
Chapter 3

Fields

In Chapter 2, we explored problems about finding and expressing roots of polynomials,
finally arriving at the goal of the course: proving that there are quintic polynomials that
are not solvable by radicals. This chapter serves two main purposes. First, as we look
at roots of polynomials and how they can be expressed, it will be convenient to have a
common world (i.e. number system) in which they live. For us, this will be the complex
numbers, denoted C, which will be reviewed below. Our work with complex numbers
will also supply the necessary language to properly talk about nth-roots. Second, we are
still in need of a proper definition of what it means for a polynomial to be “solvable by
radicals”; this is where the chapter will finish. But the middle of the chapter is perhaps
the most interesting. There, on the way to defining “solvable by radicals”, we will be led
to abstract the structure of C (and of Q and R), arriving at the definition of a field.

3.1 Complex Numbers

As mentioned above, we want to work in a world that contains all of the roots of all of
the polynomials that we will be studying. Considering the roots of polynomials such as
x2+1, x2�2, x2�3, etc., we see that we need to include numbers like

p
�1,
p
2,
p
3, etc., so

although there are smaller worlds one could choose, we will opt for the world containing
both

p
�1 and R, namely C.

But before we proceed, note that
p
�1 is not really well defined. There are two solu-

tions to x2 + 1, so when we write
p
�1, we are all agreeing that we mean the same one.

Definition 3.1. Let i (or alternatively
p
�1) denote one particular solution to x2 + 1.

Of course, the previous definition implies that i2 = �1. Using i and R, we now build
the complex numbers.

3.1.1 Definition and first principles

Definition 3.2. The complex numbers is the set C := {a+ bi | a,b 2 R}. If z = a+ bi, then a
is called the real part of z and b is called the imaginary part of z.
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Note that every complex number z = a + bi is uniquely determined by two numbers:
the real and imaginary parts a and b. As such, we often graph complex numbers in
the coordinate plane with the x-axis denoting the real part and the y-axis denoting the
imaginary part. This will be called the complex plane.

Example 3.3. We graph �2+2i and 1� 3i below.
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We also define some operations on complex numbers.

Definition 3.4. We define the following operations on elements of C.

• Addition: (a+ bi) + (c + di) := (a+ b) + (c + d)i

• Multiplication: (a+ bi) · (c + di) := (ac � bd) + (ad + bc)i

• Complex Conjugation: a+ bi := a� bi
Notice that in the definition of complex multiplication we are just using the normal

distributive law (or FOIL if you like) together with the fact that i2 = �1. Many of the
familiar algebraic properties of R also hold for C, which we will take as a fact.

Fact 3.5. The following are true for C.

• Addition Laws: Addition is associative and commutative. There is a unique addi-
tive identity, namely 0 = 0 + 0i, and every number has a unique additive inverse,
denoted �(a+ bi).

• Multiplication Laws: Multiplication is associative and commutative. There is a
unique multiplicative identity, namely 1 = 1 + 0i, and every nonzero number has a
unique multiplicative inverse, denote (a+ bi)�1 or 1

a+bi .

• Distributivity Laws: For all x,y,z 2 C, x(y + z) = xy + xz and (y + z)x = yx + zx.

• Conjugation Laws: For all x,y 2 C, x + y = x + y and xy = xy.

Problem 3.6. Thinking of a complex number z = a+bi as a point in the complex plane, de-
scribe geometrically what happens when (c+di) is added to z. Also, describe geometrically
how to find z from z.

10
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When we plot points, there are di↵erent coordinate systems we could use. It turns out
that rectangular coordinates are good for adding complex numbers, but polar coordinates
are better for multiplication. This lead to the following definition.

Definition 3.7. Let z = a+ bi.

(1) The modulus of z, denoted |z|, is the radius of the point (a,b) when written in polar
coordinates. Thus, |z| =

p
a2 + b2.

(2) The argument of z, denoted Arg(z), is the angle of the point (a,b) when written in
polar coordinates. Thus, Arg(z) is the angle ✓ in the appropriate quadrant such that
0  ✓ < 2⇡ and tan✓ = b

a . The argument of 0 is undefined.

Example 3.8. We have that |� 2 + 2i | =
p
(�2)2 + 22 = 2

p
2 and Arg(�2 + 2i) = 3⇡

4 . (But be
careful, arctan

⇣
2
�2
⌘
= ⇡

4 ; you must pay attention to which quadrant the number is in.)
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Problem 3.9. For each of the following complex numbers,

• write it in the form a+ bi (if it is not already),

• plot it in the complex plane,

• find themodulus and argument (if not exact, then a decimal approximation is okay).

