4.9 Markov Chains + Google's Page Rank Algorithm

Thanks to klein project.org

Goals:
(1) Rough intro to Google's Page Rank Alg.
(2) Intro to Markou chains

Let's explore the internet. There are pages and there are links from one page to another. Here is a simple example.

Q: How do we determine how"important" each page is so we cam rank them.

Google's A: Take a random "walk", ie. randomly click on links. Then...
mo ne
important \Longleftrightarrow end up on the page page after several clicks

The formal setup
(1) Record the probability of transitioning from one page to another in a transition matrix.

$$
T=\left[\begin{array}{ccccc}
A \\
B & B & C & D & E \\
D & 1 / 2 & 1 / 3 & 1 & 0 \\
1 & 0 & 1 / 3 & 0 & 1 / 3 \\
0 & 1 / 2 & 0 & 0 & 1 / 3 \\
0 & 0 & 0 & 0 & 1 / 3 \\
0 & 0 & 1 / 3 & 0 & 0
\end{array}\right] \quad \begin{gathered}
\text { Prob. of moving } \\
\text { from } C \text { to } B
\end{gathered}
$$

* $j^{\text {th }}$ column contains the probabilities of moving from page j to page i.
(2) Record the probabilities that we are on each page after Oclicks, lclick,... in a sequence of state vectors $\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{2}, \ldots$.
- Suppose we start on page C. Then

$$
\bar{X}_{0}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right] \begin{aligned}
& A \\
& B \\
& C \\
& D \\
& E
\end{aligned}
$$

- Looking at the graph and where we can go from page C, we see

$$
\bar{x}_{1}=\left[\begin{array}{c}
1 / 3 \\
1 / 3 \\
0 \\
0 \\
1 / 3
\end{array}\right]
$$

... continue ... until you notice the following
(3) \bar{x}_{k} cam be computed using T

$$
\begin{aligned}
& \bar{x}_{1}=T \cdot \bar{x}_{0} \\
& \bar{x}_{2}=T \cdot \bar{x}_{1}=T^{2} \bar{x}_{0} \\
& \bar{x}_{3}=T \cdot \bar{x}_{2}=T^{3} x_{0} \\
& \vdots \\
& \bar{x}_{k}=T \bar{x}_{k-1} \text { so } \bar{x}_{k}=T^{k} \bar{x}_{0}
\end{aligned}
$$

Pause for definitions

Det A vector with nonnegative entries that add up to 1 is called a probability vector. A square matrix whose columns are probability vectors, is called a stochastic matrix

* each state vector $\bar{x}_{0}, \bar{x}_{1}, \ldots$ is a probability vector.
* T is a stochastic matrix.

Det A Markov chain is a sequence of prob. vectors together with a stochastic matrix T s.t. $\quad \bar{x}_{k}=T \bar{x}_{k-1}$ for all $k \geqslant 1$.

* just like in our example.
"Solving" the Page Rank Problem
we want to see what happens to our Markov chain after lots of clicks, ie. as $k \rightarrow \infty$.
- Remember, $\bar{x}_{k}=T^{k} \bar{x}_{0}$, so we need to compute τ^{k} for large k-yikes!
(1) Diagonalize T (if possible)
(a) Eigenvalues (using wolframalpha)

$$
p(\lambda)=-\lambda^{5}+\frac{7}{9} \lambda^{3}+\frac{2}{9} \lambda^{2}-\frac{1}{18} \lambda+\frac{1}{18}
$$

There are 5 different eigenvalues, so
This diagonalizable. Let's call them $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}$. Then

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \left|\lambda_{2}\right|=\left|\lambda_{3}\right| \approx 0.7 \\
& \left|\lambda_{4}\right|=\left|\lambda_{5}\right| \approx 0.3
\end{aligned}
$$

(b) Let \bar{v}_{i} be an eigenvector assoc. to λ_{i}.
(we can compute these if needed)

$$
\left(\text { e.g. } \bar{v}_{1}=\left[\begin{array}{c}
4 \\
5.3 \\
3 \\
0.3 \\
.1
\end{array}\right]\right)
$$

Ten $T=P D P^{-1}$, where

$$
D=\left[\begin{array}{llll}
1 & & & \\
& \lambda_{2} & & \\
& & \lambda_{3} & 0 \\
& 0 & \lambda_{4} & \\
& & & \lambda_{5}
\end{array}\right], P=\left[\begin{array}{llll}
\bar{v}_{1} & \bar{v}_{2} & \bar{v}_{3} & \bar{v}_{4} \\
\bar{v}_{5}
\end{array}\right]
$$

so

$$
T^{k}=\left(P D P^{-1}\right)^{k}=P D^{k} P^{-1}
$$

Now, we want to study T^{k} as $k \rightarrow \infty$.

