6.1 Inner product, length, orthog.

Motivation: Suppose you are modeling a situation end need to solve a system $A \bar{x}=\bar{b}$, but you find out that the system is in consistent. what do you do?
option 1: Giveup.
Option 2: Try to find the "best possible" approx. Solution - that is, sind an \bar{x} such that $A \bar{x}$ is a "close as possible" to \bar{b} (even though itmaynotequal 5).

* To do this, we need to explore "closeness" (ie. distance).

Inner Product
Det Let $\bar{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right], \bar{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$. The inner product or dot product of \bar{u} and \bar{v} is

$$
\bar{u} \cdot \bar{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

* notice that this cam bewritten in terms ot matrix multiplication as

$$
\begin{aligned}
& \text { tiplication as } \\
& \bar{u} \cdot \bar{v}=\bar{u}^{\top} \cdot \bar{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
\end{aligned}
$$

* $\bar{u} \cdot \bar{v}$ is a (single) number.
$\underline{E_{x}}$ Let $\bar{u}=\left[\begin{array}{c}3 \\ -1 \\ 5\end{array}\right] \quad \bar{v}=\left[\begin{array}{c}0 \\ 7 \\ -2\end{array}\right]$.

$$
\begin{aligned}
& \bar{u} \cdot \bar{v}=\left[\begin{array}{lll}
3 & -15
\end{array}\right]\left[\begin{array}{c}
0 \\
7 \\
-2
\end{array}\right]=0-7-10=-17 \\
& \bar{v} \cdot \bar{u}=\left[\begin{array}{ll}
0 & 7
\end{array}-2\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]=0-7-10=-17\right. \\
& \bar{u} \cdot \bar{u}=(-3)^{2}+(-1)^{2}+(5)^{2}=9+1+25=35
\end{aligned}
$$

Theorem (Prop. of the inner prod.)
(1) $\bar{u} \cdot \bar{v}=\bar{v} \cdot \bar{u}$
(2) $(\bar{u}+\bar{v}) \cdot w=\bar{u} \cdot \bar{w}+\bar{v} \cdot \bar{w}$
(3) $(c \bar{u}) \cdot \bar{v}=c(\bar{u} \cdot \bar{v})$
(4) $\bar{u} \cdot \bar{u} \geq 0$ and $\bar{u} \cdot \bar{u}=0 \Leftrightarrow \bar{u}=\overline{0}$.

Length E' Distance

$$
\bar{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]_{v_{2}} \underbrace{}_{i v_{1}} \begin{array}{l}
\bar{v} \\
\vdots
\end{array})
$$

works in higher dimension too

Deft the length (or norm) of \bar{V}, denoted $\|\bar{V}\|_{\text {, is }}$

$$
\|\bar{v}\|=\sqrt{\bar{v} \cdot \bar{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \underset{v}{c}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

* Note: $\bar{v} \cdot \bar{v}=\|\bar{v}\|^{2}$
$*\|c \bar{v}\|=|c| \cdot\|\bar{v}\|$

Det We say \bar{v} is a unit vector if $\|\bar{v}\|=1$.
Fact $\frac{1}{\|\bar{\nabla}\|} \cdot \bar{v}$ is always a unit vector in the same dir. as \bar{V}.
Let T Le distance $b / w \bar{u}$ and \bar{v}, denoted dist (\bar{u}, \bar{v}), is

$$
\begin{array}{r}
\operatorname{dist}(\bar{u}, \bar{v})=\|\bar{u}-\bar{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}} \\
\left(\bar{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{n}
\end{array}\right] \quad \bar{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{n}
\end{array}\right]\right.
\end{array}
$$

Ex Let $\bar{v}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right], \bar{\omega}=\left[\begin{array}{l}0 \\ 2 \\ 5\end{array}\right]$.
(1) Find dist $(\bar{v}, \bar{\omega})$.
(2) Find a unit vector, $\overline{\bar{u}}$, in some direction as \bar{v},
(3) Graph $\bar{v}, \bar{\omega}, \bar{u}$.
(1) $\operatorname{dist}(\bar{v}, \bar{\omega})=\|\bar{v}-\bar{\omega}\|=\left\|\left[\begin{array}{c}1 \\ 1 \\ -3\end{array}\right]\right\|=\sqrt{1^{2}+1^{2}+(-3)^{2}}=\sqrt{11}$
(2) $\bar{u}=\frac{1}{\|\bar{v}\|} \cdot \bar{v}$.

