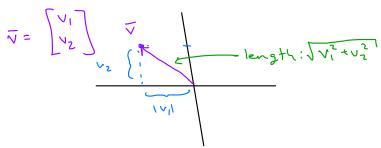
Det Let
$$\overline{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \overline{u} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
. The inner product of \overline{u} and \overline{v} is

$$\overline{U} \cdot \overline{V} = U_1 V_1 + U_2 V_2 + \cdots + U_n V_n$$

* notice that this can be written in terms of matrix multiplication as $\overline{u} \cdot \overline{v} = \overline{u} \cdot \overline{v} = [u_1 u_2 \cdots u_n] \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ * $\overline{u} \cdot \overline{v}$ is a (single) number.

Det Te length (or norm) of
$$\overline{V}$$
, denoted $\|\overline{V}\|$, is
 $\|\overline{V}\| = \sqrt{\overline{V} \cdot \overline{V}} = \sqrt{V_1^2 + V_2^2 + \dots + V_n^2}$ $\overline{V} = \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix}$
 $\neq \text{Note} : \overline{V} \cdot \overline{V} = \|\overline{V}\|^2$
 $\neq \|C\overline{V}\| = [C| \cdot \|\overline{V}\|$



Length & Distance

vorksin higher dinension too

Theorem (Prop. of the inner prod.)
(1)
$$\overline{u} \cdot \overline{v} = \overline{v} \cdot \overline{u}$$

(2) $(\overline{u} + \overline{v}) \cdot \overline{w} = \overline{u} \cdot \overline{w} + \overline{v} \cdot \overline{w}$
(3) $(c\overline{u}) \cdot \overline{v} = c(\overline{u} \cdot \overline{v})$
(4) $\overline{u} \cdot \overline{u} > co$ and $\overline{u} \cdot \overline{u} = o$ (2) $\overline{u} = \overline{o}$.

$$\frac{E \times}{\pi} \quad \text{Let} \quad \pi = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix} \quad \nabla = \begin{bmatrix} 6 \\ -2 \\ -2 \end{bmatrix}.$$

$$\pi \cdot \nabla = \begin{bmatrix} 3 & -1 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix} = 0 - 7 - 10 = -17$$

$$\nabla \cdot \pi = \begin{bmatrix} 0 & 7 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix} = 0 - 7 - 10 = -17$$

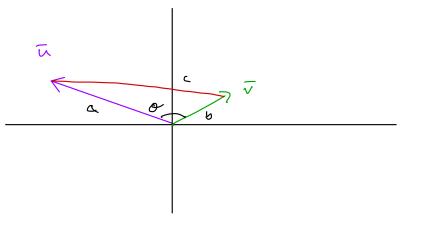
$$\pi \cdot \pi = \begin{bmatrix} -3 \\ -2 \\ -2 \end{bmatrix} = 0 - 7 - 10 = -17$$

Det we say
$$\overline{v}$$
 is a unit vector if $\|\overline{v}\| = 1$.
Fact $\frac{1}{\|\overline{v}\|} \cdot \overline{v}$ is always a unit vector in the same dir. as \overline{v} .
Det The distance $|v|| \overline{v}$ and \overline{v} , denoted dist $(\overline{u}, \overline{v})$, is
dist $(\overline{u}, \overline{v}) = ||\overline{u} - \overline{v}|| = \int (u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2$
 $\left(\overline{u} = \begin{bmatrix} u_1 \\ u_2 \\ v_n \end{bmatrix} \quad \overline{v} = \begin{bmatrix} v_1 \\ v_n \\ v_n \end{bmatrix} \right)$

$$E \times Led \quad \overline{v} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \quad \overline{w} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}.$$

