Survey of Chapter 4 Linear algebra applies beyond R^M. (HO-OF) Def. of vector space (HO-OF) Examples

Our definitions of lin. indep., span, basis, dimension, and lin. transformation apply to this more general coordinates.

Coordinates

Theorem Let
$$B = \{\overline{b}_1, \overline{b}_2, \dots, \overline{b}_n\}$$
 be a basis for V .
Then for each \overline{v} in V , there is a unique set
of scalars c_1, c_2, \dots, c_n such that
 $\overline{V} = c_1\overline{b}_1 + c_2\overline{b}_2 + \dots + c_n\overline{b}_n$.

* The vector
$$[\overline{v}]_{B} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{n} \end{bmatrix}$$
 is called the coordinate vector of \overline{v} relative to B .

• $\overline{v}_1, \ldots, \overline{v}_n$ are L.I. $\langle = \rangle [\overline{v}_1]_{\mathcal{B}}, \ldots, [\overline{v}_n]_{\mathcal{B}}$ are L.I.

But what about linear transformations.
Recall: If
$$T:\mathbb{R}^n \to \mathbb{R}^n$$
 is linear, then the
standard matrix for T is the man matrix
 $A = [T(\overline{e_1}) \cdots T(\overline{e_n})]$
and $T(\overline{v}) = A \overline{v}$ for all \overline{v} in \mathbb{R}^n

Theorem Let
$$T: V \rightarrow W$$
 be a linear trans. with
 V n-dimensional and W n-dimensional. Let
 $B = \{\overline{b}_{11}, \dots, \overline{b}_n\}$ be a basis for V , and B'
be a basis for W . The matrix representing
 T w.r.t. B and B' is the maximal matrix
 $A = \left[\left[T(\overline{b}_1) \right]_{B'} \cdots \left[T(\overline{b}_n) \right]_{B'} \right]$
and $\left[T(\overline{v}) \right]_{B'} = A[\overline{v}]_B$ for all \overline{v} in V
 $*$ so again, every linear trans. can be
viewed as a matrix trans.
 $HO - OT$ #4

The End

opTIONa/