* $\|\bar{v}\|=\sqrt{1+9+4}=\sqrt{14}$.
* Note that
* $\bar{u}=\frac{1}{\sqrt{14}} \cdot\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]=\left[\begin{array}{l}y / \sqrt{14} \\ 3 / \sqrt{4} \\ z / \sqrt{14}\end{array}\right]$.

$$
\|\bar{u}\|=\sqrt{\frac{1}{14}+\frac{9}{14}+\frac{4}{14}}
$$

$$
=\sqrt{1}=1
$$

(3)

Othogonality (i.e. perpendicularity)
we start by looking at the angle b/w two vectors.

By the lan of cosines: $\quad c^{2}=a^{2}+b^{2}-2 a b \cos \theta$

Thus,

$$
\|\bar{u}-\bar{v}\|^{2}=\|\bar{u}\|^{2}+\|\bar{v}\|^{2}-2\|u\|\|v\| \cdot \cos \theta .
$$

Also,

$$
\begin{aligned}
\underline{\|\bar{u}-\bar{v}\|^{2}} & =(u-\bar{v}) \cdot(\bar{u}-\bar{v}) \\
& =\bar{u} \cdot \bar{u}-2 \bar{u} \cdot \bar{v}+\bar{v} \cdot \bar{v} \quad \text { dist. and comm. } \\
& =\|\bar{u}\|^{2}-2 \bar{u} \cdot \bar{v}+\|\bar{v}\|^{2}
\end{aligned}
$$

combining these,

$$
\begin{aligned}
-2 \bar{u} \cdot \bar{v} & =-2\|\bar{u}\|\|\bar{v}\| \cos \theta \\
\bar{u} \cdot \bar{v} & =\|\bar{u}\| \cdot\|\bar{v}\| \cos \theta
\end{aligned}
$$

Theorem If θ is the angle $b / w \bar{u}$ and \bar{v}, then

$$
\bar{u} \cdot \bar{v}=\|\bar{u}\| \cdot\|\bar{v}\| \cdot \cos \theta .
$$

Det We say \bar{u} and \bar{v} are orthogonal if $\bar{u} \cdot \bar{v}=0$.

* this nears that the (smallest) angle b/w. Them is 90°.

Ex Let $\bar{v}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$
(a) show that $\bar{\omega}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$ is not or hag. to \bar{v}

$$
\bar{v} \cdot \bar{\omega}=1 \neq 0
$$

(b) Find three different vectors in \mathbb{R}^{3} that are or thong. to \bar{v}. How many possible answers ore there?
want \bar{u}, st. $\bar{u} \cdot \bar{v}=0$. write $\bar{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$

$$
\bar{u} \cdot \bar{v}=3 u_{1}+u_{2}+u_{3}=0
$$

possible answers: $\bar{u}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -2\end{array}\right], \ldots$

Det If w is a subspace of \mathbb{R}^{n}, then W^{\perp} is the collection of all vectors that are orthog. to every vector in W. W^{+}is called the orthogonal complement of W.

Picture

Theorem Let ω be a subspace of \mathbb{R}^{n}.
(1) W^{\perp} is a subspace of \mathbb{R}^{n}.
(2) If $\omega=\operatorname{span}\left\{\bar{\omega}_{1}, \ldots, \bar{\omega}_{k}\right\}$, then

$$
\bar{V} \text { is in } \omega^{\perp} \Longleftrightarrow \bar{V} \text { is or tho. to } \bar{w}_{1}, \bar{w}_{2}, \ldots, \text { and } \bar{w}_{k}
$$

6.2 Orthogonal Sets

Det A set of vectors $\left\{\bar{\omega}, \ldots, \bar{u}_{k}\right\}$ is an orthogonal set if each pair of (distinct) vectors is or thogonal. If $\left\{\bar{u}_{1}, \ldots, \bar{u}_{k}\right\}$ is an orthogonal set AND all vectors are mit vectors, then it is called an orthonormal set.

