2.1 Matrix Operations

Addition and Scalar Multiplication
by example...

$$
\begin{aligned}
& \text { \#no wm } x \text { \# cols } \\
& \text { - } A+B=\left[\begin{array}{lll}
8 & 5 & 6 \\
5 & 1 & 7
\end{array}\right] \quad 0-3 B=\left[\begin{array}{ccc}
-21 & -6 & 0 \\
-21 & -3 & 3
\end{array}\right] \\
& \text { - } A-3 B=\left[\begin{array}{lll}
-20 & -3 & 6 \\
-23 & -3 & 11
\end{array}\right] \cdot A+C \text { is undefined } \\
& \text { - } C \neq D
\end{aligned}
$$

* Addition/subtraction is only defined for matrices of the same dimensions.
* For scalar multiplication, you multiply every entry by the scalar
* Two matrices ore equal if and only if they hare the same dimensions and save corresponding entries.

Matrix Multiplication

Recall: we know how to multiply a matrix by a vector.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & -5 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
4
\end{array}\right]=1\left[\begin{array}{l}
3 \\
2
\end{array}\right]+4\left[\begin{array}{c}
-5 \\
1
\end{array}\right]=\left[\begin{array}{c}
-17 \\
6
\end{array}\right]}
\end{aligned}
$$

Let If A is $m \times n$ and B is $n \times P$ with

$$
B=\left[\bar{b}_{1}, \bar{y}_{2} \cdots \bar{b}_{p}\right] \text { match }
$$

then

$$
\begin{aligned}
& \text { then } \\
& \qquad A B=\left[A \bar{b}_{1} A \bar{b}_{2} \cdots A b_{p}\right] . A B \text { is } m \times p . \\
& \text { * I.e. } \operatorname{colj}_{j}(A B)=A \cdot \operatorname{col}_{j}(B)
\end{aligned}
$$

Ex Let $A=\left[\begin{array}{cc}3 & -5 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{ccc}1 & 3 & 0 \\ 4 & 2 & -3\end{array}\right]$

$$
\left.\begin{array}{l}
A\left[\begin{array}{l}
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
-17 \\
6
\end{array}\right] \\
A\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
8
\end{array}\right] \\
A\left[\begin{array}{c}
0 \\
-3
\end{array}\right]=\left[\begin{array}{c}
15 \\
-3
\end{array}\right]
\end{array}\right\} \Rightarrow A B=\left[\begin{array}{ccc}
-17 & -1 & 15 \\
6 & 8 & -3
\end{array}\right]
$$

$B A$ is not defined

$$
\underbrace{2 \times 32 \times 2}_{\text {noteqnal }}
$$

* A side: why define matrix mull. this way? Thinking of the transformations $T_{A}(\bar{x})=A \bar{x}$ and $T_{B}(\bar{x})=B \bar{x}$, then $T_{A}\left(T_{B}(\bar{x})\right)=T_{A B}(\bar{x})$.

Another view ofmultiplication
Ex Let $A=\left[\begin{array}{cc}3 & -5 \\ 2 & 1\end{array}\right], \quad B=\left[\begin{array}{llc}1 & 3 & 0 \\ 4 & 2 & -3\end{array}\right]$

$$
A \cdot B=\left[\begin{array}{ccc}
3 & -5 \\
2 \cdots-1
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & 0 \\
4 & 2 & -3
\end{array}\right]\left[\begin{array}{ccc}
-17 & -1 & -(15)^{5} \\
-6-(8) & -3
\end{array}\right]
$$