() Find dist($\overline{v}, \overline{w}$).
(2) Find a unit vector, \overline{u} , in same direction as \overline{v} ,
(3) Graph $\overline{v}, \overline{w}, \overline{u}$.
(4) dist($\overline{v}, \overline{w}$) = $\||\overline{v} - \overline{w}||_{1} = \||\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}\| = \sqrt{1^{2} + (^{2} + (^{2})^{2})^{2}} = \sqrt{1^{2}}$
(2) $\overline{u} = \frac{1}{\|\overline{v}\|} \cdot \overline{v}$.
 $\times \|\overline{v}\| = \sqrt{1^{2} + 9^{2} + 4} = \sqrt{1^{4}}$
 $\times \overline{u} = \frac{1}{\sqrt{1^{4}}} \cdot \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} \sqrt{1^{4}} + \frac{9}{1^{4}} + \frac{4}{1^{4}} \\ \frac{3}{\sqrt{1^{4}}} \end{bmatrix}.$
(3) $\xrightarrow{2}{\sqrt{1^{4}}} \frac{1}{\sqrt{1^{4}}} = \sqrt{1^{4}}$
 $\times \frac{1}{\sqrt{1^{4}}} \frac{1}{\sqrt{1^{4}}$

we start by looking at the angle b/w two vectors.



This,

$$\frac{\|\nabla - \nabla \|^{2}}{\|\nabla - \nabla \|^{2}} = \|\nabla \|^{2} + \|\nabla \|^{2} - 2\|\|\|\|\| + \cos \Theta,$$

Also,

Det we say
$$\overline{u}$$
 and \overline{v} are orthogonal if $\overline{u} \cdot \overline{v} = 0$.
X this reams that the (smallest) angle b/w . them is 90°.

Ex Let
$$\overline{v} = \begin{bmatrix} 3\\ 1 \end{bmatrix}$$

(a) show that $\overline{w} = \begin{bmatrix} -1\\ -1 \end{bmatrix}$ is not or thog. to \overline{v}
 $\overline{v} \cdot \overline{w} = 1 \neq 0$
(b) Find three different vectors in \mathbb{R}^3 that are orthog.
to \overline{v} . How many possible answers are there?
to \overline{v} . How many possible answers are there?
want \overline{u}_1 , s.t. $\overline{u} \cdot \overline{v} = 0$. write $\overline{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$
 $\overline{u} \cdot \overline{v} = 3u_1 + u_2 + u_3 = 0$

Possible answers:
$$\overline{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix}, \dots$$

6.2 Orthogonal Sets

Ex Let
$$\overline{u}_1 = \begin{bmatrix} y_3 \\ y_3 \end{bmatrix}$$
, $\overline{u}_2 = \begin{bmatrix} -2 \\ 4 \\ 2 \end{bmatrix}$, $\overline{u}_3 = \begin{bmatrix} -1 \\ -4 \\ -7 \end{bmatrix}$. verify
 $\operatorname{Mat}\left[\overline{u}_1, \overline{u}_2, \overline{u}_3\right]$ is an orthogonal set.
 $\overline{u}_1 \cdot \overline{u}_2 = -2 + \frac{y_3}{3} + \frac{2}{3} = 0$
 $\overline{u}_1 \cdot \overline{u}_3 = -1 - \frac{y_3}{3} + \frac{2}{3} = 0$
 $\overline{u}_2 \cdot \overline{u}_3 = 2 - 16 + 14 = 0$
(A verified an orthonormal set $\frac{b}{c}$

× Note that this is not

$$|| \overline{u_1} || = \sqrt{1 + \frac{1}{2} + \frac{1}{2}} \neq |.$$

× However, $2\overline{e_1}, \overline{e_2}, \overline{e_3}$ is an orthonormal subset of \mathbb{R}^3 .

Theorem (orthog. =) L.I.) If
$$\{\overline{u}_{1}, ..., \overline{u}_{k}\}$$
 is an orthog.
Set of nonzero vectors in \mathbb{R}^{n} , then it is automatically
lin. independent.
Pt suppose $c_{1}\overline{u}_{1} + c_{2}\overline{u}_{2} + \dots + c_{k}\overline{u}_{k} = \overline{0}$, we must show
that $c_{1} = 0, c_{2} = 0, \dots, c_{k} = 0$.
First,
 $(c_{1}\overline{u}_{1} + \dots + c_{k}\overline{u}_{k}) \cdot \overline{u}_{1} = \overline{0} \cdot \overline{u}_{1}$
 $c_{1}(\overline{u}_{1}, \cdot \overline{u}_{1}) + \dots + c_{k}(\overline{u}_{k} \circ \overline{u}_{1}) = 0$