Ex Let $\bar{u}_{1}=\left[\begin{array}{c}1 \\ 1 / 3 \\ 1 / 3\end{array}\right], \bar{u}_{2}=\left[\begin{array}{c}-2 \\ 4 \\ 2\end{array}\right], \bar{u}_{3}=\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]$. verify
that $\left\{\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}\right\}$ is an orthogonal set.

$$
\begin{aligned}
& \bar{u}_{1} \cdot \bar{u}_{2}=-2+4 / 3+\frac{2}{3}=0 \\
& \bar{u}_{1} \cdot \bar{u}_{2}=-1-4 / 3+\frac{7}{3}=0 \\
& \bar{u}_{2} \cdot \bar{u}_{3}=2-16+14=0
\end{aligned}
$$

* Note that this is not an orthonormal set b / c

$$
\left\|\bar{u}_{1}\right\|=\sqrt{1+1 / 9+1 / 9} \neq 1
$$

* However, $\left\{\overline{e_{1}}, \overline{e_{2}}, \overline{e_{3}}\right\}$ is an or thonormal subset of \mathbb{R}^{3}.

Neorem (orthog. \Rightarrow L.I.) If $\left\{\bar{u}_{1}, \ldots, \bar{u}_{k}\right\}$ is an orthog. set of nonzero vectors in \mathbb{R}^{n}, then it is automatically lin. independent.
pt suppose $c_{1} \bar{u}_{1}+c_{2} \bar{u}_{2}+\cdots+c_{k} \bar{u}_{k}=\overline{0}$. We must show that $c_{1}=0, c_{2}=0_{1}, \ldots, c_{k}=0$.

Faust),

$$
\begin{aligned}
& \left(c_{1} \bar{u}_{1}+\cdots+c_{k} \bar{u}_{k}\right) \cdot \bar{u}_{1}=\overline{0} \cdot \bar{u}_{1} \\
& c_{1}\left(\bar{u}_{1} \cdot \bar{u}_{1}\right)+\cdots+c_{k}\left(\bar{u}_{k} \cdot \bar{u}_{1}\right)=0
\end{aligned}
$$

$$
c_{1}\left\|\bar{u}_{1}\right\|^{2}+0+\cdots+0=0
$$

since $\bar{u}_{1} \neq \overline{0},\left\|\bar{u}_{1}\right\| \neq 0$, so

$$
c_{1}=0
$$

Next,

$$
\begin{aligned}
& \left(c_{1} \bar{u}_{1}+c_{2} \bar{u}_{2}+\cdots+c_{k} \bar{u}_{k}\right) \cdot \bar{u}_{2}=\overline{0} \cdot \bar{u}_{2} \\
\Rightarrow & c_{1}\left(\bar{u}_{1} \cdot \bar{u}_{2}\right)+c_{2}\left(\bar{u}_{2} \cdot \bar{u}_{2}\right)+\cdots+c_{k}\left(\bar{u}_{k} \cdot \bar{u}_{2}\right)=0 \\
\Rightarrow & 0+c_{2}\left\|u_{2}\right\|^{2}+0+\cdots+0=0 \\
\Rightarrow & c_{2}=0
\end{aligned}
$$

continuing in this fashion, we find that all $c_{i}=0$. D
The idea in the previous proof leads to another concept. Projections

Notice that \bar{a} is the closest point on L to \bar{Y}

* \bar{a} is in L

AND

* \bar{a} and \bar{b} are orthogor al

So what is the length of \bar{a} ?

$$
\frac{\|\bar{a}\|}{\|\bar{y}\|}=\cos \theta=\frac{\bar{y} \cdot \bar{u}}{\|\bar{y}\| \cdot\|\bar{u}\|} \Rightarrow\|\bar{a}\|=\frac{\bar{y} \cdot \bar{u}}{\|\bar{u}\|}
$$

Thus,

$$
\bar{a}=\frac{\bar{y} \cdot \bar{u}}{\|\bar{u}\|} \cdot \frac{1}{\|u\|} \cdot \bar{u}=\frac{\bar{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}} \cdot \bar{u}
$$

Also, note that $\bar{b}=\bar{y}-\bar{a}$, so once ne know \bar{a}, we com find \bar{b}.
Det (Projection onto a line) If $L=\operatorname{span}\{\bar{u}\}$ for $\bar{u} \neq \overline{0}$, then we define

$$
\bar{a}=\operatorname{proj}_{2} \bar{y}=\frac{\bar{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}} \cdot \bar{u}
$$

This is called the orthogonal projection at \bar{y} on to L (or on to \bar{u}).