$(1,3)$ entry canes from row 1 of A and $\operatorname{col} 3$ of B
comments
(I) $\operatorname{colj}(A B)=A \cdot \operatorname{colj}(B)$
(2) $\operatorname{row}_{i}(A B)=\operatorname{row}_{i} A \cdot B$ dot product.
(3) (i, j) entry ot $A B$ is row i $(A) \cdot \operatorname{col} j(B)$

$$
\text { Ex Let } A=\left[\begin{array}{cc}
-2 & 1 \\
3 & 0 \\
5 & -2
\end{array}\right], B=\left[\begin{array}{cccc}
2 & 0 & 3 & -1 \\
4 & -1 & 2 & 0
\end{array}\right]
$$

$$
A B=\underbrace{[\begin{array}{c}
-2 \\
3 \\
3 \\
5 \\
\hline
\end{array} \underbrace{2}_{\text {match }}}_{3 \times 2} \underbrace{\left[\begin{array}{cccc}
2 & 0 & 3 & -1 \\
4 & -1 & 2 & 0
\end{array}\right]}_{2 \times 4}=\underbrace{\left[\begin{array}{cccc}
0 & -1 & 4 & 2 \\
6 & 0 & 9 & -3 \\
2 & 2 & 11 & -5
\end{array}\right]}_{\text {should be } 3 \times 4}
$$

Properties of Matrix arithmetic
Many familiar properties are true: read Theorem 1, 2 pg. 95,99. For example

$$
\cdot A(B+C)=A B+A C \text {. }
$$

Bet I_{n} is the $n \times n$ matrix with I's on the main diagonal and O's everywhere else.

$$
I_{n}=\left[\begin{array}{lll}
1 & & 0 \\
1 & 0 \\
0 & \ddots & 1
\end{array}\right]
$$

$$
\text { * egg. } I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

* In is called the identity matrix
* The zeromatrix is the matrix with all zeros.
* Notice that if A is $m \times n$, then

$$
I_{m} \cdot A=A \text { and } A \cdot I_{n}=A \text {. }
$$

But some "familiar" properties fail.
Ex Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right] \quad B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right] \quad C=\left[\begin{array}{ll}0 & 0 \\ 1 / 2 & 1 / 2\end{array}\right]$

$$
A B=\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \quad A C=\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right]
$$

Thus, $A B=A C$ but $B \neq C$.
So, in gerereral, you can NOT can cal!
Also,

$$
A B=\left[\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right] \text { and } B A=\left[\begin{array}{ll}
4 & 4 \\
0 & 0
\end{array}\right]
$$

so, in general, $A B \neq B A$!

Powers of a matrix
Let $A^{k}=\underbrace{A \cdot A \cdot \cdots A}_{k-\text { tines }}$

$$
\begin{aligned}
\text { Ex If } A & =\left[\begin{array}{lll}
0 & 1 & 3 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right], \text { then } A^{2}=\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], A^{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . \\
* A \neq 0 \text { but } A^{3}=0!! & \text { zeromatrix }
\end{aligned}
$$

zeromatrix
(島 It's possible that $A \neq 0, B \neq 0$ but $A B=0$.

Trans pose of a matrix
Deft If A is $m \times n$, then the transpose of A, denoted A^{\top}, is the $n \times m$ matrix where

$$
\operatorname{row}_{i}\left(A^{\top}\right)=\operatorname{col} i(A)
$$

* inter change rows and columns

$$
\begin{aligned}
\text { Ex If } A & =\left[\begin{array}{cc}
1 & 2 \\
0 & -3 \\
4 & 5
\end{array}\right], B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \text { then } \\
A^{\top} & =\left[\begin{array}{ccc}
1 & 0 & 4 \\
2 & -3 & 5
\end{array}\right], B^{\top}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
\end{aligned}
$$

Theorem $\left(A^{\top}\right)^{\top}=A,(A+B)^{\top}=A^{\top}+B^{\top},(A B)^{\top}=B^{\top} A^{\top}$
2.2 Inverse of a matrix

Q: How wand you solve

$$
\begin{aligned}
5 x=7 \Rightarrow & \frac{1}{5} 5 \cdot x=\frac{1}{5} \cdot 7 \Rightarrow x=\frac{7}{5} \\
& 5^{-1} \cdot 5 x=5^{-1} \cdot 7
\end{aligned}
$$

Q: Can ne apply a similar method to solve $A \bar{x}=b$?
Forexarple,

$$
\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right] \cdot \bar{x}=\left[\begin{array}{l}
3 \\
7
\end{array}\right]
$$

Let Let A be $n \times n$. If there exists a matrix A^{-1} such that $A \cdot A^{-1}=I_{n}$ and $A^{-1} \cdot A=I_{n}$, then we Say that A is invertible.

