}_{k}$ has only the trivial solution. If it has a non trivial solution, they are called linearly dependent.

Ex the vectors in the $1^{\text {st }}$ example are linearly independent.

Ex Show that the following vectors are linearly dependent and find a linear dependence relation.

$$
\bar{v}_{1}=\left[\begin{array}{c}
3 \\
-3 \\
6
\end{array}\right], \bar{v}_{2}=\left[\begin{array}{c}
-4 \\
4 \\
-8
\end{array}\right], v_{3}=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right], v_{4}=\left[\begin{array}{c}
0 \\
3 \\
-9
\end{array}\right]
$$

* Need to find a non trivial sol. to $x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}+x_{3} \bar{v}_{3}+x_{4} \bar{v}_{4}=\overline{0}$

$$
\left[\begin{array}{cccc|c}
3 & -4 & 5 & 0 & 0 \\
-3 & 4 & -2 & 3 & 0 \\
6 & -8 & 1 & -9 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & -4 / 3 & 0 & -5 / 3 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$x_{1}=4 / 3 x_{2}+5 / 3 x_{4}$
x_{2} free
$x_{3}=-x_{4}$
x_{4} free
we need I nontrivial sol., so let's pick
$x_{2}=1, x_{4}=1$. Thus

$$
3 \bar{v}_{1}+\bar{v}_{2}-\bar{v}_{3}+\bar{v}_{4}=0
$$

Ex In the previous example, how could we have known that $\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}, \bar{U}_{4}$ were L. P. without doing any work?

Note: the coeff. matrix of the system

$$
\left[\begin{array}{cccc|c}
3 & -4 & 5 & 0 & 0 \\
-3 & 4 & -2 & 3 & 0 \\
6 & -8 & 1 & -9 & 0
\end{array}\right]
$$

is 3×4 so not every column of the coefl. com have a pivot. Since the system is consistent (b/cit in homo generous), there will be at least one free variable- hence nontrivial solutions.
i.e. if more vectors than length of vectors

Theorem Suppose that $\bar{v}_{1}, \ldots, \bar{v}_{k}$ are vectors in \mathbb{R}^{n}.
If $k>n$, then $\bar{v}_{1}, \ldots, \bar{v}_{k}$ must be linearly dependent.

* If $k \leqslant n$, the vectors may or may not be L.O. τ inpreviaus example \bar{v}_{1}, \bar{v}_{2} are still L.D.

Another ob servation.
Theorem If at least one of $\bar{v}_{1}, \ldots, \bar{v}_{k}$ is the \bar{o} vector than they are L.D.

* Why? Suppose $\bar{v}_{1}=\bar{o}$. Then, $1 \cdot \bar{v}_{1}+o \bar{v}_{2}+\cdots+o \bar{v}_{k}=\overline{0}$.

Linear Dep. for Jor 2 vectors

Theorem one vector \bar{v}_{1} is linearly dependent if and only if $\ldots \bar{v}_{1}=\overline{0}$.
pt $\operatorname{rot} 0$

$$
\begin{gathered}
d_{1}\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \\
\bar{v}_{1}
\end{gathered}
$$

* complete the sentence: \bar{v}_{1} is L.I. if \qquad
* Geometrically: \bar{v}_{1} is L.I. if Span $\left\{\bar{v}_{1}\right\}$ is a line.

Theorem Two vectors \bar{v}_{1}, \bar{v}_{2} are L.D. if and only if... one vector is a scalar multiple of the other
pf Suppose x_{1}, x_{2} are not both zero but

$$
x_{1} \bar{v}_{1}+x_{2} \bar{v}_{2}=\overline{0} .
$$

If $x_{1} \neq 0$, then mull. both sides by x_{1}^{-1}, we get

$$
\frac{x_{1}}{x_{1}} \bar{v}_{1}+\frac{x_{2}}{x_{1}} \bar{v}_{2}=\overline{0} \Rightarrow \bar{v}_{1}=-\frac{x_{2}}{x_{1}} \bar{v}_{2}
$$

$\Rightarrow \bar{v}_{1}$ is a scalar mull. of \bar{v}_{2}.
Similarly, if $x_{2} \neq 0, \bar{v}_{2}$ is a multiple of \bar{v}_{1}.
Also, if one is a multiple of the other (egg. $\bar{v}_{1}=c \bar{v}_{2}$), then \bar{v}_{1}, \bar{v}_{2} are L.D. (e.g. $\left.1 v_{1}-c \bar{v}_{2}=\bar{\sigma}\right)$.

