Addition and Scalar Multiplication
by example...

$$A = \begin{bmatrix} 1 & 3 & 6 \\ -2 & 0 & 8 \end{bmatrix}, B = \begin{bmatrix} 7 & 2 & 0 \\ 7 & 1 & -1 \end{bmatrix}, C = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, D = \begin{bmatrix} 1 & 3 \end{bmatrix}$$

$$2 \times 3$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2 \times 1$$

$$1 \times 2$$

$$2 \times 3$$

$$2$$

- * Addition/subtraction is only defined for matrices of the same dimensions.
- * For scalar multiplication, you multiply every entry by the scalar
- * Two matrices are equal if and only if they have the same divensions and same corresponding entries_

Recall: we know how to multiply a matrix by a vector.

$$\frac{3}{2} \cdot 5 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \left(\begin{bmatrix} 3 \\ 2 \end{bmatrix} + 4 \begin{bmatrix} -5 \\ 1 \end{bmatrix} = \begin{bmatrix} -17 \\ 6 \end{bmatrix}$$

$$\frac{2 \times 2}{2 \times 2} \cdot \frac{2 \times 1}{2}$$

$$\frac{Det}{1} \quad If \quad Ais man and \quad Bisnap \quad with$$

$$B = \begin{bmatrix} \overline{b_1}, \ \overline{b_2} \cdots \ \overline{b_p} \end{bmatrix} \quad watch$$

then

$$AB = [A\overline{b}, A\overline{b}_2 - - - A\overline{b}_p]$$
. AB is mxp.

$$\frac{E \times Le + A = \begin{bmatrix} 3 & -5 \\ 2 & i \end{bmatrix}, B = \begin{bmatrix} i & 3 & 0 \\ 4 & 2 & -3 \end{bmatrix}$$

$$2 \times 2$$

$$2 \times 3$$

$$A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -17 \\ -17 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} 15 \\ -3 \end{bmatrix}$$

$$A \begin{bmatrix} 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 15 \\ -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 15 \\ -3 \end{bmatrix}$$

BA is not defined

$$2x32x2$$

 $x = 1$
 $x = 1$

Another view admultiplication

$$E \times Let A = \begin{bmatrix} 3 & -5 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 & 0 \\ 4 & 2 & -3 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 3 & -5 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} -17 & -11 \\ -6 & -8 \end{bmatrix}$$

$$Fow lot A and col 3 at B$$

$$\frac{E_{x}}{E_{x}} = \left[\begin{array}{c} -2 & 1 \\ 3 & 0 \\ 5 & -2 \end{array}\right], B = \left[\begin{array}{c} 2 & 0 & 3 & -1 \\ 4 & -1 & 2 & 0 \end{array}\right]$$

$$AB = \left[\begin{array}{c} -2 & 1 \\ 3 & 0 \\ 5 & -2 \end{array}\right], \left[\begin{array}{c} 2 & 0 & 3 & -1 \\ 4 & -1 & 2 & 0 \end{array}\right] = \left[\begin{array}{c} 0 & -1 & 4 & 2 \\ 6 & 0 & 9 & -3 \\ 2 & 2 & 11 & -5 \end{array}\right]$$

$$AB = \left[\begin{array}{c} -2 & 1 \\ 3 & 0 \\ 5 & -2 \end{array}\right], \left[\begin{array}{c} 2 & 0 & 3 & -1 \\ 4 & -1 & 2 & 0 \end{array}\right] = \left[\begin{array}{c} 0 & -1 & 4 & 2 \\ 6 & 0 & 9 & -3 \\ 2 & 2 & 11 & -5 \end{array}\right]$$

$$AB = \left[\begin{array}{c} -2 & 1 \\ 3 & -2 \\ 5 & -2 \end{array}\right], \left[\begin{array}{c} 2 & 0 & 3 & -1 \\ 4 & -1 & 2 & 0 \end{array}\right] = \left[\begin{array}{c} 0 & -1 & 4 & 2 \\ 6 & 0 & 9 & -3 \\ 2 & 2 & 11 & -5 \end{array}\right]$$

$$AB = \left[\begin{array}{c} -2 & 1 \\ 3 & x & 2 \\ 3 & x & 2 \end{array}\right]$$

$$AB = \left[\begin{array}{c} -2 & 1 \\ 3 & x & 2 \\ 3 & x & 2 \end{array}\right], \left[\begin{array}{c} 2 & 0 & 3 & -1 \\ 2 & 0 & 1 & -5 \end{array}\right]$$