* proj$L \bar{Y}$ is the vector on L that is closest to \bar{y}.

Ex Let $\bar{y}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\left.L=\operatorname{span}\left\{\begin{array}{l}8 \\ 6\end{array}\right]\right\}$.
(a) Find $\operatorname{proj}_{L} \bar{Y}$.
(b) write $\bar{y}=\bar{a}+\bar{b}$ where

* \bar{a} is in L

AND

* $\{\bar{a}, \bar{b}\}$ is an or thogonal set.
(a) $\operatorname{proj}_{L} \bar{y}=\frac{\bar{y} \cdot \bar{u}}{\bar{u} \cdot \bar{u}} \cdot \bar{u}=\frac{24+6}{64+36} \cdot\left[\begin{array}{l}8 \\ 6\end{array}\right]=\frac{3}{10} \cdot\left[\begin{array}{l}8 \\ 6\end{array}\right]=\left[\begin{array}{l}2.4 \\ 1.8\end{array}\right]$
(b) Let $\bar{a}=\left[\begin{array}{l}2.4 \\ 1.0\end{array}\right] \quad \bar{b}=\bar{y}-\bar{a}=\left[\begin{array}{c}0.6 \\ -0.8\end{array}\right]$

Then,

$$
\bar{y}=\bar{a}+\bar{b} \quad \text { and } \quad \bar{a} \cdot \bar{b}=1.44-1.44=0
$$

So $\{\bar{a}, \bar{b}\}$ is an or tho. set.

* What if W is an arbitrary subspace? can ne still define projw \bar{y} ?
6.3 orthogonal Projections

Net Let W be a sab space of \mathbb{R}^{n}, and let $\left\{\bar{u}_{1}, \ldots, \bar{u}_{k}\right\}$ be any orthogonal basis for W.

This is the orthogonal projection of \bar{y} out o W.

- Projw \bar{y} gives the some answer nomatter which or thogonal basis you use.
Ex Let $W=\operatorname{span}\left\{\bar{\omega}_{1}, \bar{\omega}_{2}\right\}$ where

$$
\bar{\omega}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \bar{\omega}_{2}=\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right]
$$

(a) Find projw \bar{y} where $\bar{y}=\left[\begin{array}{c}-1 \\ 4 \\ 3\end{array}\right]$
(b) Graph \bar{Y}, W, and projw \bar{Y} an Geogebra
(a) Note that $\bar{\omega}_{1}, \bar{\omega}_{2}$ are or thogonal $b / c \bar{\omega}_{1} \cdot \bar{\omega}_{2}=0$. Thus, they are L.I., so they are an or tog. basis for w. Now,

$$
\operatorname{proj} \omega \bar{y}=\operatorname{proj}_{\bar{\omega}_{1}} \bar{y}+\operatorname{proj}_{\bar{w}_{2}} \bar{y}
$$

$$
\begin{aligned}
& =\frac{\bar{\omega}_{1} \cdot \bar{y}}{\bar{\omega}_{1} \cdot \bar{\omega}_{1}} \bar{\omega}_{1}+\frac{\bar{\omega}_{2} \cdot \bar{y}}{\bar{\omega}_{2} \cdot \bar{\omega}_{2}} \bar{\omega}_{2} \\
& =\frac{6}{3} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{7}{14}\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]+\left[\begin{array}{c}
-1 / 2 \\
3 / 2 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
3 / 2 \\
7 / 2 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \bar{w}_{1} \cdot \bar{y}=6 \\
& \bar{w}_{1} \cdot \bar{w}_{1}=3 \\
& \bar{w}_{2} \cdot \bar{y}=7 \\
& \bar{w}_{2}-\bar{w}_{2}=14
\end{aligned}
$$