* Geometrically: \bar{v}_{1}, \bar{v}_{2} are L. I. if $\operatorname{span}\left\{\bar{v}_{1}, \bar{v}_{2}\right\}$ is a plane (notalice or point)
* If we have more than 2 vectors a similar argument shows that we can always write one of them as a linear comb. of the others.

Theorem Vectors $\bar{v}_{1}, \ldots, \bar{v}_{k}$ are L. D. if at least one of the vectors is a linear comb. of the others (ie. if one vector is in the subset spanned by the others).

* Complete the sentence: $\bar{v}_{1}, \ldots, \bar{v}_{k}$ are L.I. if

Ex Determine if the following are L.I.
(a)

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { (b) }\left[\begin{array}{c}
3 \\
-5 \\
-2
\end{array}\right],\left[\begin{array}{c}
-6 \\
10 \\
4
\end{array}\right]
$$

LD. b/c $\overline{0}$ is included
(c)

$$
\left.\begin{array}{rl}
(c) & {\left[\begin{array}{c}
3 \\
-5 \\
-6
\end{array}\right],}
\end{array} \begin{array}{c}
-6 \\
10 \\
4
\end{array}\right]
$$

LD. b/c $-2 \bar{v}_{1}=\bar{v}_{2}$

$$
\text { (d) }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
5 \\
2
\end{array}\right],\left[\begin{array}{c}
-7 \\
3 \\
4
\end{array}\right]
$$

(e) $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}7 \\ 7 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}5 \\ 4 \\ 0\end{array}\right]$

4 vectors in \mathbb{R}^{3}. $4>3$ so must be L.D.
(there will be free variables)

Often Lin. ind./ dep. comes up when talking about the columns of a matrix. Notice that...

Theorem the colums of A are lin. ind. if... $A \bar{x}=\overline{0}$ has only the trivial solution.

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
3 & -6 & 0 \\
-5 & 10 & 0 \\
-6 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -2 & 0 \\
-1 & 2 & 0 \\
-3 & 2 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0 \\
0 & -4 & 0
\end{array}\right] \\
& {\left[\begin{array}{ccc|c}
0 & 0 & -7 & 0 \\
1 & 5 & 3 & 0 \\
0 & 2 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 5 & 3 & 0 \\
0 & 2 & 4 & 0 \\
0 & 0 & -7 & 0
\end{array}\right]} \\
& \sim\left[\begin{array}{lll|l}
1 & 5 & 3 & 6 \\
0 & 1 & 2 & 0 \\
0 & 0 & (1) & 0
\end{array}\right] \\
& \text { No free var. } \Rightarrow \text { only tiv. Sol. } \\
& \text { No freevar. } \Rightarrow \text { only trio. Sol. } \\
& \Rightarrow \text { LI } \\
& \Rightarrow \text { LI. }
\end{aligned}
$$

1.8 Intro to Linear Transformations

* Yon're very familiar with functions from \mathbb{R} to \mathbb{R}, e.g. $f(x)=e^{x}$.
* It's not hard to make up functions from say \mathbb{R}^{2} to \mathbb{R}^{2} or \mathbb{R}^{2} to \mathbb{R}^{3} or...

$$
\begin{aligned}
& g\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
\sin x+y \\
y^{2}
\end{array}\right] \text { here } g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \\
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-3 x_{2} \\
3 x_{1}+5 x_{2} \\
-x_{1}+7 x_{2}
\end{array}\right] \text { here } T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}
\end{aligned}
$$

- Recall: the domain of a function is the set of allowable in puts.
- The codomain is a set that contains all out puts, but it may be larger than the collection al all out puts.
domain codomain
Let A function $T: \mathbb{R}^{n^{n}} \rightarrow \mathbb{R}^{m}$ will be called a transformation. If \bar{x} is in \mathbb{R}^{n}, the output $T(\bar{x})$ is called the image of \bar{x} under T. The collection of all outputs (ie .all images) is called the range of T.