* If A is invertible, there is only one possible choice for A^{-1}.
* we call A^{-1} the inverse of A.
* note that A is the inverse of A^{-1}.

Q: So how cam we determine if a matrix is invertible?
Q: if A is invertible, how do me find A^{-1} ?
when A is 2×2
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then A^{-1} (if it exists) has the property

$$
A^{-1} A=I_{n} \text { and } A \cdot A^{-1}=I_{n}
$$

So, if a potential A^{-1} drops from the sky, we just checkifit works. Look up!

Let $B=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Now,
similarly

$$
A \cdot B=I_{2} \cdot \operatorname{Thn} s \quad \underline{B=A^{-1}}
$$

Deft If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\operatorname{det} A=a d-b c$ is called the determinant of A.

Theorem Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
(1) If $\operatorname{det} A \neq 0$, then $A^{-1}=\frac{1}{d e t} A \cdot\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
(2) If $\operatorname{det} A=O$, then A is not invertible. ($A^{-1} D N E$)

Ex Find the inverse of $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]$ and use it to Solve $\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right] \cdot \bar{x}=\left[\begin{array}{l}3 \\ 7\end{array}\right]$.
(1). $\operatorname{det} A=18-20=-2 \longleftarrow$ so A^{-1} exists

$$
\text { - } A^{-1}=\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right]^{-1}=\frac{1}{-2}\left[\begin{array}{cc}
6 & -4 \\
-5 & 3
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 \\
5 / 2 & -3 / 2
\end{array}\right]
$$

(2)

$$
\begin{aligned}
{\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right] \bar{x}=\left[\begin{array}{l}
3 \\
7
\end{array}\right] } & \Rightarrow\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right]^{-1}\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right] \bar{x}=\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right]^{-1}\left[\begin{array}{l}
3 \\
7
\end{array}\right] \\
& \Rightarrow I_{2} \bar{x}=\left[\begin{array}{cc}
-3 & 2 \\
5 / 2 & -3 / 2
\end{array}\right]\left[\begin{array}{l}
3 \\
7
\end{array}\right] \\
& \Rightarrow \bar{x}=\left[\begin{array}{c}
5 \\
-3
\end{array}\right]
\end{aligned}
$$

properties of the inverse
so A^{-1}, B^{-1} exist.
Theorem Assume A, B ore invertible.
(a) $\left(A^{-1}\right)^{-1}=A$
(b) $(A B)^{-1}=B^{-1} A^{-1} \longleftarrow$ but this may be different than $A^{-1} B^{-1}$
(凡) $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
of (b)
Let $C=B^{-1} A^{-1}$. Then $A B C=A B B^{-1} A^{-1}=A I A^{-1}=A A^{-1}=I$.
Also, $C A B=B^{-1} A^{-1} A B=B^{-1} I B=B^{-1} B=I \cdot B$

When A is $n \times n$

$$
1+0-05
$$

05 - Matrix Inverses

Definition: Elementary Matrix

An elementary matrix a matrix obtained by performing a single elementary row operation on the identity I.