(1) u = �1� i

(2) v = 1
1+i

(3) w = (2�i)(1+2i)
2+3i

(4) z 2 C with |z| = 3 and Arg(z) = 4⇡
3

Theorem 3.10. Let z 2 C. If z , 0, then z�1 =
z
|z|2 .

The next theorem shows how to find an expression for a complex number given its
modulus and argument.

Theorem 3.11. Let z 2 C. Then |z| = r and Arg(z) = ✓ if and only if z = r cos✓ + ir sin✓
with 0  ✓ < 2⇡.

We now derive some properties of multiplication. The first is quite useful and illus-
trates how multiplication is rather easy to deal with when numbers are in “polar form”.

11
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Theorem 3.12. If z1 = r1 cos✓1 + ir1 sin✓1 and z2 = r2 cos✓2 + ir2 sin✓2, then

z1z2 = r1r2 cos(✓1 +✓2) + ir1r2 sin(✓1 +✓2).

Corollary 3.13. If z1, z2 2 C, then |z1z2| is equal to |z1||z2| and Arg(z1z2) is equivalent to
Arg(z1) +Arg(z2) modulo 2⇡.

Corollary 3.14 (De Moivre’s formula). For each positive n 2 Z,
(r cos(✓) + ir sin(✓))n = rn cos(n✓) + irn sin(n✓).

3.1.2 Roots of unity

We now arrive at an extremely important definition.

Definition 3.15. For each positive n 2 Z, define

⇣n := cos
✓2⇡
n

◆
+ i sin

✓2⇡
n

◆
.

Thus, ⇣n (read as “zeta n”) is the unique number with magnitude 1 and argument 2⇡
n .

Problem 3.16. Plot each of the following in the same complex plane: ⇣2, ⇣3, ⇣4, ⇣5.

Problem 3.17. Plot each of the following in the same complex plane: ⇣6, (⇣6)2, (⇣6)3, (⇣6)4,
(⇣6)5, (⇣6)6.

Problem 3.18. Write ⇣8 as a power of ⇣8. Conjecture and prove a formula that expresses
(⇣n)k as a power of ⇣n, but with no bar on top.

We now turn our attention back to solving polynomial equations, focusing on those of
the form xn � a.
Definition 3.19. Let a 2 C. A number z 2 C is called an nth root of a if zn = a. In other
words, the nth roots of a are the roots of the polynomial xn � a. The nth roots of 1 are also
called nth roots of unity.

Problem 3.20. Find a 4th root of each of the following: ⇣3 and �1+ i
p
3.

Theorem 3.21. For each non-negative k 2 Z, (⇣n)k is an nth root of 1.

Lemma 3.22. If z is an nth root of 1, then z = (⇣n)k for some non-negative k 2 Z.
Lemma 3.23. For each non-negative k 2 Z, (⇣n)k = (⇣n)m for some 0 m  n� 1.
Theorem 3.24. The set

{1,⇣n, (⇣n)2, . . . , (⇣n)n�1}
is the set of all nth roots of unity. Thus, there are n distinct nth roots of unity.

Lemma 3.25. Let a 2 C be nonzero, and let b be any one particular nth root of a. Then z is
an nth root of a if and only if z

b is an nth root of 1.

Theorem 3.26. Let a 2 C be nonzero, and let b be any one particular nth root of a. The set

{b,b⇣n,b(⇣n)2, . . . , b(⇣n)n�1}
is the set of all nth roots of a. Thus, there are n distinct nth roots of a.

Problem 3.27. Find all 4th roots of each of the following: ⇣3 and �1+ i
p
3.

12



CHAPTER 3. FIELDS

3.1.3 Roots of polynomials over R and C

We conclude this section with a couple of general results about roots of polynomials.

Theorem 3.28. Suppose that p(x) = anxn + an�1xn�1 + · · ·+ a2x2 + a1x+ a0 with all ai 2 R. If
z is a root of p(x), then z is also a root of p(x).

In words, the previous theorem says that if a polynomial has coe�cients in R, then the
set of roots is “closed under complex conjugation.” We end with an extremely important
theorem, which will be quite useful for us. However, since its proof is not our main goal
(and since it requires sophisticated techniques), we will take it as fact.

