4.9 Markov Chains + Google's Page Rank Algoritum

Thanks to klein project, org

Goals: 1) Rough intro to Google's Page Rank Alg. (2) Intro to Markov chains

Let's explore the internet. There are pages and there are links from one page to another. Here is a simple example.

Q: How do ve determine how important " each page is so ve can rank them.

Google's A: Take a random "walk", i.e. randomly click on links. Then...

> more (you are more likely to important end up on the page page after several clicks

The formal setup

(2

Record the probability of transitioning from one page to another in a transition matrix.

* jth column contains the probabilities of moving from page j to page i.

• Suppose we start on page C. Then

$$\overline{X}_{0} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ B \\ C \\ 0 \\ E \end{bmatrix}$$

• Looking at the graph and where he can go from page C, he see $\overline{X}_{1} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3}$

• What is
$$\overline{\chi_2}$$
? $\overline{\chi_2} = \begin{bmatrix} x \\ x \\ x \end{bmatrix} =$

Det A vector with nonnegative entries that add
up to 1 is called a probability vector. A
square matrix whose columns are probability
vectors, is called a stochastic matrix
* each state vector
$$\overline{x_0}, \overline{x_1}, \dots$$
 is a probability vector.
* T is a stochastic matrix.

Det A Markov chain is a seguence of
prob. vectors together with a stochastic matrix
$$T s.t. \overline{X}_{k} = T \overline{X}_{k-1}$$
 for all $k \ge 1$.

· Remember, $\overline{X}_{k} = \overline{T}^{k} \overline{X}_{0}$, so we need to compute T^{k} for large k = yikes!

(1) Diagonalize T (if possible) (a) Eigenvalues (using wolframalpha) $P(X) = -X^{5} + \frac{7}{7}X^{3} + \frac{7}{9}X^{2} - \frac{1}{18}X + \frac{1}{18}$

There are 5 different eigenvalues, so

$$T \underline{is}$$
 diagonalizable. Let's call them
 $\lambda_{11} \underline{\lambda}_{21} \underline{\lambda}_{3}, \underline{\lambda}_{4}, \underline{\lambda}_{5}.$ Thu
 $\lambda_{1} = 1$
 $|\lambda_{2}| = |\lambda_{5}| \approx 0.7$
 $|\lambda_{4}| = |\lambda_{5}| \approx 0.3$

(b) Let Vi be an eigenvector assoc, to Ai.

(we can compute these if needed)
(e.g.
$$\overline{V}_{1} = \begin{bmatrix} 4\\ 5.\overline{3}\\ 0.\overline{3}\\ 1 \end{bmatrix}$$
)
Then $T = PDP^{-1}$, where

$$D = \begin{bmatrix} 1 & & & \\ & \lambda_2 & & \\ & & \lambda_3 & & \\ & & & \lambda_4 & \\ & & & & \lambda_5 \end{bmatrix}, P = \begin{bmatrix} \overline{v}_1 & \overline{v}_2 & \overline{v}_3 & \overline{v}_4 & \overline{v}_5 \end{bmatrix}$$

 $\overline{T}^{k} = (\overline{P} D P^{-1})^{k} = \overline{P} D^{k} P^{-1},$

$$T^{\infty} = \lim_{k \to \infty} T^{k} = \lim_{k \to \infty} P D^{k} P^{-1}$$

$$= \lim_{k \to \infty} P \begin{bmatrix} 1^{k} & 0 \\ \lambda_{2}^{k} & 0 \\ \lambda_{3}^{k} & 0 \end{bmatrix} P^{-1}$$

$$= \lim_{k \to \infty} P \begin{bmatrix} 1^{k} & \lambda_{2}^{k} & 0 \\ \lambda_{3}^{k} & 0 \\ 0 & \lambda_{5}^{k} \end{bmatrix} P^{-1}$$

X Recall: 12:121 for i=2,3,4,5

× compute P, p-1

	[U.Z93	0.213	0.293	
55	0.390	0.390	0.390	
	0.220	0.220	0.220	
	0,024	0.024	0,024	
	0.073	0.073	ل ۵.0	
	-			

Thus, after lots of clicks we arrive at

$$\overline{X}_{\infty} = \overline{T}^{\infty} \cdot \overline{X}_{0} = \overline{T}^{\infty} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 3^{rd} col = \begin{bmatrix} 0.293 \\ 0.390 \\ 0.220 \\ 0.034 \\ 0.073 \end{bmatrix}$$
Recall, $\overline{X}_{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ meant we started on
Page C, but we see that we would have
gotten the same answer no matter what page
we started on.

The vector
$$\overline{X}_{\infty}$$
 gives the prob. of ending
up on each page after lots of clicks, no
matter where we started. This gives the
page ramking B, A, C, E, D

Another view of what happened
Recall' the eigenvectors
$$\nabla_{11} \dots , \nabla_{5}$$
 are L.I.
So they formal basis for \mathbb{R}^{5} since they must
also span. Then
 $\overline{X}_{0} = c_{1} \overline{V}_{1} + \dots + c_{5} \overline{V}_{5}$ for some
scalars $c_{11} \dots , c_{5}$. Then,
 $\overline{X}_{0} = \overline{X}_{1} \overline{V}_{1} + \dots + c_{5} \overline{V}_{5}$

$$T^{k}\overline{x}_{0} = c_{1}T^{k}\overline{v}_{1} + \dots + c_{5}T^{k}\overline{v}_{5} \qquad T\overline{v}_{2} = h_{1}\overline{v}_{1}$$
$$= c_{1}\lambda_{1}^{k}v_{1} + \dots + c_{5}\lambda_{5}^{k}v_{5} \qquad T\overline{v}_{2} = h_{2}\overline{v}_{2}$$

So as
$$k \rightarrow \infty$$

 $T^{k} \overline{k}_{0} = C_{1}^{1} \cdot \overline{v}_{1} + C_{2}^{0} \overline{v}_{2} + \cdots + C_{5}^{0} \overline{v}_{5}$
 $= C_{1} \overline{v}_{1}$

Summary Det If T is a stochastic matrix, then $\overline{2}$ is a steady state vector for T if $T_{\overline{2}} = \overline{2}$, and $\overline{2}$ is a prob. vector. Theorem If T is a stochastic matrix "regular" s.t. some power of T contains only positive entries, then T has a unique steady-state vector $\overline{2}$, and any Markor chain defined by $\overline{X}_{k} = T\overline{X}_{k-1}$ converges to $\overline{2}$ as $k \to \infty$, i.e. $\overline{X}_{\infty} = \overline{2}$.

Solving our Page rank problem (again)
() Create the transition matrix T
If it isn't regular, then theak it.
our example: all entries in T² are positive
(2) Find any eigenvector associated to A=1.
(2) Find any eigenvector associated to A=1.
(2) Eind any eigenvector associated to A=1.
(2) Sing a compater)
our example:
using volframalpha
"eigenvector [10,1/2,1/3,1/03, [10,...]"
(3) Divide out the sum of entries to get the
sheady-state vector Z. Entries of Z give the page rank.
our example
sur entries
$$T=\frac{3}{1}\sqrt{10}$$

(0.293
(0.293) this sives
the ranking
in Vi is 4/3