

- Q: what are some special subspaces associated to T? \times the <u>y-axis</u>: if \overline{v} is on the y axis then $T(\overline{v}) = \overline{v}$. \times the <u>x-axis</u>: if \overline{v} is on the xaxis then $T(\overline{v}) = -\overline{v}$.
- Det Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear trans. A scalar λ is called an <u>eigenvalue</u> of T if $T(\overline{x}) = \lambda \overline{x}$ has a nontrivial solution. Each non-trivial solution to $T(\overline{x}) = \lambda \overline{x}$ is called an <u>eigenvector</u> associated to λ . The collection of all solutions to $T(\overline{x}) = \lambda \overline{x}$ is called the <u>eigenspace</u> of T associated to λ , which we denote $E_{\lambda}(T)$.
 - * eigenvectors are nonzero but eigen values may be zero. * eigenvectors are those that are just scaled by T.
- Ex Let T: R² → R² be refl. oner the y-axis.
 λ=1 is an eigenvalue b/c T(x) = x has nontrivial sol.
 [3] is an eigenvector assoc. to λ=1, b/c T([3]) = [3]
 E₁(T) is the collection of all vectors of the form [b), b in R.

$$- \begin{bmatrix} 2 \\ 2 \end{bmatrix} \text{ is not an eigenvector } b/c \quad T(\begin{bmatrix} 2 \\ 2 \end{bmatrix}) = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \neq \lambda \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
for any λ .

Det Let Abenxn. Ascalar
$$\lambda$$
 is an eigenvalue of
A if $A\overline{x} = \lambda \overline{x}$ has a nontrivial solution. Each
Nontrivial sol. to $A\overline{x} = \lambda \overline{x}$ is called en eigenvector
associated to λ'_{i} the collection of all solutions
to $A\overline{x} = \lambda \overline{x}$ is the eigen space.

$$E_{X} \text{ Let } A = \begin{bmatrix} z & 0 \end{bmatrix}.$$

$$(a) \text{ Is } \overline{v} = \begin{bmatrix} 0 \end{bmatrix} \text{ an eigenvector of } A?$$

$$A\overline{v} = \begin{bmatrix} z \end{bmatrix} \text{ but } \begin{bmatrix} z \end{bmatrix} \neq \lambda \begin{bmatrix} 0 \end{bmatrix} \text{ for any } \lambda. \text{ Thus } NO$$

(b)
$$I_{s} \overline{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 an eigenvector of $A^{?}$.
 $A\overline{w} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} = 5 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 5\overline{w}$. Thus, [Yes] \overline{w} is an eigenvector assoc. to the eigenvalue $\lambda = 5$.

Prop Let A be non and I be any scalar.

• λ is an eigenvalue of $A \iff (A - \lambda I) \overline{x} = \overline{O}$ has a nontrivial solution

o the eigenvectors associated
$$\lambda$$
 are precisely the nontrivial solutions to $(A - \lambda I)_{\overline{X}} = \overline{0}$

• If X is an eigenvalue, then
$$E_X(A) = Nul(A - \lambda I)$$
.
Thus eigenspaces are subspaces.

$$\frac{pq}{r} = \overline{r} \left(I_{A} - A \right) = \overline{r} \left(\overline{r} - \overline{r} A \right) = \overline{r} = \overline{r} \left(\overline{r} - \overline{r} A \right) = \overline{r} = \overline{r} \left(\overline{r} - \overline{r} A \right) = \overline{r} = \overline{r} \left(\overline{r} - \overline{r} A \right) = \overline{r} = \overline{r} \left(\overline{r} - \overline{r} A \right) = \overline{r} = \overline{r} \left(\overline{r} - \overline{r} A \right) = \overline{r} = \overline{r} \left(\overline{r} - \overline{r} A \right) = \overline{r} \left(\overline{r} - \overline{r} \right) = \overline{r} \left(\overline{r} \right) = \overline{r} \left(\overline{r} \right) = \overline{r} \left(\overline{r} \right) = \overline{r$$

$$Ex \text{ Let } A = \begin{bmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}.$$
(a) Show that $\lambda = 4$ is an eigenvalue and find
a basis for $E_4(A)$.

$$A - 4I = \begin{bmatrix} 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} - \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 2 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We now solve
$$(A - 4I)\overline{x} = \overline{0}$$

$$\begin{bmatrix} -1 & 0 & 2 & 0 & | & 0 \\ 1 & -1 & 1 & 0 & | & 0 \\ 0 & 1 & -3 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 0 & | & 0 \\ 0 & 1 & -3 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 0 & | & 0 \\ 0 & 1 & -3 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{X_1 = 2x_3}_{X_2 = 3x_3}$$

$$5 = X_3 = 5ree$$

$$t = X_4 = 5ree$$

$$\overline{X} = \begin{bmatrix} 2 \\ 3 \\ 5 \\ 5 \\ t \end{bmatrix} = 5 \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 S, t in \mathbb{R}

• just for fun...

$$A \cdot \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \\ 4 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 3 \\ 1 \\ 0 \end{bmatrix}$$

(b) Show that 3 is not an eigenvalue of A.

$$A-3I = \begin{cases} 0020\\ 1010\\ 01-20\\ 0001 \end{cases}$$

Now solve
$$(A-3I)_{\overline{X}}=\overline{0}$$
 no free variables
 $\begin{bmatrix} 0 & 0 & 2 & 0 & | & 0 \\ 1 & 0 & 1 & 6 & | & 0 \\ 0 & 1 & -2 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$ no $\begin{bmatrix} 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$ $\overline{X}=\overline{0}$
o There is only the trivial sol, so 3 is not an
eigen value of A.