A picture

Matrix Transformation
... roughly, the se are transformations detined by a matrix.

Deft A matrix transformation is any transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for which there is an $m \times n$ matrix A such that matrix rector product

$$
T(\bar{x})=A \bar{x}
$$

Ex Let $A=\left[\begin{array}{cc}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right]$, and define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by

$$
T(\bar{x})=A \bar{x} .
$$

(a) compute the image of $\bar{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.

$$
T(\bar{u})=\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
3
\end{array}\right]=2\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right]+3\left[\begin{array}{c}
-3 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{c}
-7 \\
21 \\
19
\end{array}\right]
$$

(b) Determine if $\bar{b}=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$ is in the range. If it is, find a vector \bar{x} in \mathbb{R}^{2} s.t. $T(\bar{x})=\bar{b}$. range \Longrightarrow has a sol. consistent

$$
\left[\begin{array}{cc|c}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & -5
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ll|c}
1 & 0 & 1.5 \\
0 & 1 & -0.5 \\
0 & 0 & 0
\end{array}\right]
$$

so, yes, \bar{b} is in the range since there is a solution. Specifically, $T\left(\left[\begin{array}{c}1.5 \\ -0.5\end{array}\right]\right)=\left[\begin{array}{c}3 \\ 2 \\ -5\end{array}\right]$, or in other words

$$
\bar{b}=\left[\begin{array}{c}
3 \\
2 \\
-5
\end{array}\right] \text { is the image of } \bar{x}=\left[\begin{array}{c}
1.5 \\
-0.5
\end{array}\right] \text {. }
$$

(c) Do you expect that every vector in \mathbb{R}^{3} is in the range of T ? Why or why not?
\bar{b} is inthe $\Longleftrightarrow T(\bar{x})=\bar{b} \Leftrightarrow A \bar{x}=\bar{b}$ is range

$$
\text { was a sol. } \Longleftrightarrow \text { consistent }
$$

but...

$$
\left[\begin{array}{cc|c}
1 & -3 & b_{1} \\
3 & 5 & b_{2} \\
-1 & 7 & b_{3}
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -3 & b_{1} \\
0 & -4 & b_{2}-3 b_{1} \\
0 & 4 & b_{1}+b_{3}
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -3 & b_{1} \\
0 & -4 & b_{2}-3 b_{1} \\
0 & 0 & -2 b_{1}+b_{2}+b_{3}
\end{array}\right]
$$

so this is inconsistent whenever $-2 b_{1}+b_{2}+b_{3} \neq 0$.
Thus, notfevery vector in \mathbb{R}^{3} is in the range.
For example, $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is not in the range.
(d) Show that $\bar{C}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ is NOT in the range. could use previous part or start from beginning...

$$
\left[\begin{array}{cc|c}
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & 5
\end{array}\right] \sim \cdots \sim\left[\begin{array}{cc|c}
1 & -3 & 3 \\
0 & 1 & 2 \\
0 & 0 & -35
\end{array}\right]
$$

Inconsistent, so $A \bar{x}=\bar{b}$ has no sol. Thus, $T(\bar{x})=\bar{b}$ has no sol., so \bar{b} is not in the range.

Ex Invesigate the following matrix transformations.
Foreach,

- find the images of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
- find the image of an arbitrary vector $\left[\begin{array}{l}x \\ y\end{array}\right]$.
- try to describe the transformation geometrically.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ dee by $T(\bar{x})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \bar{x}$.

