Applied Linear Algebra — Outline for Exam 1

Sections 1.1–1.7

Main ideas

- **A.** Solving linear systems, vector equations, and matrix equations
- B. Solution sets: writing in parametric vector form and interpreting geometrically
- C. Application(s): network flow
- **D.** Key terms
 - row echelon form (REF) and reduced row echelon form (RREF)
 - consistent/inconsistent equations
 - free variables
 - homogeneous linear system
 - linear combination
 - the set spanned by a collection of vectors
 - linear independence/dependence

Skills you should have

- 1. Be able to row reduce a matrix to RREF.
- **2.** Be able to solve linear systems.
 - Usual process: (1) write as augmented matrix, (2) row reduce to REF or RREF, (3) write the solution set (using free variables if necessary).
 - Be able to determine if the system is consistent/inconsistent and if there are infinitely many solutions.
 - Be able to write the solution set in parametric vector form.
 - Be able to interpret "small" solution sets geometrically: point, line, or plane.
- **3.** Be able to multiply a matrix by a vector.
- **4.** Be able to solve linear vector and matrix equations; that is, equations of the form $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n = \mathbf{b}$ and $A\mathbf{x} = \mathbf{b}$, for A an $m \times n$ matrix.
 - Usual process: convert to an augmented matrix and then solve as a linear system.
 - Sometimes these can be solved by simple guessing and checking.
- **5.** Be able to determine if a vector **b** is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$.
 - Note: this problem is the same as determining if **b** is in Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$; it is also the same as determining if $A\mathbf{x} = \mathbf{b}$ is consistent, where A is the matrix with columns $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$.
 - Usual process: determine if $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_k\mathbf{v}_k = \mathbf{b}$ is consistent by converting to an augmented matrix and solving as a linear system.
 - Be able to determine if every $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$.

- Usual process: (1) make the "coefficient" matrix whose columns are $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, (2) row reduce to REF, (3) if there is a pivot in every row, then YES, every $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$; if there is NOT a pivot in every row, then NO.
- **6.** Be able to determine if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent or linearly dependent.
 - Usual process: $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent if and only if $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_k\mathbf{v}_k = \mathbf{0}$ has only one solution (i.e. if there are no free variables).
 - There are also some theorems that can sometimes (but not always) help.
 - Assume $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are in \mathbb{R}^m . If $k \geq m$, then the vectors must be linearly dependent.
 - If one of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is the zero vector, then the vectors must be linearly dependent.
 - Two vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent if and only if one is a scalar multiple of the other.
- 7. Be able to solve network flow problems.
 - The main principle is that "flow in = flow out" at every intersection. Also, the flow into the entire network must equal the flow out of the entire network.

How to study

- I. Review core topics
- II. Work *lots* of problems all of the way through—focus on WeBWorK problems, Homework problems, and Handout problems.
 - WeBWork #1-5, Homework #1-3, Handout #1-4.
- **III.** Practice doing several problems in a short amount of time (by timing yourself)
- IV. Come talk with me if you have any questions