A is an eigenvalue
$$(A - \lambda I) = \overline{0}$$
 has non-trivial
of A
 $(A - \lambda I) = \overline{0}$ has non-trivial
 $(A - \lambda I) = 0$
 $(A - \lambda I) = 0$

$$\underbrace{E_{X}}_{z \neq 1} = A = \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}. Find the char. poly of A. P(h) = det (A - h) = det (\begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix} - \begin{bmatrix} h & 0 \\ 0 & h \end{bmatrix}$$

 = det $\begin{pmatrix} 2 - h & 7 \\ 7 & 2 - h \end{pmatrix} = (2 - h)^{2} - 47 = h^{2} - 4h - 45$

Thus,

Ex Find the eigenvalues of each matrix.
()
$$A = \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$$

char. poly is $p(\lambda) = \lambda^2 - 4\lambda - 45 = (\lambda - 9)(\lambda + 5)$
eigenvalues are $\lambda = -5, 9$
(2) $B = \begin{bmatrix} 3 & 4 & 11 \\ 0 & -5 & 7 \\ 0 & 0 & 3 \end{bmatrix}$.
char poly is $p(\lambda) = det (B - \lambda T)$
 $= det \left(\begin{bmatrix} 3 & 4 & 11 \\ 0 & -5 & 7 \\ 0 & 0 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$

$$= \begin{vmatrix} 3-3 & 4 & 11 \\ 0 & -5-3 & 7 \\ 0 & 0 & 3-3 \end{vmatrix}$$
$$= (3-3)(-5-3)(3-3)$$
eigenvalues are $\boxed{3,3,5}$ multiplicity of 3 is 2

Theorem IS A is an upper or lower triangular new matrix, then the eigenvalues of A are precisely the entries on the main diagonal.

Similarity

Det het A, B be nxn. Then A is <u>similar</u> to B if there is an invertible matrix P such that

$$B = P^{-1}AP$$

* This is the same as $A = PBP^{-1} = (P^{-1})^{-1}BP$ so A similiar to B \iff B similar to A.

Pt write $B = P^{T}AP$ for some invertible matrix P. () det $B = det(P^{T}AP) = det P^{-1} \cdot det A \cdot ded P$ $= \frac{det A \cdot ded P}{det P}$ = det A.

(2)

$$P_{B}(\lambda) = deA (B - \lambda I)$$

$$= deA (P^{T}AP - \lambda I)$$

$$= deA (P^{T}AP - \lambda P^{-1}P)$$

$$= deA \left[P^{-1}(AP - \lambda P)\right]$$

$$= deA \left[P^{-1}(A - \lambda I)P\right]$$

$$= deA (A - \lambda I)$$

$$= P_{A}(\lambda).$$

Row operations usually do change eigenvalues, but similarity does not. 5.3 Diagonalization

Thinking about powers of a matrix ...
Q: Let
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1^2 \end{bmatrix} = \begin{bmatrix} 128 & 0 \\ 0 & 1 \end{bmatrix}$$

 $= \begin{bmatrix} 2^{3} & 0 \\ 0 & 1^2 \end{bmatrix} = \begin{bmatrix} 128 & 0 \\ 0 & 1 \end{bmatrix}$
 $x = \begin{bmatrix} 2^{3} & 0 \\ 0 & 1^2 \end{bmatrix} = \begin{bmatrix} 128 & 0 \\ 0 & 1 \end{bmatrix}$
 $x = \begin{bmatrix} 2^{3} & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 128 & 0 \\ 0 & 1 \end{bmatrix}$
 $x = \begin{bmatrix} 2^{3} & 0 \\ 2 & 0 \end{bmatrix}$
 $x = \begin{bmatrix} 2^{3} & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 128 & 0 \\ 0 & 1 \end{bmatrix}$
 $A^{2} = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$
However, it is true that A is similar to a
diagonal matrix:
 $A^{2} = \begin{bmatrix} 2 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $A^{2} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{2}$
Notice that
 $A^{2} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{2}$
 $A^{2} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{2}$
 $A^{2} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{2}$
 $A^{2} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{2}$
 $D = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, p^{2} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$
 $A^{2} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{2}$

$$A^{T} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 12 & 8 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 255 & -127 \\ 254 & -126 \end{bmatrix} \quad not so bad$$