Fact 3.29 (Fundamental Theorem of Algebra). If p(x) is a non-constant polynomial with
all coe�cients in C, then p(x) has a root in C.

In fact, we will see that this implies that all roots of such a p(x) lie in C, so in our of
study polynomials (often with all coe�cients even in Q), C serves as a uniform world in
which we can study the roots.

3.2 An aside: the quaternions

Our construction of the complex numbers creates a structure that contains the real num-
bers and possesses some nice properties not enjoyed by the real numbers, e.g. every non-
constant polynomial with complex coe�cients has a complex root. This raises the ques-
tion: could we further extend the complex numbers to an even larger structure?

Concisely, we built the complex numbers as the set C = R+Ri together with the oper-
ations of addition and multiplication, which were defined in a natural way from the key
identity that i2 = �1. Here, we briefly explore what happens if we build a larger structure
in a similar way: H = C+Cj where, again, j2 = �1.

Following this path, we formally arrive atH = C+Cj = (R+Ri)+(R+Ri)j , and any def-
inition we give for multiplication of two elements of H must first define how to multiply
i and j (or rather, what properties ij should have). If we set k = ij , it turns out that a good
route to follow is to decide that k also has the property that it squares to 1, i.e. k2 = �1.
There is another important choice one is “forced” to make, namely that ji = �k.

Definition 3.30. The quaternions are the elements of H := {a+ bi + cj + dk | a,b,c,d 2 R},
where i2 = j2 = k2 = �1. We also define the following operations on elements of H.

• Addition: (a1+b1i+c1j +d1k)+(a2+b2i+c2j +d2k) := (a1+a2)+(b1+b2)i+(c1+c2)j +
(d1 + d2)k

• Multiplication: use the usual distributive laws together with the identities:

ij = k, jk = i, ki = j,
ji = �k, kj = �i, ik = �j.

• Conjugation: a+ bi + cj + dk := a� bi � cj � dk

13
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Indeed, H extends the complex numbers, and we have the following containments:
Q ⇢ R ⇢ C ⇢H. It turns out that H satisfies nearly all of the common algebraic properties
of R and C, with one notable exception, which is highlighted in bold below.

Fact 3.31. The following are true for H.

• Addition Laws: Addition is associative and commutative. There is a unique addi-
tive identity, namely 0 = 0 + 0i + 0j + 0k, and every number has a unique additive
inverse.

• Multiplication Laws: Multiplication is associative but noncommutative. There is a
unique multiplicative identity, namely 1 = 1+0i+0j+0k, and every nonzero number
has a unique multiplicative inverse.

• Distributivity Laws: For all x,y,z 2H, x(y + z) = xy + xz and (y + z)x = yx + zx.

• Conjugation Laws: For all x,y 2H, x + y = x + y and xy = xy.

We can also define the modulus of a quaternion, analogous to how we defined it for a
complex number.

Definition 3.32. Themodulus of h = a+bi+cj +dk , denoted |h|, is |h| =
p
a2 + b2 + c2 + d2.

Problem 3.33. Write each of the following quaternions in the form a + bi + cj + dk, and
find its modulus.

(1) h = (2i +4k)(7� 3j + k)

(2) k�1

(3) w = (i + j)�1

Theorem 3.34. Let h 2H. If h , 0, then h�1 =
h
|h|2 .

And as in the complex numbers, the modulus function is multiplicative—we will take
this as fact.

Fact 3.35. If h1,h2 2H, then |h1h2| = |h1||h2|.
We conclude this section by looking at multiplication of quaternions a little closer. As

we do, we return to the mathematical notion of a group. Please feel free to look over old
notes or other books to review the basics. As mentioned in the introduction, our main
reference for groups will be An Inquiry-Based Approach to Abstract Algebra.

Problem 3.36. Let G be the subset of H defined as G := {±1,±i,±j,±k}. Show that G,
together with the operation of quaternion multiplication, is a nonabelian group. If you
have encountered this group before, what name (or symbol) did you know it by?

Problem 3.37. Let S be the subset of H consisting of all quaternions with modulus equal
to 1, i.e. S := {h 2 H | |h| = 1}. Show that S , together with the operation of quaternion
multiplication, is an infinite, nonabelian group.

It turns out that the group S from the previous problem is isomorphic to the group
SU(2) (one the the so-called special unitary groups), which is quite important in theoret-
ical physics. If you want to learn more, you can start on Wikipedia.

