5.1 Eigenvectors $~+~ E i g e n v a l u e s ~$

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection over the $y$-axis.


Q: What are some special subspaces associated to $T$ ?

* The y-axis: if $\bar{v}$ is on the $y$ axis then $T(\bar{v})=\bar{V}$.
* the x-axis: if $\bar{v}$ is outre xaxis then $T(\bar{v})=-\bar{v}$.

Let Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear trams. A scalar $\lambda$ is called an eigenvalue of $T$ if $T(\bar{x})=\lambda \bar{x}$ has a nontrivial solution. Each nontrivial solution to $T(\bar{x})=\lambda \bar{x}$ is called an eigenvector associated to $\lambda$ The collection of all solutions to $T(\bar{x})=\lambda \bar{x}$ is called the eigen space of $T$ associated to $\lambda$, which we denote $E_{\lambda}(T)$.

* eigenvectors are nonzero buteigen values may be zero.
* eigenvectors ore those that are just scaled by $T$.

Ex Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be refl. over the y-axis.

- $\lambda=1$ is an eigenvalue $b / c T(\bar{x})=\bar{x}$ has nontrivial sol.
- $\left[\begin{array}{l}0 \\ 3\end{array}\right]$ is an eigenvector assoc. to $\lambda=1, b / c T\left(\left[\begin{array}{l}0 \\ 3\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 3\end{array}\right]$
- $E_{1}(T)$ is the collection of all vectors of the form $\left[\begin{array}{l}0 \\ b\end{array}\right], b$ in $R$.
- $\lambda=-1$ is an eigen value
- $\left[\begin{array}{l}5 \\ 0\end{array}\right]$ is an eigen vector assoc. to $\lambda=-1 \quad b / c T\left(\left[\begin{array}{c}5 \\ 0\end{array}\right)\right]\left[\begin{array}{c}-5 \\ 0\end{array}\right]$.
- $E_{-1}(T)$ is the collection of all vectors of the form $\left[\begin{array}{l}a \\ 0\end{array}\right]$, a in $\mathbb{R}$.
- There are no other eigenvalues (or eigenvectors)
$-\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is not an eigenvector $b / c \quad T\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 2\end{array}\right] \neq \lambda\left[\begin{array}{l}1 \\ 2\end{array}\right]$ for any $\lambda$.

Remember that lin. trans. can be represented by matrices. Let's translate our del. to matrices..

Let Let $A$ be $n \times n$. A scalar $\lambda$ is an eigenvalue of $A$ if $A \bar{x}=\lambda \bar{x}$ has a nontrivial solution. Each nontrivial sol. to $A \bar{x}=\lambda \bar{x}$ is called am eigenvector associated to $\lambda_{i}$ the collection of all solutions to $A \bar{x}=\lambda \bar{x}$ is the eigen space.

Ex Let $A=\left[\begin{array}{ll}5 & 0 \\ 2 & 1\end{array}\right]$.
(a) Is $\bar{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ an eigenvector of $A$ ?
$A \bar{v}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ but $\left[\begin{array}{l}5 \\ 2\end{array}\right] \neq \lambda\left[\begin{array}{l}1 \\ 0\end{array}\right]$ for any $\lambda$. Thus NO
(b) Is $\bar{\omega}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ an eigenvector of $A$ ?
$A \bar{\omega}=\left[\begin{array}{c}10 \\ 5\end{array}\right]=5 \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]=5 \bar{\omega}$. Thus, Yes $\bar{\omega}$ is an eigenvector assoc. to the eigenvalue $\lambda=5$.

Prop Let $A$ be $n \times n$ and $\lambda$ be any scalar.

- $\lambda$ is an eigenvalue of $A \Longleftrightarrow(A-\lambda I) \bar{x}=\overline{0}$ has a nontrivial solution
- the eigen vectors associated $\lambda$ are precisely the nontrivial solutions to $(A-\lambda I) \bar{x}=\bar{\sigma}$
- If $\lambda$ is an eigenvalue, then $E_{\lambda}(A)=\operatorname{Nul}(A-\lambda I)$. Thus eigenspaces are subspaces.
pt

$$
A \bar{v}=\lambda \bar{v} \Longleftrightarrow A \bar{v}-\lambda \bar{v}=\overline{0} \Longleftrightarrow A \bar{v}-\lambda I \bar{v}=\overline{0} \Leftrightarrow(A-\lambda I) \bar{v}=\overline{0} \square
$$

Ex Let $A=\left[\begin{array}{llll}3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$.
(a) Show that $\lambda=4$ is an eigenvalue and find a basis for $E_{4}(A)$.