1. Determine if each of the following are elementary matrices.
(a) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$

(d) $\left[\begin{array}{lll}0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ No need 2 ops
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$ yes

(e) $\left[\begin{array}{rrr}1 & 2 & 0 \\ -2 & 3 & 0 \\ \frac{1}{2} & 3 & 0\end{array}\right] \quad$ No col. of zeros
(c) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$ Ye s

$$
r_{2} \rightarrow 3 r_{3}+r_{2}
$$

$$
(f)\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$$
\text { No need } 2 \text { ops }
$$

2. Let $E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$ and let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. Compute $E A$. What do you notice?
$E A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21}+3 a_{31} & a_{22}+3 a_{32} & a_{23}+3 a_{33} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
malt. A by E performs the row operation associated to E

Theorem

Let A be $m \times n$. If ρ is an elementary row operation and $E=\rho(I)$ is the corresponding elementary matrix, then $\rho(A)=E A$. Moreover, E is invertible with $E^{-1}=\rho^{-1}(I)$.

Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if its RREF is I_{n}, and this happens if and only if A is a product of elementary matrices. Further, when A is invertible, any sequence of row operations that transforms A to I_{n} will also transform I_{n} to A^{-1}.

Theorem: Algorithm for finding A^{-1}

If A is $n \times n$, row reduce the augmented matrix $\left[A \mid I_{n}\right]$ to RREF.

- If the RREF of $\left[A \mid I_{n}\right]$ is $\left[I_{n} \mid B\right]$, then A is invertible, and $B=A^{-1}$.
- If the RREF of $\left[A \mid I_{n}\right]$ is ["not $\left.I_{n} " \mid B\right]$, then A is not invertible.

3. Find the inverse of A, if it exists.
(a) $\left[\begin{array}{lll}0 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll|lll}0 & 6 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{lll|lll}1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0\end{array}\right]$

$$
\sim\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & -2 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right] \text { so } A^{-1}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -2 \\
1 & 0 & 0
\end{array}\right]
$$

(b) $\left[\begin{array}{lll}0 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 3 & 6 \\
2 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \psi I_{3} \text { b/c no pivot }} \\
& \text { in } 3^{\text {rd }} \text { column. Thus } A^{-1} D N E
\end{aligned}
$$

(c) $\left[\begin{array}{rrr}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]\left[\begin{array}{rrr|rrr}0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{rrr|rrr}1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1\end{array}\right]$
$\sim\left[\begin{array}{ccc|ccc}1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -9 / 2 & 7 & 3 / 2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3 / 2 & -2 & 1 / 2\end{array}\right]$

- A invertible
$\Rightarrow A \bar{x}=\bar{b}$ has a unique sol. $A^{-1} \bar{b}$
\Rightarrow A has pivot in every row + col.
$\Rightarrow A \sim I_{n}$
$\Delta A \sim I_{n}$
$\Rightarrow \underbrace{E_{n} \cdots E_{1}}_{\text {elem. matrices }} A=I_{n}$
$\Longrightarrow A^{-1}=E_{n} \ldots E_{1}$
(although
$A E_{n} \ldots E_{1}=I_{n}$ should also be checked.
(d) $\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & 0 & 1 \\ 4 & -3 & 7\end{array}\right]$

$$
A^{-1}=\left[\begin{array}{ccc}
-9 / 2 & 7 & 3 / 2 \\
-2 & 4 & -1 \\
3 / 2 & -2 & 1 / 2
\end{array}\right]
$$

$\left[\begin{array}{ccc|ccc}0 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 4 & -3 & 7 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & -3 & 3 & 0 & -4 & 0\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & -4 & 0\end{array}\right]$

$$
\tau_{A+I_{3} S O} A^{-1} D N E
$$

2.3 characterizations of Invertible Matrices

Invertible Matrix Theorem Let A be a square non matrix. Then the following are equivalent.
a. A is invertible
b. $A \sim I_{n}$
C. A has n pivots
d. $A \bar{x}=\overline{0}$ has only the trivial sol.
e. Columns at A ore linearly in de pendent
f. The transformation $T(\bar{x})=A \bar{x}$ is one-to-one.
g. $A \bar{x}=\bar{b}$ is consistent for every choice of \bar{b}
n. The columes of A span \mathbb{R}^{n}
i. The trans formation $T(\bar{x})=A \bar{x}$ is onto
j. Thence is an $n \times n$ matrix C st. $C A=I_{n}$
k. " " $n \quad D$ st. $A D=I_{n}$
l. $\quad A^{\top}$ is invertible
2.8 Subspaces of \mathbb{R}^{n}

Idea: There are two main operations on \mathbb{R}^{n} : addition + scalar multiplication. Subspaces will be subsets that carry these some operations.

