MATH 108—WRITING ASSIGNMENT 12

Due: Friday December 8—4:00 PM

Getting Started

- 1. Get the template for this assignment. Here's how to do it:
 - Go to https://www.sharelatex.com, and make sure you are logged in.
 - In a new window, go here:

https://www.sharelatex.com/read/dbkvfwbsyhcm

- Click on the menu icon **=** and select "Copy Project"
- When ask for a name, choose something like "Math 108 WA 12" and click "Copy"
- When this completes you will be back in your own workspace (instead of mine).
- After solving the problems (possibly with your peers), type them up using this template.
- Email me (or print and turn in) your final draft.
- 2. Let me know if you have any questions!

Problems are below.

1. Let (0,1] be the interval defined by $(0,1] = \{x \in \mathbb{R} \mid 0 < x \leq 1\}$. Prove that $f : \mathbb{R} \to (0,1]$ defined by $f(x) = \frac{1}{1+x^2}$ is a surjection, i.e onto, without referring to a graph.

Hint: begin with "Let $y \in (0, 1]$. We will prove that there exists an $x \in \mathbb{R}$ such that f(x) = y. Next, use the definition of f to write what f(x) = y means, and show that you can solve for y. Make sure that you clearly highlight when you are using that $0 < y \leq 1$.

2. Prove that $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(m, n) = 2^{m-1}(2n-1)$ is an injection, i.e. one-to-one. (In fact, f is also onto \mathbb{N} , but you do not need to prove this.)

Hint: begin with "Let $(m_1, n_1), (m_2, n_2) \in \mathbb{N} \times \mathbb{N}$, and assume $f(m_1, n_1) = f(m_2, n_2)$." Next, use the definition of f to write what $f(m_1, n_1) = f(m_2, n_2)$ means, and then move things around. If you can force one side of the equation to be an odd integer, then this means that the other side must be odd too...