$$
A-4 I=\left[\begin{array}{llll}
3 & 0 & 2 & 0 \\
1 & 3 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]-\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 2 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

we now solve $(A-4 I) \bar{x}=\overline{0}$

$$
\left[\begin{array}{cccc|c}
-1 & 0 & 2 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 0 & -2 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=2 x_{3} \\
& x_{2}=3 x_{3} \\
& 5=x_{3}=\text { free } \\
& t=x_{4}=\text { free }
\end{aligned}
$$

$$
\bar{x}=\left[\begin{array}{c}
2 s \\
3 s \\
s \\
t
\end{array}\right]=s\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \quad s_{1} t \text { in } \mathbb{R}
$$

- Since $(A-4 I) \bar{x}=\overline{0}$ has nontrivial sol., 4 is an eigenvalue of $A$
- A basis for $E_{4}(A)$ is $\left\{\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ so $\operatorname{dim} E_{4}(A)=2$
- just for fun...

$$
A \cdot\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
8 \\
12 \\
4 \\
0
\end{array}\right]=4\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right]
$$

(b) Show that 3 is not an eigenvalue of $A$.

$$
A-3 I=\left[\begin{array}{cccc}
0 & 0 & 2 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Now solve $(A-3 I) \bar{x}=\overline{0}$
no free variables so only the so only solution

$$
\left[\begin{array}{cccc|c}
0 & 0 & 2 & 0 & 0 \\
1 & 0 & 1 & 6 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$ $\bar{x}=\bar{o}$

- There is only the trivial sol, so 3 is not an eigen value of $A$.
5.2 The characteristic equation
... we have a geometric idea of eigenvectors and values.
... we know how to find eigenvalues on ce we know the eigenvalues
Q: How do we find the eigenvalues?

We know that...

$$
\begin{aligned}
\lambda \text { is am eigenvalue } \begin{aligned}
\\
\text { of } A
\end{aligned} & \begin{aligned}
&(A-\lambda I) \bar{x}=\overline{0} \text { has nontrivial } \\
& \text { solutions } \begin{array}{c}
\text { invertible } \\
\text { matrix } \\
\text { theorem } \\
\text { set. } 2.3
\end{array} \\
& \Longleftrightarrow(A-\lambda I) \text { is not } \\
& \text { invertible }
\end{aligned} \\
& \Longleftrightarrow \operatorname{det}(A-\lambda I)=0
\end{aligned}
$$

Deft Let $A$ be $n \times n$. The characteristic equation of $A$ is

$$
\operatorname{det}(A-\lambda I)=0 .
$$

* $p(\lambda)=\operatorname{det}(A-\lambda I)$ is the characteristic polynomial.
* $p(\lambda)$ will have degree.

Ex Let $A=\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$. Find the char. poly of $A$.

$$
\begin{aligned}
P(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ll}
2 & 7 \\
7 & 2
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right. \\
& =\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 7 \\
7 & 2-\lambda
\end{array}\right]=(2-\lambda)^{2}-49=\lambda^{2}-4 \lambda-45
\end{aligned}
$$

Thus,

$$
p(\lambda)=\lambda^{2}-4 \lambda-45
$$

Theorem The eigenvalues of $A$ ore exactly the roots of the characteristic poly nomial of $A$ (ie. the solutions to the char. equation).

Ex Find the eigenvalues of each matrix.
(1) $A=\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$
char. poly is $p(\lambda)=\lambda^{2}-4 \lambda-45=(\lambda-9)(\lambda+5)$
eigenvalues are $\lambda=-5,9$
(2) $B=\left[\begin{array}{ccc}3 & 4 & 11 \\ 0 & -5 & 7 \\ 0 & 0 & 3\end{array}\right]$.
char poly is $p(\lambda)=\operatorname{det}(B-\lambda I)$

$$
\begin{aligned}
& =\operatorname{det}(13-\lambda 1 \\
& =\operatorname{det}\left(\left[\begin{array}{ccc}
3 & 4 & 11 \\
0 & -5 & 7 \\
0 & 0 & 3
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]\right) \\
& =\left|\begin{array}{ccc}
3-\lambda & 4 & 11 \\
0 & -5-\lambda & 7 \\
0 & 0 & 3-\lambda
\end{array}\right| \\
& =(3-\lambda)(-5-\lambda)(3-\lambda)
\end{aligned}
$$

eigenvalues are 3,$3 ; 5$
multiplicity of 3 is 2

Theorem If $A$ is an upper or lower triangular $n \times n$ matrix, then the eigenvalues of $A$ are precisely the entries on the main diagonal.

