Applied Linear Algebra - Outline for Exam 1

Sections 1.1-1.7

Main ideas

A. Solving linear systems, vector equations, and matrix equations
B. Solution sets: writing in parametric vector form and interpreting geometrically
C. Application(s): network flow
D. Key terms

- row echelon form (REF) and reduced row echelon form (RREF)
- consistent/inconsistent equations
- free variables
- homogeneous linear system
- linear combination
- the set spanned by a collection of vectors
- linear independence/dependence

Skills you should have

1. Be able to row reduce a matrix to RREF.
2. Be able to solve linear systems.

- Usual process: (1) write as augmented matrix, (2) row reduce to REF or RREF, (3) write the solution set (using free variables if necessary).
- Be able to determine if the system is consistent/inconsistent and if there are infinitely many solutions.
- Be able to write the solution set in parametric vector form.
- Be able to interpret "small" solution sets geometrically: point, line, or plane.

3. Be able to multiply a matrix by a vector.
4. Be able to solve linear vector and matrix equations; that is, equations of the form $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}=\mathbf{b}$ and $A \mathbf{x}=\mathbf{b}$, for A an $m \times n$ matrix.

- Usual process: convert to an augmented matrix and then solve as a linear system.
- Sometimes these can be solved by simple guessing and checking.

5. Be able to determine if a vector \mathbf{b} is a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.

- Note: this problem is the same as determining if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$; it is also the same as determining if $A \mathbf{x}=\mathbf{b}$ is consistent, where A is the matrix with columns $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.
- Usual process: determine if $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{k} \mathbf{v}_{k}=\mathbf{b}$ is consistent by converting to an augmented matrix and solving as a linear system.
- Be able to determine if every $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.
- Usual process: (1) make the "coefficient" matrix whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$, (2) row reduce to REF, (3) if there is a pivot in every row, then YES, every $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$; if there is NOT a pivot in every row, then NO.

6. Be able to determine if $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent or linearly dependent.

- Usual process: $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent if and only if $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{k} \mathbf{v}_{k}=\mathbf{0}$ has only one solution (i.e. if there are no free variables).
- There are also some theorems that can sometimes (but not always) help.
- Assume $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are in \mathbb{R}^{m}. If $k \geq m$, then the vectors must be linearly dependent.
- If one of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ is the zero vector, then the vectors must be linearly dependent.
- Two vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ are linearly dependent if and only if one is a scalar multiple of the other.

7. Be able to solve network flow problems.

- The main principle is that "flow in = flow out" at every intersection. Also, the flow into the entire network must equal the flow out of the entire network.

How to study

I. Review core topics
II. Work lots of problems all of the way through-focus on WeBWorK problems, Homework problems, and Handout problems.

- WeBWork \#1-5, Homework \#1-3, Handout \#1-4.
III. Practice doing several problems in a short amount of time (by timing yourself)
IV. Come talk with me if you have any questions