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
-y
\end{array}\right]
\end{aligned}
$$

Reflection over x-axis
(b) $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad, \quad$ " $S(\bar{x})=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \bar{x}$

$$
\begin{aligned}
& S\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& S\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \\
& S\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y \\
x
\end{array}\right]
\end{aligned}
$$

Rotation $(c \subset \omega)$ by $\pi / 2$

Fact The matrix transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\bar{x})=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \bar{x}
$$

performs a rotation of \mathbb{R} by θ (caw).

* Notice that if $\theta=\pi / 2$ then $T(\bar{x})=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \bar{x}$, just like in the last example.
* This is proven in next section.

Linear Transformations
All matrix transformations have sone special properties. Notice that if $T(\bar{x})=A \bar{x}$ then

$$
\begin{aligned}
& T(\bar{u}+\bar{v})=A(\bar{u}+\bar{v})=A \bar{u}+A \bar{v}=T(\bar{u})+T(\bar{v}) \\
& T(c \bar{u})=A(c \bar{u})=c(A u)=c T(\bar{u}) . \quad \text { and }
\end{aligned}
$$

* You've see this before... derivative rales...

Definition A transformation T is called linear if for all $\bar{u} \bar{v}$ in the domain of T and all scalars C,

$$
\text { (i) } T(\bar{u}+\bar{v})=T(\bar{u})+T(\bar{v})
$$

AND
(ii) $T(c \bar{u})=c T(\bar{u})$.

* Thus, all matrix trans for motions are linear.
* lin. trans. automatically have other nice properties: $T(\overline{0})=\overline{0}$ and $T(c \bar{u}+d \overline{\bar{v}})=c T(\bar{u})+d T(\bar{v})$

1. q The Matrix of a Linear Transformation

We saw that matrix transformations ane linear transformation. We now will see that (perhaps suprising (y) every linear transformation combe written as a matrix transformation.

Let's investigate this... but first some notation:

Def (the standard basis) we use \bar{e}_{k} to denote the vector

$$
\bar{a}_{k}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
0 \\
0
\end{array}\right] \leftarrow 1 \text { in } k \text {-th entry. Os everywhere else. }
$$

* Wore that in $\mathbb{R}^{3} \bar{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ but in $\mathbb{R}^{4} \bar{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$.

Ex suppose $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ is a linear transformation. Further, suppose that you know

$$
T\left(\bar{e}_{1}\right)=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right], T\left(\bar{e}_{2}\right)=\left[\begin{array}{l}
0 \\
7 \\
5
\end{array}\right] .
$$

Find a formula for $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$.
we know that

$$
\begin{aligned}
& \text { - } T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \\
& \cdot T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
7 \\
5
\end{array}\right]
\end{aligned}
$$

The key is that

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

So

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) & =T\left(\left[\begin{array}{l}
x \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
y
\end{array}\right]\right) \\
& =T\left(\left[\begin{array}{l}
x \\
0
\end{array}\right]\right)+T\left(\left[\begin{array}{l}
6 \\
y
\end{array}\right]\right) \\
& \left.=T\left(x \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+T\left(\begin{array}{l}
0 \\
1
\end{array}\right]\right) \text { is linear } \\
& =x T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+y T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \text { Pis linear } \\
& =x\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]+y\left[\begin{array}{l}
0 \\
7
\end{array}\right] \\
& =\left[\begin{array}{c}
3 x \\
-2 x \\
x
\end{array}\right]+\left[\begin{array}{l}
0 \\
7 y \\
5 y
\end{array}\right]=\left[\begin{array}{c}
3 x \\
-2 x+7 y \\
x+5 y
\end{array}\right] .
\end{aligned}
$$

Also, $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=x\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]+y\left[\begin{array}{l}0 \\ 7 \\ 5\end{array}\right]=\left[\begin{array}{cc}3 & 0 \\ -2 & 7 \\ 1 & 5\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$

* so T is a matrix transformation.

