Math 110A—Writing Assignment 05

Due: Sunday March 03, by 7pm

Getting Started

1. Get the template for this assignment. Here's how to do it:

- Go to https://v2.overleaf.com/, and make sure you are logged in.
- In a new window, go here:

```
https://v2.overleaf.com/read/fkxqcpnbqgmr
```

- Click on the menu icon in the upper-left and select "Copy Project"
- When ask for a name, choose something like "Math 110A - WA 04" and click "Copy"
- When this completes you will be back in your own workspace (instead of mine).
- After solving the problem(s), type them up using the template.
- Email me your final draft.

2. Let me know if you have any questions!

If you have trouble finding the command for a math symbol you want to use, try looking in this document:

```
http://mirror.hmc.edu/ctan/info/short-math-guide/short-math-guide.pdf
```

Please type up your proofs to each of the following problems in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$. Make sure to use complete sentences and appropriate punctuation. Also, make sure to edit for typos. Email me your final draft.

And please email me if you have any questions!

1. Consider $\left(\mathbb{R}^{3},+\right)$, where \mathbb{R}^{3} is the set of all 3-entry row vectors with real number entries and + is ordinary vector addition. Let K be the subset of \mathbb{R}^{3} consisting of vectors whose entries sum to 0 ; that is $K:=$ $\left\{(a, b, c) \in \mathbb{R}^{3} \mid a+b+c=0\right\}$. Prove that K is a subgroup of G.
(See Problem 3.15(b). You do not need to prove that $\left(\mathbb{R}^{3},+\right.$) is a group.)
2. For any $n \in \mathbb{Z}$, define $n \mathbb{Z}:=\{n k \mid k \in \mathbb{Z}\}$. Prove that $n \mathbb{Z}$ is a subgroup of $(\mathbb{Z},+)$.
(See Problem 3.16(c).)