Det A subspace ot \mathbb{R}^{n} is any set H in \mathbb{R}^{n} that has three properties:

1. \bar{O} is in \mathbb{R}^{n}
closed
under addition 2 . For each \bar{u} and \bar{v} in $H, \bar{u}+\bar{v}$ is also in H.
closed under $\longrightarrow 3$. For each \bar{u} in H and each scalar $c, c \bar{u}$ is also in H.

Ex Let L be any line through the origin in \mathbb{R}^{n}. Then L is a sub space.

Idea:

1. $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is on L
2. $\bar{u}+\bar{v}$ is om L for all \bar{u}, \bar{v} on L
3. $c \bar{u}$ ison L for all \bar{u} on L

Ex If L^{\prime} is a line not through the origin, then L^{\prime} is not a subspace.

Idea:

1. [lo $\left.\begin{array}{l}0 \\ 0\end{array}\right]$ is Not on L^{\prime}
2. $\bar{u}+\bar{v}$ is Not on L^{\prime}
3. $2 \bar{\pi}$ is not on L^{\prime}

Let treat the first example carefully. Suppose L is a line through the origin. Let \bar{v} be any nonzero vector on L. Then $L=\operatorname{Span}\{\bar{u}\}$.

Ex If \bar{v} is in \mathbb{R}^{n}, then $\operatorname{span}\{\bar{v}\}$ is a subspace of \mathbb{R}^{n}. Recall: Span\{ $\bar{v}\}$ is all linear combinations of \bar{v}.

1. \bar{O} is in $\operatorname{Spam}\{\bar{v}\} \quad b / c \quad \bar{o}=0 \cdot \bar{v}$
2. Let \bar{a}, \bar{b} be in $S_{\text {pan }}\{\bar{v}\}$. Then $\bar{a}=c_{1} \bar{v}, \bar{b}=c_{2} \bar{v}$. Thus

$$
\begin{aligned}
\bar{a}+\bar{b}=c_{1} \bar{v}+c_{2} \bar{v}=\left(c_{1}+c_{2}\right) \bar{v} & \Rightarrow \bar{a}+\bar{b} \text { is a lin. comb. of } \bar{v} \\
& \Longrightarrow \bar{a}+\bar{b} \text { is in span }\{\bar{v}\}
\end{aligned}
$$

3. Let \bar{a} be in $\operatorname{Span}\{\bar{v}\}$. Then $\bar{a}=c_{1} \bar{v}$. Let c beamy scalar. Thus,
$c \bar{a}=c(c, \bar{v})=\left(c c_{1}\right) \bar{v} \Rightarrow c \bar{a}$ is a lin. comb. of \bar{v}
$\Rightarrow c \bar{a}$ is in spam $\{\bar{U}\}$.
Thus spam $\{V\}$ is a subspace $\sigma \not \mathbb{R}^{n}$

Theorem If $\bar{v}_{1}, \ldots, \bar{v}_{k}$ are in \mathbb{R}^{n}. Then $\operatorname{Span}\left\{\bar{v}_{1}, \ldots, \bar{v}_{k}\right\}$ is always a subspace of \mathbb{R}^{n}. of $\bar{v}_{1} \ldots, \bar{v}_{k}$

* This implies that lives and planes through the origin are always subspaces.

Subspace associated to a matrix

Deft Let A be any matrix. The column space of A is the set, denoted $\operatorname{Col} A$, of all linear comb. of the Columns of A.

* Col $A=\operatorname{Span}\left\{\bar{a}_{1}, \ldots, \bar{a}_{n}\right\}$ where $\bar{a}_{,}, \ldots, \overline{a_{n}}$ are the columns of A. Thus,
($\operatorname{Col} A$ is a subspace of \mathbb{R}^{m}.