$$C_{1} || \overline{u}_{1} ||^{2} + 0 + \cdots + 0 = 0$$

Since $\overline{u}_{1} \neq \overline{0}_{1} || \overline{u}_{1} || \neq 0, 50$

Next,

$$\begin{pmatrix} c_1 \overline{u}_1 + c_2 \overline{u}_2 + \dots + c_k \overline{u}_k \end{pmatrix} \cdot \overline{u}_2 = \overline{0} \cdot \overline{u}_2$$

$$\Rightarrow \quad c_1(\overline{u}_1 \cdot \overline{u}_2) + c_2(\overline{u}_2 \cdot \overline{u}_2) + \dots + c_k(\overline{u}_k \cdot \overline{u}_1) = 0$$

$$\Rightarrow \quad 0 \quad + \quad c_2 ||u_2||^2 + 0 + \dots + 0 = 0$$

$$\Rightarrow \quad c_2 = 0$$

Continuing in this Sashion, we find that all ci = 0. D The idea in the previous proof leads to another concept.

$$\frac{\operatorname{Projections}}{\operatorname{Lis}\operatorname{line}}$$

$$\lim_{X \to \infty} \sum_{i} \lim_{X \to \infty} \lim_{$$

Thus,

$$\overline{\alpha} = \frac{\overline{y} \cdot \overline{\alpha}}{\|\|\overline{\alpha}\|\|} \cdot \frac{1}{\|\|\mathbf{u}\|\|} \cdot \overline{\alpha} = \frac{\overline{y} \cdot \overline{\alpha}}{\overline{\alpha} \cdot \overline{\alpha}} \cdot \overline{\alpha}$$
Also, note that $\overline{b} = \overline{y} - \overline{a}$, so once we know
 \overline{a} , we can find \overline{b} .

$$\frac{Det}{a} (\operatorname{Projection onto a line}) If L = \operatorname{Spm} [\overline{n}]$$
for $\overline{u} + \overline{o}$, then we define
 $\overline{\alpha} = \operatorname{Proj}_{L} \overline{y} = \frac{\overline{y} \cdot \overline{\alpha}}{\overline{\alpha} \cdot \overline{\alpha}} \cdot \overline{\alpha}$
This is called the orthogonal projection and \overline{y} on to L
(or onto \overline{u}).
 $\times \operatorname{Proj}_{L} \overline{y}$ is the vector on L that is closest to \overline{y} .
 \overline{Lx} Let $\overline{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $L = \operatorname{Spm} \left(\begin{bmatrix} 8 \\ 6 \end{bmatrix} \end{bmatrix}$.
(A) Find $\operatorname{Proj}_{L} \overline{y}$.
 \overline{u}
(b) write $\overline{y} = \overline{a} + \overline{b}$ where
 $* \overline{a} + \overline{s} \sin L$
 $* (\overline{a}, \overline{b}, \overline{b} - \overline{u}) = \frac{2^{4} + 6}{C^{4} + 5} \cdot \begin{bmatrix} 8 \\ 6 \end{bmatrix} = \frac{3}{10} \cdot \begin{bmatrix} 8 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \cdot 4 \\ 1 \cdot 8 \end{bmatrix}$
(b) Let $\overline{a} = \begin{bmatrix} 7 \cdot 4 \\ 1 \cdot 8 \end{bmatrix} = \begin{bmatrix} \overline{a} - \begin{bmatrix} 8 \cdot 4 \\ 1 \cdot 8 \end{bmatrix}$

Then,

$$\overline{y} = \overline{a} + \overline{b}$$
 and $\overline{a} \cdot \overline{b} = 1.44 - 1.44 = 0$
so $\{\overline{a}, \overline{b}\}$ is an onthog. set.

