Math 100—Homework 04

Due: Friday March 15

NAME _

Directions: please print this page, and put your solutions in the space provided. If you need extra space, you can attach another sheet of paper.

- 1. Consider the following linear transformations.
 - $R: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation that rotates points *clockwise* by an angle of $\frac{\pi}{3}$.
 - $S: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation that projects points onto the y-axis, so $S(x_1, x_2) = (0, x_2)$.
 - $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the composition $S \circ R$, so $T(\mathbf{x}) = S(R(\mathbf{x}))$.
 - (a) Find the standard matrix for R, and call it A. Make sure to show all work.

A =

(b) Find the standard matrix for S, and call it B. Make sure to show all work.

B =

(c) Find the standard matrix for T, and call it C. Make sure to show all work.

C =

(d) Compute the matrix products AB and BA. Hint: one of your answers for this part should turn out to be the same as one of the matrices you found above.

AB =

BA =

- **2.** Suppose that $T: \mathbb{R}^7 \to \mathbb{R}^5$ is a linear transformation.
 - (a) If A denotes the standard matrix for T, what are the dimensions of A, i.e. how many rows and columns? Briefly explain.

(b) Carefully explain, using pivots, why T cannot possibly be one-to-one.

3. Let
$$A = \begin{bmatrix} 2 & 3 \\ -1 & -3 \end{bmatrix}$$

(a) Compute A^{-1} .

(b) Use
$$A^{-1}$$
 to solve the equation $Ax = \begin{bmatrix} 6\\ 3 \end{bmatrix}$. (Please use A^{-1} , not row reduction.)