Ex Let $A=\left[\begin{array}{rrr}1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6\end{array}\right]$, Determine if $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is in $\operatorname{col} A$.
$\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ is in $\operatorname{col} A \Longleftrightarrow\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ is a linear. comb. of cols. of A

$$
\Longleftrightarrow\left[\begin{array}{rrr|r}
1 & -3 & -4 & 1 \\
-4 & 6 & -2 & 1 \\
-3 & 7 & 6 & 2
\end{array}\right] \text { is con sistent }
$$

Now,

$$
\left[\begin{array}{ccc|c}
1 & -3 & -4 & 1 \\
-4 & 6 & -2 & 1 \\
-3 & 7 & 6 & 2
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lll|l}
1 & 0 & 5 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& \text { so NO consistent } \\
& {\left[\begin{array}{l}
1 \\
i
\end{array}\right] \text { is NOT in Col A }}
\end{aligned}
$$

Dot Let A be any matrix. The null space of A is the set, denoted vul A, of all solutions to $A \bar{x}=\overline{0}$.

Theorem If A is $m \times n$, then $N_{n} A$ is a subspace of \mathbb{R}^{n}.
pt

- \bar{O} is in NulA since $A \bar{O}=\overline{0}$
- Let \bar{a}, \bar{b} be in Vul A. Wewant to show $\bar{a}+\bar{b}$ is in NolA. Now

$$
\begin{aligned}
A(\bar{a}+\bar{b}) & =A \bar{a}+A \bar{b}) \\
& =\bar{o}^{+}+\bar{o}^{L} \text { since } \bar{a}, \bar{b} \text { inNulA. } \\
& =\overline{0}
\end{aligned}
$$

Thus, $\bar{a}+\bar{b}$ satisties the prop. For being in NulA.

- Similarly, if \bar{a} is in Nu|A and c is any scalar, Then $A(c \bar{a})=c A \bar{a}=c \overline{0}=\overline{0}$, so $c \bar{a}$ is in Nu|A. JJ

Bases: describing subspaces efficiently

Recall: The standard basis for \mathbb{R}^{3} is $\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}$. This is use full, b / c if $\bar{V}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is any vector in \mathbb{R}^{3} then

- \bar{v} is a lin. comb. of $\bar{e}_{1}, \bar{e}_{2}, \overline{e_{3}}$

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=a\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

so

$$
\bar{V}=a \bar{e}_{1}+b \bar{a}_{2}+c \overline{e_{3}}
$$

- also, \bar{v} is a linear comb. of $\bar{e}_{1}, \bar{e}_{2}, \overline{e_{3}}$ in only one way_soit sufficient.

Deft Let H be a subspace. A subset of H is called abasis for H if
(1) the subset spans $H, A N D$
(2) The subset is linearly independent.

* It can be shown that every nonzero subspace of \mathbb{R}^{n} has a basis with only finitely man rectors.

Ex which ot the following are bases for \mathbb{R}^{3}.