* So,
$$A^{k}$$
 is pretty easy to compute if
A is similar to a diagonal matrix
Prop If $A = P D p^{i}$, then $A^{k} = P D^{k} p^{i}$.
Det A matrix is diagonalizable if it is
similar to a diagonalizable if it is
similar to a diagonal matrix.
Q: It seems valuable to know if a matrix
is diagonalizable, but how can we determ
this?
Suppose $A = P D p^{-1}$ where $D = \begin{bmatrix} d_{1} & 0 \\ 0 & d_{n} \end{bmatrix}$. Then
 $A P = P D$
Let's compare columns of LHS and RHS.
write $P = [v_{1} \cdots v_{n}]$.
 $A P = \begin{bmatrix} A \overline{v}_{1} & A \overline{v}_{2} \cdots & A \overline{v}_{n} \end{bmatrix}$
 $P D = \begin{bmatrix} P \begin{bmatrix} d_{1} \\ 0 \end{bmatrix} P \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} = \begin{bmatrix} d_{1} \overline{v}_{1} & d_{1} \overline{v}_{2} \cdots & d_{n} \overline{v}_{n} \end{bmatrix}$

$$AP = \begin{bmatrix} A\overline{v}_{1} & A\overline{v}_{2} & \cdots & A\overline{v}_{n} \end{bmatrix}$$

$$PD = \begin{bmatrix} P\begin{bmatrix} d_{1} \\ \vdots \\ 0 \end{bmatrix} & P\begin{bmatrix} d_{2} \\ \vdots \\ 0 \end{bmatrix} & \cdots & P\begin{bmatrix} 0 \\ d_{n} \end{bmatrix}$$

$$= \begin{bmatrix} d_{1}\overline{v}_{1} & d_{2}\overline{v}_{2} & \cdots & d_{n}\overline{v}_{n} \end{bmatrix}$$

The Av, = $d_{\overline{v}_1}$, Av₂ = $d_2\overline{v}_2$, ..., Av_n = $d_n\overline{v}_n$ Whoa... the entries of D are eigenvalues of A and the columns and P are assoc. eigenvectors!

Diagonalization Theorem Let Abenxn.
Then A is diagonalizable if and only if
A has a linearly independent eigenvectors.
Further, if
$$\overline{v}_{1,...,v_n}$$
 one lin. ind. eigenvectors
corresponding to the eigenvalues $\lambda_{1,...,v_n}$,
then $A = PDP^{-1}$ where

$$P = \begin{bmatrix} \overline{v}_1 & \overline{v}_2 & \cdots & \overline{v}_n \end{bmatrix}$$
$$D = \begin{bmatrix} \gamma_1 & \gamma_2 & \cdots & \gamma_n \\ \gamma_2 & \ddots & \gamma_n \end{bmatrix}$$

Ex Diagonalize the following if possible.
(a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
mult. 2
(a) A is lower D, so eigenvalues are $\lambda = 1, 2$
(b) $A = L, A = N, A = L, A$

.

$$\begin{array}{l} \textcircled{ } & \underbrace{\lambda=2} \\ & E_{2}(A) + Nnl(A-2I) = Nnl(\left(\begin{smallmatrix} -10 & 0 \\ 0 & 0 & -1 \end{smallmatrix}\right) \\ & \left[\begin{smallmatrix} -1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{smallmatrix}\right] - \left[\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right] \\ & \begin{bmatrix} -1 & 0 & 0 & 0 \\ 3 & 0 & 0 \end{smallmatrix}\right] - \left[\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right] \\ & \begin{bmatrix} -1 & 0 & 0 \\ 3 & 0 & 0 \end{smallmatrix}\right] - \left[\begin{smallmatrix} 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right] \\ & \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 \end{smallmatrix}\right] \\ & \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 \end{smallmatrix}\right] \\ & A Basis for E_{2}(A) is \\ & \begin{bmatrix} 0 & 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 & 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ &$$

(b) Eigmvalues of Base again
$$\lambda = 1, 2$$

(b) $E_{1}(B) = Nul (B-T) = Nul (\begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix})$
 $\begin{bmatrix} 6 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
A basis for $E_{1}(B)$ is $\{\begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}\}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = Nul (\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = x = \begin{bmatrix} 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0$

Theorem Lat A be non. If A has a different eigenvalues, then A is diagonalizable. * If A does not have a different eigenvalues, A may or may not be diagonalizable.

Ex Explain, quickly, why each of the following are
diagonalizable.
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 6 & 0 \\ 6 & 11 & \pi & 0 \\ 1 & 2 & 3 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}.$$

• A is
$$4\times4$$
 and has 4 distinct eigenvalues: $\lambda = 5, 0, \pi, -1$
• char poly at B is $\begin{pmatrix} 1-\lambda & 2\\ 3 & 4-\lambda \end{pmatrix} = (1-\lambda)(4-\lambda) - 6$
 $= \lambda^2 - 5\lambda - 2$

Quad. formula says roots one
$$-5\pm\sqrt{33^{+}}$$
, so
 Z
B is $2\pi^{2}$ and has 2 distinct eigenvalues: $\lambda = -5\pm\sqrt{33^{+}}$
Z