Math 108-Writing Assignment 12

Due: Friday December 8-4:00 PM

Getting Started

1. Get the template for this assignment. Here's how to do it:

- Go to https://www. sharelatex.com, and make sure you are logged in.
- In a new window, go here:

```
https://www.sharelatex.com/read/dbkvfwbsyhcm
```

- Click on the menu icon \equiv and select "Copy Project"
- When ask for a name, choose something like "Math 108 - WA 12" and click "Copy"
- When this completes you will be back in your own workspace (instead of mine).
- After solving the problems (possibly with your peers), type them up using this template.
- Email me (or print and turn in) your final draft.

2. Let me know if you have any questions!

Problems are below.

1. Let $(0,1]$ be the interval defined by $(0,1]=\{x \in \mathbb{R} \mid 0<x \leq 1\}$. Prove that $f: \mathbb{R} \rightarrow(0,1]$ defined by $f(x)=\frac{1}{1+x^{2}}$ is a surjection, i.e onto, without referring to a graph.
Hint: begin with "Let $y \in(0,1]$. We will prove that there exists an $x \in \mathbb{R}$ such that $f(x)=y$. Next, use the definition of f to write what $f(x)=y$ means, and show that you can solve for y. Make sure that you clearly highlight when you are using that $0<y \leq 1$.
2. Prove that $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(m, n)=2^{m-1}(2 n-1)$ is an injection, i.e. one-to-one. (In fact, f is also onto \mathbb{N}, but you do not need to prove this.)
Hint: begin with "Let $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right) \in \mathbb{N} \times \mathbb{N}$, and assume $f\left(m_{1}, n_{1}\right)=f\left(m_{2}, n_{2}\right)$." Next, use the definition of f to write what $f\left(m_{1}, n_{1}\right)=f\left(m_{2}, n_{2}\right)$ means, and then move things around. If you can force one side of the equation to be an odd integer, then this means that the other side must be odd too...