$$
\begin{aligned}
& \text { (a) }\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{c}
3 \\
9 \\
-6
\end{array}\right]\left[\begin{array}{ccc}
-1 & 2 & 3 \\
-2 & 4 & 7 \\
1 & -2 & -6
\end{array}\right] \sim\left[\begin{array}{ccc}
-1 & 2 & 3 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right] \\
& \text { - Note pivotinevery } \\
& \text { col. } \Rightarrow \text { free var. } \\
& \Rightarrow \text { not L.I. No } \\
& \text { - rota pivot in every } \\
& \begin{array}{l}
\text { row } \Longrightarrow \text { cols. do Not } \\
\text { span } \mathbb{R}^{3}
\end{array} \\
& \text { (b) }\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right]\left[\begin{array}{c}
5 \\
-7 \\
4
\end{array}\right],\left[\begin{array}{l}
6 \\
3 \\
5
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -7 & 3 \\
0 & 5 & 6 \\
0 & 0 & (23
\end{array}\right] \\
& \text { - Pivotinevery col } \\
& \Rightarrow \text { L.I. Yes } \\
& \begin{array}{l}
\text { - Pivot in emeryrow } \\
\Rightarrow \text { cols span } \mathbb{R}^{3}
\end{array} \\
& \text { (c) }\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
9 \\
-6
\end{array}\right] \quad \begin{array}{c}
\text { scan not possibly hove apivotin } \\
\text { each row } \Rightarrow \text { cols. do NOT }
\end{array} \text { span } \mathbb{R}^{3} \\
& \text { (d) }\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
-7 \\
-1
\end{array}\right]\left[\begin{array}{l}
6 \\
3 \\
5
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \begin{array}{c}
\text { Notapivotinevery } \operatorname{col} \Rightarrow \\
\text { not. L.I.N0 N }
\end{array}
\end{aligned}
$$

Finding Bases
HO-OG All.

06 - Null and Column Spaces
Definition: Null Space
The null space of a matrix A, is the set of all solutions to $A \mathbf{x}=\mathbf{0}$.

Strategy: Basis for $\operatorname{Nul} A$
Let A be any matrix. To find a basis for $\operatorname{Nul} A$, do the following.

- Solve $A \mathbf{x}=\mathbf{0}$ (usually with row reduction).
- Write the solution set in parametric vector form (using the process from class).
- The vectors appearing in the parametric vector form are a basis for $\operatorname{Nul} A$.

1. Find a basis for the null space of the following matrix.

$$
\begin{aligned}
& A=\left[\begin{array}{rrrrr}
1 & 4 & 8 & -3 & -7 \\
-1 & 2 & 7 & 3 & 4 \\
-2 & 2 & 9 & 5 & 5 \\
3 & 6 & 9 & -5 & -2
\end{array}\right] \\
& A \sim\left[\begin{array}{ccccr}
\uparrow & \uparrow & x_{3} & \uparrow & x_{5} \\
1 & 0 & -2 & 0 & 7 \\
0 & 2 & 5 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

You can use the fact that

$$
A \sim\left[\begin{array}{ccccc}
1 & 6 & -2 & 0 & 7 \\
0 & 1 & 5 / 2 & 0 & -1 / 2 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}=2 x_{3}-7 x_{5} \\
& x_{2}=-5 / 2 x_{3}+1 / 2 x_{5} \\
& s=x_{3} \\
& x_{4}=\text { free } \\
& =-x_{5} \\
& t=x_{5} \text { free }
\end{aligned}
$$

* number of vectors - in a basis for

Basis for Nul A is

Definition: Column Space
The column space of a matrix A, is the set of all linear combinations of the columns of A.
Strategy: Basis for $\operatorname{Col} A$
Let A be any matrix. To find a basis for $\operatorname{Col} A$, do the following.

- Row reduce A to REF, and locate the pivots.
- The columns of the original matrix A that correspond to the pivots form a basis for $\operatorname{Col} A$.

2. Find a basis for the column space of the matrix in the previous exercise.

$$
\text { Basis for colA is }\left\{\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
3
\end{array}\right],\left[\begin{array}{c}
4 \\
2 \\
2 \\
6
\end{array}\right],\left[\begin{array}{c}
-3 \\
3 \\
5 \\
-5
\end{array}\right]\right\}
$$

Strategy: Basis for $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$
Make a matrix A using $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ as the columns, so $A=\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{k}\end{array}\right]$. Then find a basis for $\operatorname{Col} A$.
3. Find a basis for the subspace of \mathbb{R}^{3} spanned by $\left[\begin{array}{r}-1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 4 \\ -2\end{array}\right],\left[\begin{array}{r}3 \\ 9 \\ -6\end{array}\right]$.