Similarity

Let Let $A, B$ be $n \times n$. Then $A$ is similar to $B$ if there is an invertible matrix $P$ such that

$$
B=P^{-1} A P
$$

* This is the same as $A=P B P^{-1}=\left(P^{-1}\right)^{-1} B P$ so $A$ similiar to $B \Longleftrightarrow B$ similar to $A$.

Prop (similar matrices ore very similar). Let $A, B$ be similar $n \times n$ matrices. Then
(1) $\operatorname{det} A=\operatorname{det} B$
(2) A is invertible $\Longleftrightarrow B$ is invertible
(3) A and $B$ have the same chou. poly. Thus, they hove the sane eigenvalues with the same multiplicities.

Pt write $B=P^{-1} A P$ for some invertible matrix P.
(1) $\operatorname{det} B=\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det} P^{-1} \cdot \operatorname{det} A \cdot \operatorname{det} P$

$$
\begin{aligned}
& =\frac{\operatorname{det} A \cdot \operatorname{det} P}{\operatorname{det} P} \\
& =\operatorname{det} A .
\end{aligned}
$$

2

$$
\begin{aligned}
P_{B}(\lambda) & =\operatorname{det}(B-\lambda I) \\
& =\operatorname{det}\left(P^{-1} A P-\lambda I\right) \\
& =\operatorname{det}\left(P^{-1} A P-\lambda P^{-1} P\right) \\
& =\operatorname{det}\left[P^{-1}(A P-\lambda P)\right] \\
& =\operatorname{det}\left[P^{-1}(A-\lambda I) P\right] \\
& =\operatorname{det}(A-\lambda I) \\
& =P_{A}(\lambda)
\end{aligned}
$$

( Row operations usually do change eigen values, but similarity does not.
5.3 Diagonalization

Thinking about powers of a matrix... diagonal matrix
Q: Let $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. what is $D^{7}$ ?

$$
\begin{aligned}
D^{7} & =\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \cdots \\
& =\left[\begin{array}{ll}
2^{7} & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
128 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

ERROR
First time through

* so $D^{k}$ is easy to compute: $f$ is diagonal.

Q: Let $A=\left[\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right]$. What is $A^{7}$ ?

$$
A^{7}=\left[\begin{array}{cc}
3 & -1 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
2 & 0
\end{array}\right] \cdots .
$$



However, it is tree that $A$ is similar to a diagonal matrix:

$$
A=P D P^{-1} \text { where } D=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
$$

$$
P=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]_{1}^{P^{-1}}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

Notice that

$$
\begin{aligned}
A^{7} & =\left(P D P^{-1}\right)^{7} \\
& =P D P^{-1} P D P^{-1} P D P \cdots \\
& =P D^{7} P^{-1}
\end{aligned}
$$

$$
246-128
$$

Thus, $1-1$

$$
\begin{aligned}
A^{7} & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
128 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
255 & -127 \\
254 & -126
\end{array}\right] \quad \text { not so bad }
\end{aligned}
$$

* So, $A^{k}$ is pretty easy to compute if A is similar to a diagonal matrix

Prop If $A=P D P^{-1}$, then $A^{k}=P D^{k} P^{-1}$.

Let A matrix is diagonalizable if it is similar to a diagonal matrix.

Q: It seems valuable to know if a matrix is diagonalizable, but how con we determine this?
Suppose $A=P D P^{-1}$ where $D=\left[\begin{array}{lll}d_{1} & & 0 \\ \vdots & & \\ 0 & d_{n}\end{array}\right]$. Then

$$
A P=P D
$$

Let's compare columns of LHS and RHS. write $P=\left[\begin{array}{lll}1 & \ldots & \bar{v}_{n}\end{array}\right]$.

$$
\left.\begin{array}{rl}
A P & =\left[\begin{array}{llll}
A \bar{v}_{1} & A \bar{v}_{2} & \cdots & A \bar{v}_{n}
\end{array}\right] \\
P D & =\left[\begin{array}{llll}
P & {\left[\begin{array}{c}
d_{1} \\
0 \\
0
\end{array}\right]} & P & {\left[\begin{array}{c}
d_{2} \\
d_{2} \\
0
\end{array}\right]}
\end{array}\right] P\left[\begin{array}{l}
0 \\
\vdots \\
d_{n}
\end{array}\right]
\end{array}\right]
$$

Thus $A \bar{v}_{1}=d_{1} \bar{v}_{1}, A \bar{v}_{2}=d_{2} \bar{v}_{2}, \ldots, A \bar{v}_{n}=d_{n} \bar{v}_{n}$
whoa... the entries of $D$ are eigenvalues of $A$ and the columns of $P$ are assoc. eigenvectors!