Det In is the nxn matrix with 1's on the main diagonal and 0's everywhere else.

$$I_n = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

But some "familiar" properties fail.
Ex Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 0 \\ 1/2 & 1/2 \end{bmatrix}$$

 $AB = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \quad AC = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$
Thus, $AB = AC$ but $B \neq C$.
So, in general, you can NOT cancel!
 $AB = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$ and $BA = \begin{bmatrix} 4 & 4 \\ 0 & 0 \end{bmatrix}$
So, in general, $AB = BA$!

Powers of a matrix

Det If A is man, then the transpose of A, denoted AT, is the name matrix where

$$row_{i}(A^{T}) = col_{i}(A)$$

$$\frac{E_{X}}{E_{X}} = \begin{bmatrix} 1 & 2 \\ 0 & -3 \\ 4 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ then}$$
$$A^{T} = \begin{bmatrix} 1 & 0 & 4 \\ 2 & -3 & 5 \end{bmatrix}, \quad B^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Theorem
$$(A^{T})^{T} = A, (A + B)^{T} = A^{T} + B^{T}, (A - B)^{T} = B^{T} A^{T}$$

2.2 Inverse of a matrix

Q: How would you solve

$$S_{x} = 7 \implies \frac{1}{5} \cdot 5 \cdot x = \frac{1}{5} \cdot 7 \implies x = \frac{7}{5}$$
$$\underbrace{S_{x}}^{-1} \cdot 5 \cdot x = \underbrace{S_{x}}^{-1} \cdot 7$$

Q: Conve apply a similar nethod to solve Ax=b? Forexample,

$$\begin{bmatrix} 3 & 4 \\ 5 & 4 \end{bmatrix}, \overline{X} = \begin{bmatrix} 3 \\ 7 \end{bmatrix},$$

when A is 2x2

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then A^{-1} (if it exists) has the
property
 $A^{-1}A = In \text{ and } A \cdot A^{-1} = In.$

Now,

$$B \cdot A = \frac{1}{ad-bc} \begin{bmatrix} d & -b \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

 $His is$
 $= \frac{1}{ad-bc} \begin{bmatrix} ab-bc & 0 \\ 0 & -bc+ad \end{bmatrix}$
 $= \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = J_2 m$
Similarly
 $A \cdot B = J_2$. Thus $B = A^{-1}$.
Def If $A = \begin{bmatrix} q & b \\ c & d \end{bmatrix}$, then $det A = ad-bc$ is called
the determinant of A.

Theorem Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.
(i) If det $A \neq 0$, then $A^{-1} = \frac{1}{de+A} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.
(2) If det $A = 0$, then A is not invertible. $(A^{-1} DNE)$