Meorem If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then T is a matrix transformation. If A is the matrix whose $j^{\text {th }}$ column is $T\left(\bar{e}_{j}\right)$

$$
A=\left[\begin{array}{lll}
T\left(\bar{e}_{1}\right) & \cdots & T\left(\bar{e}_{n}\right)
\end{array}\right]_{1}
$$

Then $T(\bar{x})=A \bar{x}$.

* A is called the standard matrix of T.

Ex Detine $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
\begin{aligned}
& T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-2 x_{3}, 4 x_{1}, x_{1}-x_{2}+x_{3}\right) \\
& \int_{\text {thisis }}^{\text {alternative }} \begin{array}{l}
\text { notation for }
\end{array} T\left(\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
3 x_{1}-2 x_{3} \\
4 x_{1} \\
x_{1}-x_{2}+x_{3}
\end{array}\right]
\end{aligned}
$$

T is a line or transformation. Find the standard matrix for T.

$$
\begin{aligned}
A= & {\left[T\left(\bar{e}_{1}\right) T\left(\bar{e}_{2}\right) T\left(\bar{e}_{3}\right]\right.} \\
& \cdot T\left(\bar{e}_{1}\right)=T(1,0,0)=(3,4,1)=\left[\begin{array}{c}
3 \\
4 \\
1
\end{array}\right] \\
& \cdot T\left(\bar{e}_{2}\right)=T(0,1,0)=(0,0,-1)=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right] \\
& \cdot T\left(\bar{e}_{3}\right)=T(0,0,1)=(-2,0,1)=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Thus, $A=\left[\begin{array}{ccc}3 & 6 & -2 \\ 4 & 0 & 0 \\ 1 & -1 & 1\end{array}\right]$ so $T(\bar{x})=\left[\begin{array}{ccc}3 & 0 & -2 \\ 4 & 0 & 0 \\ 1 & -1 & 1\end{array}\right] \bar{x}$
one-to-one and onto

Ret Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
(1) we say T is onto \mathbb{R}^{m} if the range of T is all of \mathbb{R}^{m}, ie. if $T(\bar{x})=\bar{b}$ has a sol. for every \bar{b} in \mathbb{R}^{m}.
(2) we say T is one-to-one if every \bar{b} in \mathbb{R}^{m} is the image ot at most one \bar{x} in \mathbb{R}^{n}, ie. if $T(\bar{x})=\bar{b}$ has at most one solution for every 5 in \mathbb{R}^{m}.

Apictume

Not onto

Domain Codomain

Onto

Domain Codomain

Not one-to-one

Domain Codomain

one-to-one
(but maybe not onto)

For linear transformations, being onto or one-to-one can be investigated in terms of the standard matrix.

Theorem Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a line ar transformation, and let A be the standard matrix for T.
(1) T maps on to \mathbb{R}^{m} if and only if the column of A span \mathbb{R}^{m} (A has a pivot in every row)
(2) T is one-to-one if and only if the columns of A are linearly independent (A has a pinot inevery column)

Exploring (1): $A \bar{x}=\bar{b}$ has a solution for every \bar{b} \Longleftrightarrow columns of A span \mathbb{R}^{m}

Exploring (2): $A \bar{x}=\bar{b}$ has at most one solution for every $\bar{\sigma} \Rightarrow A \bar{x}=\overline{0}$ has at most one sol. also, if $A \bar{x}=\bar{b}$ has 2 sol. \bar{u} and \bar{v} then $A \bar{u}=\bar{b}, A \bar{v}=\bar{b} \Rightarrow A \bar{u}-A \bar{v}=\overline{0} \Rightarrow$ $A(\bar{u}-\bar{v})=\overline{0} \Rightarrow A \bar{x}=\overline{0}$ has 2 sol. This, $A \bar{x}=\bar{b}$ has at most one sol. for all \bar{b} $\Leftrightarrow A \bar{x}=\overline{0}$ has at most re sol. \Leftrightarrow col. of A are lin. ind.