Diagonalization Theorem Let $A$ be $n \times n$.
Then $A$ is diagonalizable if and only if
A has $n$ linearly independent eigenvectors. Further, if $\bar{v}_{1}, \ldots, \bar{v}_{n}$ are lin. ind. eigenvectors corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then $A=P D P^{-1}$ where

$$
\begin{aligned}
& P=\left[\begin{array}{llll}
\bar{v}_{1} & \bar{v}_{2} & \cdots & \bar{v}_{n}
\end{array}\right] \\
& D=\left[\begin{array}{ccc}
\lambda_{1} & & \\
\lambda_{2} & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right]
\end{aligned}
$$

Ex Diagonalize the following if possible.
(a) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
(a) A is lower $\Delta$, so eigen value s are $\lambda=1,2$
$* x=1$

$$
\begin{aligned}
& E_{1}(A)=\operatorname{Nu}\binom{A-I}{s}_{t}=\operatorname{Nul}\left(\left[\begin{array}{lll}
0 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \\
& {\left[\begin{array}{lll|l}
0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \bar{x}=\left[\begin{array}{c}
-1 / 3 s \\
s \\
t
\end{array}\right]=S\left[\begin{array}{c}
-1 / 3 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

A Basis for $E_{1}(A)$ is $\left\{\left[\begin{array}{c}-1 / 3 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
$T$ this we have 2 LI. eigmuectors so for
(*) $\lambda=2$

$$
\begin{aligned}
& E_{2}(A)=N n \backslash(A-2 I)=N n l\left(\left[\begin{array}{ccc}
-1 & 0 & 0 \\
3 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]\right) \\
& {\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
x_{1} & y_{2} & x_{3} \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0
\end{array}\right] \quad \bar{x}=\left[\begin{array}{l}
0 \\
5 \\
0
\end{array}\right]=s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}
\end{aligned}
$$

$A$ Basis for $E_{2}(A)$ is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$

* Let's try to combine our bases

$$
\left\{\left[\begin{array}{c}
-1 / 3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \text { is easily seen to be LI. }
$$

(3) This combining process always yields a L.I. set.
$A$ is $3 \times 3$, and we found 3 L.I. eigenvectors. Thus,
$A$ is diagonalizable as $A=P D P^{-1}$ with

$$
P=\left[\begin{array}{ccc}
-1 / 3 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and } \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(b) Eigenvalues of $B$ are again $\lambda=1,2$
(*) $x=1$

$$
\begin{aligned}
& E_{1}(B)=N u l(B-I)=\operatorname{Nul}\left(\left[\begin{array}{lll}
0 & 0 & 0 \\
3 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
& {\left[\begin{array}{lll|l}
6 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0
\end{array}\right] \bar{x}=\left[\begin{array}{l}
0 \\
5 \\
0
\end{array}\right]=s\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}
\end{aligned}
$$

$A$ basis for $E_{1}(B)$ is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
(*) $\quad \begin{aligned} & =2 \\ & E_{2}(B)\end{aligned} \operatorname{Nul}(B-2 I)=N a l\left(\left[\begin{array}{ccc}-1 & 0 & 0 \\ 3 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]\right)$

$$
\left[\begin{array}{ccc|c}
-1 & 0 & 6 & 0 \\
3 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \bar{x}=\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right]=5\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$A$ basis for $E_{2}(B)$ is $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
(*) There are at most 2 L.I. eigenvectors - one from $E_{1}(B)$ and one from $E_{2}(B)$.

Thus, $B$ does not have 3 L.I. eigenvectors, so $B$ is NOT Diagonalizable.

Note that each eigenspace contributes at least one eigenvector so...

Theorem Let $A$ be $n \times n$. If $A$ has $n$ different eigenvalues, then $A$ is diagonalizable.

* If $A$ does not have $n$ different eigenvalues, A may or may not be diagonalizable.

Ex Explain, quickly, why each of the following ane diagonalizable.

$$
A=\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
6 & 11 & \pi & 0 \\
1 & 2 & 3 & -1
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

- $A$ is $4 \times 4$ and has $4 d i s t$ int eigenvalues: $\lambda=5,0, \pi,-1$
- char poly at $B$ is

$$
\begin{aligned}
\left|\begin{array}{rr}
1-\lambda & 2 \\
3 & 4-\lambda
\end{array}\right| & =(1-\lambda)(4-\lambda)-6 \\
& =\lambda^{2}-5 \lambda-2
\end{aligned}
$$

quad. formula says roots ore $\frac{-5 \pm \sqrt{33}}{2}$, so $B$ is $2 \times 2$ and has 2 distinct eigenvalues: $\lambda=\frac{-5 \pm \sqrt{33}}{2}$