Ex Find the inverse of
$$A = \begin{bmatrix} 3 & 4 \\ 5 & c \end{bmatrix}$$
 and use if to
solve $\begin{bmatrix} 3 & 4 \\ 5 & c \end{bmatrix}$ $\overline{y} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$.
(). det $A = (8 \cdot 20) = -2$ so $A^{-1} exists$
 $A^{-1} = \begin{bmatrix} 3 & 4 \\ 5 & c \end{bmatrix}^{-1} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} 6 & -4 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 5 & -7 \end{bmatrix}$
(2) $\begin{bmatrix} 3 & 4 \\ 5 & c \end{bmatrix} \overline{y} = \begin{bmatrix} 3 \\ 7 \end{bmatrix} \Longrightarrow \begin{bmatrix} 3 & 4 \\ 5 & c \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 7 \end{bmatrix} \Longrightarrow \begin{bmatrix} 3 & 4 \\ 5 & c \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 7 \end{bmatrix} \Longrightarrow \begin{bmatrix} 3 & 4 \\ 5 & c \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 7 \end{bmatrix}$
 $\Rightarrow I_{2} \overline{x} = \begin{bmatrix} -3 \\ 5 \\ 7 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 7 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 7 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} x = \begin{bmatrix} -3 \\ -3 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 7 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 7 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} \overline{x} = \begin{bmatrix} -3 \\ -3 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 7 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 7 \end{bmatrix}$
Proper ties of the inverse
 $\Rightarrow A^{T} B^{T} exist.$
Theorem Assure A, B are invertible.
(a) $(A^{T})^{-1} = A$
(b) $(AB)^{-1} = B^{T}A^{-1}$ but this may be different then $\overline{A}^{T}B^{-1}$
(c) $(A^{T})^{-1} = (A^{-1})^{T}$
 $\underline{P}A \rightarrow (b)$
Let $c = B^{T}A^{T}$. Then $ABc = ABB^{T}A^{-1} = AIA^{T} = AA^{T} = I$.
Also, $cAB = B^{T}A^{T}AB = B^{T}IB = B^{T}B = I$. (3)
When A is nxm

05 – Matrix Inverses

Definition: Elementary Matrix

An elementary matrix a matrix obtained by performing a single elementary row operation on the identity I.

1. Determine if each of the following are elementary matrices.

(a)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 $\forall e \leq r_{1} \leq r_{2}$ (d) $\begin{bmatrix} 0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\land o = red 2 ops$
(b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\forall e \leq r_{2} = 3r_{1}$ (c) $\begin{bmatrix} 1 & 2 & 0 \\ -2 & 3 & 0 \\ \frac{1}{2} & 3 & 0 \end{bmatrix}$ $\land o = col. od 2cros$
(c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ $\forall e \leq r_{2} = 3r_{3} + r_{2}$ (f) $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $\land o = red 2 ops$
2. Let $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ and let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. Compute *EA*. What do you notice?
 $E A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} + 3\alpha_{21} & \alpha_{22} + 3\alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} + 3\alpha_{21} & \alpha_{22} + 3\alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} + 3\alpha_{21} & \alpha_{23} + 3\alpha_{33} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix}$
mult. A by E performs the row operation associated to E

Theorem

Let A be $m \times n$. If ρ is an elementary row operation and $E = \rho(I)$ is the corresponding elementary matrix, then $\rho(A) = EA$. Moreover, E is invertible with $E^{-1} = \rho^{-1}(I)$.

Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if its RREF is I_n , and this happens if and only if A is a product of elementary matrices. Further, when A is invertible, any sequence of row operations that transforms A to I_n will also transform I_n to A^{-1} .

Theorem: Algorithm for finding A^{-1}

If A is $n \times n$, row reduce the augmented matrix $[A \mid I_n]$ to RREF.

- If the RREF of $[A | I_n]$ is $[I_n | B]$, then A is invertible, and $B = A^{-1}$.
- If the RREF of $[A | I_n]$ is $["not I_n" | B]$, then A is not invertible.

3. Find the inverse of A, if it exists.

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1$$

pt idea

=> Ax= 6 hasa

=> A has pivotin every row + col.

