Applied Linear Algebra — Outline for the Final Exam

Anything that is crossed out will NOT be on the final exam!

Main ideas

Old

- A. Solving linear systems, vector equations, matrix equations
- **B.** Solution sets: writing in parametric vector form and interpreting geometrically
- C. Linear combinations, linear independence, span, basis, dimension
- **D.** Linear transformations
- E. Matrix operations and determinants
- F. Applications: network flow and volume of parallelograms

New

- G. Eigenvalues, eigenvectors, eigenspaces, and the characteristic polynomial
- ${\bf H.}$ Similarity and diagonalization
- I. Inner product (i.e. dot product), length, distance, and orthogonality
- $\mathbf{J.} \ \mathrm{Orthogonal} \ \mathrm{projection}$
- ${\bf K.}$ Applications: PageRank and least squares solutions

Skills you should have

- 1. Be able to solve linear systems.
 - Be able to determine if the system is consistent/inconsistent and if there are infinitely many solutions.
 - Be able to write the solution set in parametric vector form.
 - Be able to interpret "small" solution sets geometrically: point, line, or plane.
- **2.** Be able to determine if a vector **b** is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$.
 - Usual process: determine if $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_k\mathbf{v}_k = \mathbf{b}$ is consistent by converting to an augmented matrix and solving as a linear system.
- **3.** Be able to determine if $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly independent or linearly dependent.
 - Usual process: $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent if and only if $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_k\mathbf{v}_k = \mathbf{0}$ has only the trivial solution (i.e. if there are no free variables).
- 4. Be able to determine if a set of vectors is a basis for a subspace
- 5. Be able to find a basis for subspaces (and their dimension) in the following situations:
 - Be able to find a basis for the null space of a matrix
 - Be able to find a basis for the column space of a matrix

- **6.** Be able investigate and work with linear transformations from \mathbb{R}^n to \mathbb{R}^m
 - Be able to find the standard matrix for a linear transformation
 - Be able to determine if a given vector is in the range of linear transformation
 - Be able to determine if a linear transformation is one-to-one or onto (or both)
- 7. Be able to perform matrix operations
 - This includes addition, subtraction, multiplication, and the transpose
 - Be able to use row reduction to find the inverse of a matrix, if it exists
 - Know how to use A^{-1} to solve $A\mathbf{x} = \mathbf{b}$
- 8. Be able to compute determinants (using cofactor expansion or row-reduction to triangular form)
- 9. Be able to apply properties of the determinant
 - Two key properties are $\det(AB) = (\det A)(\det B)$ and $\det(A^{-1}) = (\det A)^{-1} = \frac{1}{\det A}$ (when $\det A \neq 0$)
 - Know that A is invertible if and only if det $A \neq 0$
- 10. Be able to find the eigenvalues and corresponding eigenspaces for a matrix A.
- 11. Be able to determine if a matrix A is diagonalizable, and if it is, be able to find a diagonal matrix D and invertible matrix P such that $A = PDP^{-1}$.
- 12. Be able to apply use the PageRank process to rank webpages
 - Usual process: (1) find the transition matrix, (2) find an eigenvector **v** associated to $\lambda = 1$ (I'll probably do this for you), (3) divide **v** by the sum of its entries to obtain the steady-state vector, (4) use the probabilities in the steady-state vector to rank the webpages.
- **13.** Be able to work with the inner product (i.e. dot product).
 - Be able to compute the inner product, length, and distance
 - Know that two vectors are orthogonal if and only if their inner product is 0
 - Know the definition of W^{\perp} for W a subspace of \mathbb{R}^n
- 14. Be able to find the orthogonal projection of a vector onto a subspace
 - I will only ask you to find the projection onto a subspace of dimension 1 or 2.
- 15. Be able to find a least squares solution to a linear system
 - Usual process: instead of solving $A\mathbf{x} = \mathbf{b}$, you solve $A^T A\mathbf{x} = A^T \mathbf{b}$
 - Be able to apply this to fitting a linear function or quadratic function to data points

How to study

- I. Review core topics
- **II.** Work *lots* of problems all of the way through—focus on WeBWorK problems, Homework problems, and Handout problems (but *not* Handout 07).
- III. Practice doing several problems in a short amount of time (by timing yourself)
- IV. Come talk with me if you have any questions