Ex Detine $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}-2 x_{3}, 4 x_{1}, x_{1}-x_{2}+x_{3}\right)
$$

Show that T is one-to-one and onto \mathbb{R}^{3}.
(1) Let's find the standard matrix for T From a previous ex., the standard matrix is

$$
A=\left[\begin{array}{ccc}
3 & 0 & -2 \\
4 & 0 & 0 \\
1 & -1 & 1
\end{array}\right] \text { so } T(\bar{x})=\left[\begin{array}{ccc}
3 & 0 & -2 \\
4 & 0 & 0 \\
1 & -1 & 1
\end{array}\right] \bar{x} \text {. }
$$

(2) we now use the theorem.

$$
A \sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 3 & -5 \\
0 & 4 & -4
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 3 & -5
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 0 & -2
\end{array}\right]
$$

- Pivot in every row \Leftrightarrow col. span $\mathbb{R}^{3} \Leftrightarrow$ on to \mathbb{R}^{3}
o pivot in every $\operatorname{col} \Leftrightarrow$ col. are L.I. \Leftrightarrow one-to-one

Ex Define $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}-x_{4}, 3 x_{1}-3 x_{2}+4 x_{3}+8 x_{4}, 2 x_{1}-2 x_{2}+2 x_{3}+5 x_{4}\right)
$$

(a) Show that T is onto \mathbb{R}^{3} butnot one-to-one.
(b) Find two vectors whose image under T is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(a) (1) Let's find the standard matrix for T

$$
\begin{array}{ll}
T\left(\bar{e}_{1}\right)=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \\
T\left(\bar{e}_{2}\right)=\left[\begin{array}{l}
-1 \\
-3 \\
-2
\end{array}\right] \\
T\left(\overline{e_{3}}\right)=\left[\begin{array}{ccc}
0 \\
1 \\
1 \\
2
\end{array}\right] & \Longrightarrow A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
3 & -1 \\
3 & -3 & 4 \\
0 \\
2 & -2 & 2 \\
5
\end{array}\right] \\
T\left(e_{4}\right)=\left[\begin{array}{c}
-1 \\
8 \\
5
\end{array}\right]
\end{array} \quad \Longrightarrow T(\bar{x})=A \bar{x}
$$

(2) Use the theorem: $A \sim\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

- Pin ot in every row \Leftrightarrow col. span $\mathbb{R}^{3} \Leftrightarrow$ on to \mathbb{R}^{3}
- NOT a pivotinevery col \Leftrightarrow cols. are \Leftrightarrow not one-torone lin dep.
(b) Solve $T(\bar{x})=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ (and we know this is consitent Since T is onto \mathbb{R}^{3})

$$
\begin{aligned}
& T(\bar{x})=A \bar{x}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
& {\left[\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
3 & 1 \\
3 & -3 & 4 & 0 \\
2 & 2 & 2 & 5
\end{array}\right] \sim \cdots \sim\left[\begin{array}{cccc|c}
1 & -1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]} \\
& x_{1}=2+2 x_{2}^{4} \\
& S=x_{2} \text { free } \\
& x_{3}=-3 \\
& x_{4}=1
\end{aligned} \Rightarrow \bar{x}=\left[\begin{array}{c}
2 \\
0 \\
-3 \\
1
\end{array}\right]+5\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right] .
$$

Thus, we get 2 sol. choosing $s=0, s=1$

$$
\left[\begin{array}{c}
2 \\
0 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{c}
4 \\
1 \\
-3 \\
1
\end{array}\right]
$$

Ex Explain why a linear transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ can not be onto \mathbb{R}^{5}.

The matrix for T is $S \times 3$. This, there are d most 3 pivots, so there cannot be a pivot in every row. Thus T is not on to \mathbb{R}^{5} by the The rem.

Ex Explain why a linear transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ can not be one to -oe
The matrix for T is 2×3 This, there ore at most 2 pivots, so there cam not be a pivot in every column. Thus T is not one-torose by the Theorem.