(although

A En ... E, = In

should also be checked.

unique sol. Ab

A invertible

(c)
$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$
 $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 6 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 6 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 6 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 6 & 3 \\ 4 & -3 & 8 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 4 & -3 & 8 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 3 \\ 4 & -3 & 8 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 3 \\ 4 & -3 & 8 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 3 & -4 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ -3 & 4 & -1 \\ 0 & 0 & 1 \\ 3 & 2 & -2 & 2 \end{bmatrix}$

(d)
$$\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 1 \\ 4 & -3 & 7 \end{bmatrix}$$
 $A^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{2}{7} & \frac{3}{2} \\ -\frac{2}{7} & \frac{4}{7} & -1 \\ \frac{3}{2} & -2 & \frac{7}{2} \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 & -1 & | & 0 & 0 \\ 1 & 0 & 1 & 0 & |$$

2.3 characterizations of Invertible Matrices

Invertibe Matrix Theorem Let A be a square non matrix.
Then the following are equivalent.
a. A is invertible
b. A ~ In
c. A has n pivots
d. A x̄ = ō has only the trivial sol.
e. colume at A are linearly independent
f. The transformation
$$T(\overline{x}) = A\overline{x}$$
 is one-to-one.
j. A x̄ = ō is consistent for every choice of 5
h. The columes of A span Rⁿ
i. The transformation $T(\overline{x}) = A\overline{x}$ is onto
j. There is an non-natrix C s.t. CA = In
k. " " D s.t. AD = In
l. AT is invertible

2.8 Subspaces of IR"

closed inder addition > Z. For each I and Vin H, I+V is also in H. closed under scalar mult. > 3. For each I in H and each scalar c, CI is also in H.

> <u>Ex</u> Let L be any line through the origin in IRⁿ. Then Lisa subspace.

Ex If L'is a line not through the origin, then L' is not a subspace.

Let treat the first example carefully. Suppose L is
a line through the origin. Let
$$\overline{v}$$
 be any nonzero
vector on L. Then L = span $\{\overline{v}\}$.

Ex If
$$\overline{V}$$
 is in \mathbb{R}^n , then Span $\{\overline{V}\}$ is a subspace of \mathbb{R}^n .
Recall: Span $\{\overline{V}\}$ is all linear combinations of \overline{V} .
1. \overline{O} is in Span $\{\overline{V}\}$ $\forall | c \quad \overline{O} = 0.\overline{V}$
2. Let $\overline{a}, \overline{O}$ be in Span $\{\overline{V}\}$. Then $\overline{a} = c_1 \overline{V}, \overline{b} = c_2 \overline{V}$. Thus
 $\overline{a} + \overline{b} = c_1 \overline{V} + c_2 \overline{V} = (c_1 + c_2) \overline{V} \Longrightarrow \overline{a} + \overline{b}$ is a line comb. of \overline{V}
 $\Longrightarrow \overline{a} + \overline{b}$ is in Span $\{\overline{V}\}$. Then $\overline{a} = c_1 \overline{V}$. Let $c_2 \overline{b} a$ and \overline{V}
3. Let \overline{a} be in Span $\{\overline{V}\}$. Then $\overline{a} = c_1 \overline{V}$. Let $c_2 \overline{b} a$ and \overline{V}
 $scalar$. Thus,
 $c_{\overline{a}} = c(c_1 \overline{V}) = (c_1) \overline{V} \Rightarrow c\overline{a}$ is a line comber of \overline{V}
 $\Longrightarrow c\overline{a}$ is in Span $\{\overline{V}\}$.
Thus Span $\{\overline{V}\}$ is a subspace of \mathbb{R}^n
Theorem If $\overline{V}_1, \dots, \overline{V}_k$ are in \mathbb{R}^n . Then $Span \{\overline{V}_1, \dots, \overline{V}_k\}$
is always a subspace of \mathbb{R}^n .
 A in the comber
of $\overline{V}_1, \dots, \overline{V}_k$
 \rightarrow Thes implies that lines and places through the

origin are always subspaces.