$$
\begin{aligned}
T^{\infty}=\lim _{k \rightarrow \infty} T^{k} & =\lim _{k \rightarrow \infty} P D^{k} P^{-1} \\
& =\lim _{k \rightarrow \infty} P\left[\begin{array}{llll}
l^{k} & & \\
\lambda_{2}^{k} & & 0 \\
& \lambda_{3}^{k} & \\
& & \lambda_{4}^{k} & \\
0 & & \lambda_{5}^{k}
\end{array}\right] P^{-1}
\end{aligned}
$$

* Recall: $\left|\lambda_{i}\right|<1$ for $i=2,3,4,5$

$$
=P\left[\begin{array}{llll}
1 & & & 0 \\
& 0 & & \\
& 0 & 0
\end{array}\right] P^{-1}
$$

* compute P, P^{-1}

$$
\approx\left[\begin{array}{cccc}
0.293 & 0.293 & & 0.293 \\
0.390 & 0.390 & \cdots & 0.390 \\
0.220 & 0.220 & & 0.220 \\
0.024 & 0.024 & & 0.024 \\
0.073 & 0.073 & &
\end{array}\right]
$$

Thus, after lots of clicks we arrive at

$$
\begin{aligned}
& \bar{x}_{\infty}=T^{\infty} \cdot \bar{x}_{0}=T^{\infty}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=3^{\text {rd }}{ }_{c o l}=\left[\begin{array}{l}
0.293 \\
0.390 \\
0.220 \\
0.024 \\
0.073
\end{array}\right] \\
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Recall, $\bar{x}_{0}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]$ meant we stor ted on page C, but we see that we would have gotten the same answer no matter what page we started on.

The vector \bar{x}_{∞} gives the prob. of ending up on each page after lots of clicks, no matter where we started. This gives the page ranking B, A, C, E, D

Another view of what happened

Recall: the eigenvectors $\bar{v}_{1}, \ldots, \bar{v}_{5}$ are L.I.
so they formal basis for \mathbb{R}^{5} since they must also span. Then

$$
\bar{x}_{0}=c_{1} \bar{v}_{1}+\cdots+c_{5} \bar{v}_{5} \text { for some }
$$

scalars c_{1}, \ldots, c_{5}. Then,

$$
\begin{aligned}
T^{k} \bar{x}_{0} & =c_{1} T^{k} \bar{v}_{1}+\cdots+c_{5} T^{k} \bar{v}_{5} \\
& =c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{5} \lambda_{5}^{k} v_{5}
\end{aligned} \leftarrow \begin{gathered}
T \bar{v}_{1}
\end{gathered}=\lambda_{1} \bar{v}_{1}
$$

so as $k \rightarrow \infty$

$$
\begin{aligned}
T^{k} \bar{x}_{0} & =c_{1} \cdot 1 \cdot \bar{v}_{1}+c_{2} \circ \bar{v}_{2}+\cdots+c_{5} \circ \bar{v}_{5} \\
& =c_{1} \bar{v}_{1}
\end{aligned}
$$

Also, c, \bar{v}, will have to be a probability vector so $T^{k} \bar{x}_{0}$ is

- an eigen vector assoc. to $\lambda=1$
o a vector whose entries sum to 1 .

Summary
Det If T is a stochastic matrix, then
\bar{q} is a steady state vector for T if

- $T \bar{q}=\bar{q}$, and
- \bar{q} is a prob. vector.

Theorem If T is a stochastic matrix "regular" sit. Some power ot T contains only positive entries, then T has a unige steady-state vector \bar{q}, and any Markor chain defined by $\bar{x}_{k}=T \bar{x}_{k-1}$ converges to \bar{q} as $k \rightarrow \infty$, i.e. $\bar{x}_{\infty}=\bar{q}$.

Solving our Page rank problem(again)
(1) Create the transition matrix T

If it isn't regular, then tweak it.
our example: allentries in T^{9} are positive
(2) Find anyeigenvector associated to $\lambda=1$. (using a computer)
our example:
using wolframalpha

$$
\bar{v}_{1}=\left[\begin{array}{c}
4 \\
5^{\prime \prime} / 3 \\
3 \\
1 / 3 \\
1
\end{array}\right]
$$

(3) Divide out the sum at entries to get the steady-state vector $\overline{\mathcal{q}}$. Entries of \bar{q} give the page rank. our example Sum entries

$$
\sqrt{1 / 3} \bar{q}=\frac{3}{41} \bar{v}_{1} \approx\left[\begin{array}{c}
0.293 \\
0.390 \\
0.220 \\
0.024 \\
0.073
\end{array}\right]
$$

His gives the ranking $\# \# 2 \# 3 \# 4 * 5$
(B) (A) (C) E) D