... so the second vector is 2 redundant, which is easy to see.
2.9 Dimension \{ Rank

This section mostly introduces terminology related to bases.

Note: Subspaces have lots of different bases.
For example, we have seen that both ot the following are bases for \mathbb{R}^{3}

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { and }\left\{\left[\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
5 \\
-7 \\
4
\end{array}\right],\left[\begin{array}{l}
6 \\
3 \\
5
\end{array}\right]\right\}
$$

But, they have ore thing in common...
Theorem If H is a $\frac{\text { nonzero }}{\text { subspace }} \mathbb{R}^{n}$, then every basis for H has the same number of rectors.

Det The dimension of a nonzero subspace H is the number of vectors in a basis for H. The dimension of $\{0\}$ is 0 .
I has no basis

* dimension of H is denoted dim H
* If A is a matrix,
- $\operatorname{dim}(C O A)$ is called the rank of A
- $\operatorname{dim}(N u \mid A)$ is called the nullity of A.

Ex Determine the dimension of each of the following.
(a) \mathbb{R}^{3}

$$
\bar{a}_{1}, \bar{e}_{2}, \bar{a}_{3} \text { is abasis for } \mathbb{R}^{3} \text { so } \operatorname{dim}\left(\mathbb{R}^{3}\right)=3
$$

(b) \mathbb{R}^{n}

$$
\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{n} \text { is a basis for } \mathbb{R}^{n} \text {, so } \operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

(c) $\operatorname{col}(A)$ where $A=\left[\begin{array}{cccc}1 & -3 & 2 & -4 \\ -3 & 7 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ 4 & 12 & 2 & 7\end{array}\right]$
$A \sim\left[\begin{array}{cccc}1 & -3 & 2 & -4 \\ 0 & 0 & 5 & -7 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5\end{array}\right] \Rightarrow$
\Rightarrow Basis for Col A is

$$
\left\{\left[\begin{array}{c}
1 \\
-3 \\
2 \\
4
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
4 \\
2
\end{array}\right],\left[\begin{array}{c}
-4 \\
5 \\
-3 \\
7
\end{array}\right]\right\}
$$

$$
\Rightarrow \operatorname{dim}(\operatorname{col}(A))=\operatorname{rark} A=3
$$

(d) Nail A where A is as above.

$$
\begin{aligned}
& A \sim\left[\begin{array}{cccc}
1 & -3 & 2 & -4 \\
0 & 0 & 5 & -7 \\
0 & 0 & 0 & -5 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \Rightarrow \underset{5}{\Rightarrow} \begin{array}{c}
x_{1}=3 x_{2} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{4} \\
0
\end{array} \quad \bar{x}=\left[\begin{array}{l}
35 \\
5 \\
0 \\
0
\end{array}\right]=s\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right] \\
& \Rightarrow \text { basis for } N u \mid A \text { is }\left\{\left[\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right]\right\} \\
& \Rightarrow \operatorname{dim}\left(N_{n} \mid A\right)=\text { nullity } A=1
\end{aligned}
$$

(e) $H=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right],\left[\begin{array}{l}3 \\ 9 \\ -6\end{array}\right]\right\}$

* we did this betore.

Create $A=\left[\begin{array}{ccc}\sqrt{-1} & 2 & 3 \\ -2 & 4 & 9 \\ 1 & -2 & -6\end{array}\right], A \sim\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right]$.
\Rightarrow basis for H is $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ 9 \\ -6\end{array}\right]\right\}$
$\Rightarrow \operatorname{dim} H=2$.

Theorem let A be $m \times n$. Assume the RREF for A has p many pivots.
(1) $\operatorname{rank} A=P$
(2) nullity $A=n-P \leftarrow \begin{array}{r}\text { fresvar. }=\text { \#var. - \#not free var. } \\ \quad \text { in } A \bar{x}=\sigma\end{array}$
\longrightarrow (3) $\operatorname{rank} A+$ nullity $A=n$.
Rank-Nullity Theorem