Def Let A be any matrix. The column space of A
is the set, denoted ColA, of all linear comb. at
the Columns of A.

$$\times ColA = Spm 1\overline{a_1, ..., \overline{a_n}}$$
 where $\overline{a_1, ..., \overline{a_n}}$ are the
Columns of A. Thus,
 $\underbrace{ColA} = Spm 1\overline{a_1, ..., \overline{a_n}}$ where $\overline{a_1, ..., \overline{a_n}}$ are the
Columns of A. Thus,
 $\underbrace{ColA} = Spm 1\overline{a_1, ..., \overline{a_n}}$ where $\overline{a_1, ..., \overline{a_n}}$ are the
Columns of A. Thus,
 $\underbrace{ColA} = Spm 1\overline{a_1, ..., \overline{a_n}}$ where $\overline{a_1, ..., \overline{a_n}}$ are the
Columns of A. Thus,
 $\underbrace{ColA} = Spm 1\overline{a_1, ..., \overline{a_n}}$ betermine if $\begin{bmatrix} 1\\ 2 \end{bmatrix}$ is in ColA.
 $\begin{bmatrix} 1\\ -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}^{1}$ is a linear. comb. of cols. of A
 $\underbrace{ColA} = \underbrace{ColA} =$

Teorem If Aisman, then NulAisa subspace of R^N. Ph o Disin NulA since AD= 0

Recall: The standard basis for
$$\mathbb{R}^3$$
 is $\overline{e}_{1,\overline{e}_2,\overline{e}_3}$. This
is use ful, b/c if $\overline{V} = \begin{bmatrix} 6\\b\\c \end{bmatrix}$ is any vector in \mathbb{R}^3 then
 \overline{V} is a line comb. of $\overline{e}_{1,\overline{e}_2}$, \overline{e}_3
 $\begin{bmatrix} 9\\b\\c \end{bmatrix} = \frac{\alpha}{c} \begin{bmatrix} 0\\b\\c \end{bmatrix} + \frac{b}{c} \begin{bmatrix} 0\\c \end{bmatrix} + \frac{c}{c} \begin{bmatrix} 0\\c \end{bmatrix}$
so $\overline{V} = \alpha \overline{e}_1 + b \overline{e}_2 + c \overline{e}_3$.
 $\overline{V} = \alpha \overline{e}_1 + b \overline{e}_2 + c \overline{e}_3$.

Det Let H be a subspace. A subset of H
is called a basis for H if
(1) the subset spans H, AND
(2) the subset is linearly independent.
X It can be shown that every Subspace of R^A
has a basis with only finitely may rectors.
Ex Which of the following are bases for R³.
(a)
$$\begin{bmatrix} -i \\ 2 \\ -i \\ 1 \end{bmatrix} \begin{bmatrix} -i \\ 2 \\ -i \end{bmatrix}$$

Finding Bases HO-OG All.

06 – Null and Column Spaces

Definition: Null Space

The null space of a matrix A, is the set of all solutions to $A\mathbf{x} = \mathbf{0}$.

Strategy: Basis for Nul A

Let A be any matrix. To find a basis for Nul A, do the following.

- Solve $A\mathbf{x} = \mathbf{0}$ (usually with row reduction).
- Write the solution set in *parametric vector form* (using the process from class).
- The vectors appearing in the parametric vector form are a basis for Nul A.

1. Find a basis for the null space of the following matrix.

$$A = \begin{bmatrix} 1 & 4 & 8 & -3 & -7 \\ -1 & 2 & 7 & 3 & 4 \\ -2 & 2 & 9 & 5 & 5 \\ 3 & 6 & 9 & -5 & -2 \end{bmatrix}$$

You can use the fact that
$$A \sim \begin{bmatrix} 1 & 0 & -2 & 0 & 7 \\ 0 & 2 & 5 & 0 & -1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$
$$\int_{A} \left\{ \begin{array}{c} 1 & 6 & -2 & 6 & 7 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \right\}$$

$$A \sim \begin{bmatrix} 0 & 1 & 1/2 \\ 0 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_2 = -5/2} x_3 + 1/2 x_5$$

$$S = x_3 \quad \text{free}$$

$$k_4 = -x_5$$

$$t = x_5 \quad \text{free}$$

$$x_4 = -x_5$$

$$t = x_5 \quad \text{free}$$

$$Y_2 = \begin{bmatrix} 2 & 5 & -7t \\ -5/2 & 5 & +7/2 t \\ 5 & -t \\ -t \\ t \end{bmatrix} = S \begin{bmatrix} 2 \\ -5/2 \\ 1 \\ 0 \\ -1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -7 \\ 7/2 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

$$A \sim \begin{bmatrix} 2 & 5 & -7t \\ -5/2 \\ 0 \\ -1 \\ 1 \end{bmatrix} = S \begin{bmatrix} 2 \\ -5/2 \\ 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