(b) Geogebra

Theorem (Orthog. Decomp. Theorem) Let W be a subspace of \mathbb{R}^{n}. Then every \bar{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\bar{y}=\hat{y}+\bar{z}
$$

$$
\widehat{y}=\operatorname{proj}_{w} \bar{y} .
$$

Theorem (Best Approx. Theorem) Let w be a subspace of \mathbb{R}^{n}. If $\hat{y}=\operatorname{proj}_{w} \bar{y}$, then \hat{y} is the point of W closest to \bar{Y}, ie.

$$
\|y-\hat{y}\|<\|\bar{y}-\bar{w}\|
$$

for all $\bar{\omega}$ in ω with $\bar{\omega} \neq \hat{Y}$.
6.5 Least $S_{\text {q ware } S}$
we know $A \bar{x}=\bar{b}$ may be inconsistent, but we want a process for finding a good approximate solution.
Let If A is $m \times n$ and \bar{b} is in \mathbb{R}^{m}, then we say that \hat{x} is a least squares solution to $A \bar{x}=\bar{b}$ if

$$
\|\bar{b}-A \hat{x}\| \leq\|\vec{b}-A \bar{x}\|
$$

for all \bar{x} in \mathbb{R}^{n}.

* $\|\bar{b}-A \hat{x}\|$ is called the least squares error.
* \hat{x} is an actual solution if $\|\bar{b}-A \hat{x}\|=0$.

Q: how might we find a least squares solution?
Idea:

- we can solve $A \bar{x}=\bar{b}$ preciselywten \bar{b} is in $\operatorname{col} A$.
- If \bar{b} is not in Col A, then the

$$
\bar{b}-\hat{b}=\bar{b}-A \hat{x}
$$ c closest vector to \bar{b} that is in $\operatorname{col} A$ is

$$
\hat{b}=\operatorname{proj} \operatorname{col} A \bar{b} .
$$

- So, we
- Picture

- It must be that $\hat{b}=A \hat{x}$ for sone \hat{x}...

How do we solve for \hat{x} ?

- Note: $\bar{b}-\hat{b}$ is or thog. to ColA so $\bar{b}-\hat{b}$ is or they to every column of A.
- write $A=\left[\begin{array}{llll}\bar{a}_{1} & \bar{a}_{2} & \cdots & \bar{a}_{n}\end{array}\right]$. Then

$$
\begin{aligned}
& \bar{a}_{1} \cdot(\bar{b}-\hat{b})=0 \Longrightarrow \bar{a}_{1}^{\top} \cdot(\bar{b}-\hat{b})=0 \\
& a_{2} \cdot(b-\hat{b})=0 \Rightarrow \bar{a}_{2}^{\top} \cdot(\bar{b}-\hat{b})=0
\end{aligned}
$$

- Thus $A^{\top} \cdot(\bar{b}-\hat{b})=0$.

$$
\begin{aligned}
& \Rightarrow A^{\top} \bar{b}-A^{\top} \hat{b}=0 \\
& \Rightarrow A^{\top} \bar{b}=A^{\top} \hat{b}=A^{\top} A \hat{x}
\end{aligned}
$$

Theorem
\hat{x} is a least
squares sol. to \Longleftrightarrow solution to

$$
A \bar{x}=\bar{b}
$$

\hat{x} is a (honest)

$$
A^{\top} A \bar{x}=A^{\top} \bar{b} .
$$

* To find least square sol. to $A \bar{x}=\bar{S}$, we should solve $A^{\top} A \bar{x}=A^{\top} \bar{b}_{0}$.

