Math 100——Homework 04

Due: Friday March 15 \qquad

Directions: please print this page, and put your solutions in the space provided. If you need extra space, you can attach another sheet of paper.

1. Consider the following linear transformations.

- $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation that rotates points clockwise by an angle of $\frac{\pi}{3}$.
- $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation that projects points onto the y-axis, so $S\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)$.
- $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the composition $S \circ R$, so $T(\mathbf{x})=S(R(\mathbf{x}))$.
(a) Find the standard matrix for R, and call it A. Make sure to show all work.
$A=$
(b) Find the standard matrix for S, and call it B. Make sure to show all work.
$B=$
(c) Find the standard matrix for T, and call it C. Make sure to show all work.
$C=$
(d) Compute the matrix products $A B$ and $B A$. Hint: one of your answers for this part should turn out to be the same as one of the matrices you found above.
$A B=$
$B A=$

2. Suppose that $T: \mathbb{R}^{7} \rightarrow \mathbb{R}^{5}$ is a linear transformation.
(a) If A denotes the standard matrix for T, what are the dimensions of A, i.e. how many rows and columns? Briefly explain.
(b) Carefully explain, using pivots, why T cannot possibly be one-to-one.
3. Let $A=\left[\begin{array}{rr}2 & 3 \\ -1 & -3\end{array}\right]$
(a) Compute A^{-1}.
(b) Use A^{-1} to solve the equation $A x=\left[\begin{array}{l}6 \\ 3\end{array}\right]$. (Please use A^{-1}, not row reduction.)