Det Let W be a subsepace of
$$\mathbb{R}^n$$
, and let
 $\{\overline{u}_{11}, \dots, \overline{u}_k\}$ be any orthogonal basis for W.
Then is define
 $\operatorname{Proj}_W \overline{y} = \operatorname{Proj}_W \overline{y} + \dots + \operatorname{Proj}_W \overline{y}$
 $\stackrel{\text{de}}{=} \frac{\overline{y} \cdot \overline{u}_1}{\overline{u}_1 \cdot \overline{u}_1} \overline{y} + \dots + \frac{\overline{y} \cdot \overline{u}_k}{\overline{u}_k \cdot \overline{u}_k} \overline{u}_k$
This is the orthogonal projection of \overline{y} anto W.
 $\stackrel{\text{de}}{=} \operatorname{Proj}_W \overline{y}$ gives the same answer no matter
which orthogonal basis you use.
 $\stackrel{\text{Ex}}{=} Let W = \operatorname{Span} \left\{ \overline{w}_1, \overline{w}_2 \right\}$ where
 $\overline{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \overline{w}_2 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$
(a) Find $\operatorname{Proj}_W \overline{y}$ where $\overline{y} = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$
(b) Graph \overline{y}, W , and $\operatorname{Proj}_W \overline{y}$ on Geogebra

$$= \frac{\overline{\omega}_{1} \cdot \overline{Y}}{\overline{\omega}_{1} \cdot \overline{\omega}_{1}} \quad \overline{\omega}_{1} + \frac{\overline{\omega}_{2} \cdot \overline{Y}}{\overline{\omega}_{2} \cdot \overline{\omega}_{2}} \quad \overline{\omega}_{2}$$

$$= \frac{C}{3} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \frac{1}{14} \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{3} \cdot \frac{1}{2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{2} \\ \frac{3}{2} \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$
(b) Geogebra

Theorem (Orthog. Decomp. Theorem) Let
$$W$$

be a subspace of \mathbb{R}^n . Then every \overline{y} in \mathbb{R}^n
can be written uniquely in the form
 $\overline{y} = \widehat{y} + \overline{z}$
where \widehat{y} is in W and \overline{z} is in \widehat{W} . Further
 $\widehat{y} = \operatorname{Proj}_W \overline{y}$.
Theorem (Best Approx. Theorem) Let W be a
subspace at \mathbb{R}^n . If $\widehat{y} = \operatorname{Proj}_W \overline{y}$, then
 \widehat{y} is the point of W closes to \overline{y}_1 i.e.
 $\|y - \widehat{y}\| \le \|\overline{y} - \overline{w}\|$
for all \overline{w} in W with $\overline{w} \neq \widehat{y}$.

6.5 Least Squares

we know Ax=b may be inconsistent, but we want a process for finding a good approximate solution. Det If Aisman and Disin R, then he say that & is a least squares solution +0 ∀×=2 :t $||\overline{\chi} - A\overline{\chi}|| \geq ||\overline{\chi} - A\overline{\chi}||$

Idea:
• We can solve
$$A \overline{x} = \overline{b}$$
 precisely when \overline{b} is in ColA.
• If \overline{b} is not in ColA, then the
closest vector to \overline{b} that is
in ColA is
 $\overline{b} = projcolA\overline{b}$.

All possible Ax 's col A · So, we Solve AX=b Ax3 6

Ax,

Axz

0

· Picture -

It must be that $\hat{b} = A\hat{x}$ for some \hat{x} ...

How dowe solve for
$$\hat{x}$$
?
• Note: $\overline{b}-\overline{b}$ is orthog. to ColA so
 $\overline{b}-\overline{b}$ is orthog to every column of A.
• write $A = [\overline{a_1} \ \overline{a_2} \cdots \overline{a_n}]$. Then
 $\overline{a_1} \cdot (\overline{b} - \overline{b}) = 0 \Longrightarrow \overline{a_1}^T \cdot (\overline{b} - \overline{b}) = 0$
 $a_2 \cdot (b - \overline{b}) = 0 \Longrightarrow \overline{a_2}^T \cdot (\overline{b} - \overline{b}) = 0$
.

othis
$$A^{T} \cdot (\overline{b} - \overline{b}) = 0$$
.

$$\hat{X}$$
 is a least \hat{X} is a (honest)
Squares sol. to \implies solution to
 $A\overline{X} = \overline{b}$ $A^TA\overline{X} = \overline{A}^T\overline{b}$.