Ex Consider the system $A \bar{x}=\bar{b}$ where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right], \quad \bar{b}=\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]
$$

(a) Show that $A \bar{x}=\bar{b}$ is in consistent
(b) Find a least squares solution to $A \bar{x}=\bar{b}$
(c) what is the least $s_{\text {squares error. }}$
(a) The systemat e_{q}. corresponding to $A \bar{x}=\bar{b}$ is

$$
\left.\begin{array}{l}
x_{1}+x_{2}=1 \\
x_{1}+x_{2}=3 \\
x_{1}+x_{3}=8
\end{array}\right\} \Rightarrow 0=-2 \Rightarrow \text { clearly inconsistent }
$$

$$
x_{1}+x_{3}=2
$$

(b) we solve $A^{\top} A \bar{x}=A^{\top} \bar{b}$

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right] \\
& A^{\top} \bar{b}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
8 \\
2
\end{array}\right]=\left[\begin{array}{c}
14 \\
4 \\
10
\end{array}\right]
\end{aligned}
$$

solve

$$
\left[\begin{array}{lll|l}
4 & 2 & 2 & 14 \\
2 & 2 & 0 & 4 \\
2 & 0 & 2 & 10
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & 1 & 5 \\
0 & 1 & -1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=5-x_{3} \\
& x_{2}=-3+x_{3} \\
& x_{3} \text { free }
\end{aligned}
$$

All least squares sols: $\hat{x}=\left[\begin{array}{c}5 \\ -3 \\ 0\end{array}\right]+s\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$

So, one least squares sol. is

$$
\hat{x}=\left[\begin{array}{c}
5 \\
-3 \\
0
\end{array}\right]
$$

(C) Least squares error

$$
\begin{gathered}
A \hat{x}=\left[\begin{array}{l}
2 \\
2 \\
5 \\
5
\end{array}\right] \text { so } \\
\text { error }=\|\bar{b}-A \hat{x}\|=\left\|\left[\begin{array}{l}
1 \\
3 \\
0 \\
2
\end{array}\right]-\left[\begin{array}{l}
2 \\
2 \\
5 \\
5
\end{array}\right]\right\| \\
=\left\|\left[\begin{array}{c}
-1 \\
1 \\
3 \\
-3
\end{array}\right]\right\|=\sqrt{1+1+9+9}=\sqrt{20} \approx 4.5
\end{gathered}
$$

Ex Suppose you ob tain the following data points

$$
(0,2),(-3,5),(2,3),(4,12)
$$

and want to model the data using a quadratic function of the form

$$
f(t)=c_{0}+c_{1} t+c_{2} t^{2}
$$

Find a best fit quadratic to the data using least squares.

$$
\begin{aligned}
& f(0)=2 \Rightarrow c_{0}+c_{1}(0)+c_{2}(0)^{2}=2 \\
& f(-3)=5 \Rightarrow c_{0}+c_{1}(-3)+c_{2}(-3)^{2}=5 \\
& f(2)=3 \Rightarrow c_{0}+c_{1}(2)+c_{2}(2)^{2}=3 \\
& f(4)=12 \Rightarrow c_{0}+c_{1}(4)+c_{2}(4)^{2}=12
\end{aligned}
$$

so

$$
\begin{aligned}
& c_{0}+0 c_{1}+0 c_{2}=2 \\
& c_{0}-3 c_{1}+9 c_{2}=5 \\
& c_{0}+2 c_{1}+4 c_{2}=3 \\
& c_{0}+4 c_{1}+16 c_{2}=12
\end{aligned} \quad \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 0 & 2 \\
1 & -3 & 9 & 5 \\
1 & 2 & 4 & 3 \\
1 & 4 & 16 & 12
\end{array}\right]
$$

least squares:

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -3 & 2 & 4 \\
0 & 9 & 4 & 16
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & -3 & 9 \\
1 & 2 & 4 \\
1 & 4 & 16
\end{array}\right]=\left[\begin{array}{cccc}
4 & 3 & 2 & 9 \\
3 & 2 & 9 & 4 \\
29 & 4 & 5 & 35
\end{array}\right] \\
& \text { approx. } \\
& \text { Solve }\left[\begin{array}{llll|l}
4 & 3 & 29 & 22 \\
3 & 29 & 45 & 39 \\
29 & 4 & 5 & 353 & 249
\end{array}\right] \sim\left[\begin{array}{lll|l}
1 & 0 & 0 & 1.103 \\
0 & 1 & 0 & 0.345 \\
0 & 0 & 1 & 0.571
\end{array}\right]
\end{aligned}
$$

So, our best fit quadratic is

$$
f(t)=1.103+0.345 t+0.571 t^{2}
$$

Desmos Me