Basis for NullA is
$$\begin{bmatrix} 2 \\ -5/2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} -7 \\ 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$
in Ax=0
in Ax=0

Definition: Column Space

The **column space** of a matrix A, is the set of all linear combinations of the columns of A.

Strategy: Basis for $\operatorname{Col} A$

Let A be any matrix. To find a basis for $\operatorname{Col} A$, do the following.

- Row reduce A to REF, and locate the pivots.
- The columns of the *original* matrix A that correspond to the pivots form a basis for Col A.
- 2. Find a basis for the column space of the matrix in the previous exercise.

Basis for colA is
$$\left\{ \begin{bmatrix} 1\\-1\\-2\\3 \end{bmatrix}, \begin{bmatrix} 4\\2\\2\\-2\\-2\\-3 \end{bmatrix}, \begin{bmatrix} -3\\-3\\-5\\-5\\-5 \end{bmatrix} \right\}$$

dimension 3

Strategy: Basis for $Span{v_1, \ldots, v_k}$

Make a matrix A using $\mathbf{v}_1, \ldots, \mathbf{v}_k$ as the columns, so $A = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}$. Then find a basis for Col A.

3. Find a basis for the subspace of \mathbb{R}^3 spanned by $\begin{bmatrix} -1\\ -2\\ 1 \end{bmatrix}$, $\begin{bmatrix} 2\\ 4\\ -2 \end{bmatrix}$, $\begin{bmatrix} 3\\ 9\\ -6 \end{bmatrix}$.

Create
$$A = \begin{bmatrix} -1 & 2 & 3 \\ -2 & 4 & 9 \\ 1 & -2 & -6 \end{bmatrix}$$
,
 $A \sim \begin{bmatrix} -1 & 2 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$. Thus, a basis for
 $Span \left\{ \begin{bmatrix} -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix}$

2.9 Dimension É Rank

This section mostly introduces terminology related to bases.

Note: Subspaces have lots of different bases.
For example, we have seen that both of
the following are bases for R³

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix}$$

$$e_{11}e_{21}e_{3}$$
 is a basis for \mathbb{R}^3 so $\dim(\mathbb{R}^3) = 3$

(b)
$$\mathbb{R}^{n}$$

 $\overline{e_{1}, \overline{e_{2}}, ..., \overline{e_{n}}}$ is a basis for \mathbb{R}^{n} , so dim $(\mathbb{R}^{n}) = n$
(c) $Col(A)$ where $A = \begin{bmatrix} 1 & -3 & 2 & -4 \\ -3 & 7 & -1 & 5 \\ 2 & -4 & -3 \\ 4 & 12 & 2 & 7 \end{bmatrix}$

$$A \sim \begin{pmatrix} 0 & -3 & z & -4 \\ 0 & 0 & 0 & -7 \\ 0 & 0 & 0 & 0 \end{pmatrix} \implies Basis for ColA is$$

$$\begin{cases} \begin{bmatrix} -3 \\ -3 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} -4 \\ 5 \\ -3 \\ 7 \end{bmatrix}, \begin{bmatrix} -4 \\ 7 \\ 7 \end{bmatrix}, \begin{bmatrix} -4 \\$$

(d) Null A where A is as above.

$$A \sim \begin{bmatrix} 0 & -3 & 2 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow x_{1} = 3x_{2}$$

$$x_{2} = \begin{bmatrix} 35 \\ 0 \\ 0 \end{bmatrix} = 5 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow basis for Null A is \begin{cases} 3 \\ 1 \\ 0 \end{bmatrix}$$

Rank-Nullity Theorem