Ex Consider the system
$$A\bar{x}=\bar{b}$$
 where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 6 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad \bar{b} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$$
(a) Show that $A\bar{x}=\bar{b}$ is inconsistent
(b) Find a least synames solution to $A\bar{x}=\bar{b}$
(c) what is the least synames error.

(a) The system of eq. corresponding to
$$A\overline{x}=\overline{b}$$
 is
 $x_1 + x_2 = 1$ => $0 = -2$ => clearly inconsistent
 $x_1 + x_2 = 3$
 $x_1 + x_3 = 8$
 $x_1 + x_3 = 2$

(b) we solve
$$A^{T}A = A^{T}\overline{b}$$

 $A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 6 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$
 $A^{T}\overline{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 3 & 0 & 1 \\ 2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 14 & 4 \\ 10 & 1 & 1 \\ 10 & 1 & 1 \end{bmatrix}$

Solve
$$\begin{bmatrix} 4 & 2 & 2 & | & 14 \\ 2 & 2 & 0 & | & 4 \\ 2 & 0 & 2 & | & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & | & 5 \\ 0 & 1 & -1 & | & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times_{3} free$$

All least squares sols:
$$\hat{X} = \begin{bmatrix} 5 \\ -3 \\ 6 \end{bmatrix} + s \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

So, one least squares sol. is
 $\hat{X} = \begin{bmatrix} 5 \\ -3 \\ 0 \end{bmatrix}$

(c) Least squares error $A\hat{\chi} = \begin{bmatrix} 2\\ 2\\ 5\\ 5 \end{bmatrix}$ so

$$error = \left\| \left[\frac{1}{5} - A \widehat{x} \right] = \left\| \left[\frac{1}{3} \\ \frac{8}{2} \right] - \left[\frac{2}{5} \\ \frac{5}{5} \right] \right\|$$
$$= \left\| \left[\frac{1}{3} \\ \frac{1}{-3} \right] \right\| = \sqrt{1 + (+9+9)} = \sqrt{20} \approx 41.5$$

$$f(0) = 2 \implies c_0 + c_1(0) + c_2(0)^2 = 2$$

$$f(-3) = 5 \implies c_0 + c_1(-3) + c_2(-3)^2 = 5$$

$$f(2) = 3 \implies c_0 + c_1(2) + c_2(2)^2 = 3$$

$$f(4) = 12 \implies c_0 + c_1(4) + c_2(4)^2 = 12$$

$$\begin{array}{c} A & B \\ \hline A & b \\ \hline C_0 + oc_1 + oc_2 = 2 \\ \hline C_0 - 3c_1 + 9c_2 = 5 \\ \hline C_0 + 2c_1 + 9c_2 = 3 \\ \hline C_0 + 4c_1 + 16c_2 = 12 \end{array}$$

$$\frac{1663552}{A^{T} A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -32 & 4 \\ 0 & 9 & 416 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & -39 \\ 1 & 2 & 4 \\ 1 & 416 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 29 \\ 329 & 45 \\ 219 & 45 & 353 \end{pmatrix}$$

$$A^{T} \overline{b} = \begin{pmatrix} 22 \\ 39 \\ 249 \end{pmatrix}$$
solve $\begin{bmatrix} 4 & 3 & 29 \\ 249 \\ 249 \end{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 345 \\ 0 & 345 \end{bmatrix}$

$$\begin{bmatrix} 4 & 3 & 29 & 22 \\ 3 & 29 & 45 & 39 \\ 29 & 45 & 353 & 249 \end{bmatrix} \begin{bmatrix} 0 & (& G & 0.345 \\ 0 & (& G & 0.545 \\ 0 & (& 0.545 \\ 0 & (& 0.545 \\ 0 & (&$$

$$\int f(t) = 1.103 + 0.345 + 0.571 t^{2}$$

Desmos Me