14
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3.3 Abstract fields

Notice that Q, R, and C satisfy many common algebraic properties with respect to addi-
tion and multiplication. Of course, H does too, though it lacks commutativity of multi-
plication. When objects have common properties, it can be extremely valuable to abstract
those properties and study them once and for all (as opposed to trying to prove things
about each individual structure). This is where we are headed, but first we highlight
some related structures (again with algebraic properties similar to Q, R, and C) that help
to connect this work to our main goal of expressing roots of polynomials.

Problem 3.38. Let p(x) = x2 + 3x + 1. Find the roots of p(x), and show that each root can
be written in the form a+ b

p
5 with a,b 2Q.

Problem 3.39. Let S = {a+ b
p
5 | a,b 2Q}.

(1) Show that S is closed under addition; that is, show that for all x,y 2 S , x + y 2 S .

(2) Show that S is closed under multiplication; that is, show that for all x,y 2 S , xy 2 S .

(3) Use that S ⇢ R to explain why both addition and multiplication of elements of S are
associative and commutative and why multiplication distributes over addition.

Problem 3.40. Let S = {a+ b
p
5 | a,b 2Q}. Prove or disprove: if x 2 S and x , 0, then x has

a multiplicative inverse in S (i.e. there is a y 2 S such that xy = 1).

3.3.1 Definition

We now abstract the common properties of Q, R, and C (and also S from Problem 3.39),
arriving at the definition of a field.

Definition 3.41. A field is a structure (F,+, ·) consisting of a set F, containing at least
two elements, together with two binary operations + and · (which we call addition and
multiplication) such that for some elements 0,1 2 F the following axioms hold.

• Addition Axioms: Addition is associative and commutative; the element 0 is an
additive identity; every x 2 F has an additive inverse with respect to 0, denoted �x.

• MultiplicationAxioms: Multiplication is associative and commutative; the element
1 is a multiplicative identity; every x 2 F \ {0} has a multiplicative inverse with
respect to 1, denoted x�1.

• Distributivity Axioms: For all x,y,z 2 F, x(y + z) = xy + xz and (y + z)x = yx + zx.

Recall that “0 is an additive identity” means that “for all x 2 F, 0 + x = x +0 = x,” and
“x 2 F has an additive inverse with respect to 0” means that “there exists some y 2 F such
that x + y = y + x = 0.” The meanings of multiplicative identities and inverses are similar
to those for addition. Also, recall that F \ {0} denotes the set obtained by removing the
element 0 from F. We introduce some notation for this.

15



CHAPTER 3. FIELDS

Definition 3.42. If F is a field, then F \ {0} is denoted by F⇤, i.e. F⇤ is the set of nonzero
elements of F.

Using the language of groups, fields can be concisely defined as structures of the form
(F,+, ·) such that (F,+) is an abelian group with identity 0, (F⇤, ·) is an abelian group with
identity 1, and multiplication distributes over addition.

Now, as with any new definition, we look for examples and basic properties.

3.3.2 Examples and non-examples

It is not hard to verify that Q, R, C, and S from Problem 3.39 are all fields (with their
usual definitions of addition and multiplication). Let’s search for more examples and
non-examples.

Problem 3.43. Explain why Z is not a field.

Problem 3.44. Determine if each of the following is a field. If it is a field, identify an
additive and multiplicative identity; if it is not a field, explain why not.

(1) (F,+, ·) where F = {a,b,c} and + and · are defined as follows:

+ a b c
a b c a
b c a b
c a b c

· a b c
a a b c
b b a c
c c c c

(2) (F,+, ·) where F = {0,1,2,3} and + and · are defined as follows:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

(3) (F,+, ·) where F = {0,1,2,3} and + and · are defined as follows:

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

Problem 3.45. Look back at Problem 3.44. For those that are fields, determine which
familiar group each of (F,+) and (F⇤, ·) is isomorphic to.

16
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To find more examples of fields, Problem 3.44 hints at the fact we may want to look
back to modular arithmetic. Following An Inquiry-Based Approach to Abstract Algebra,
we define the structures (Zn,+n, ·n) as follows.

Definition 3.46. Let n be a positive integer. The structure (Zn,+n, ·n) consists of the set
Zn := {0,1,2, . . . ,n� 1} together with the operations +n and ·n defined as follows.

• Addition: x +n y is the least non-negative number congruent to x + y modulo n.

• Multiplication: x ·n y is the least non-negative number congruent to x · y modulo n.

We often refer to the entire structure (Zn,+n, ·n) as simply Zn. Also, when the context is
clear, we may write + and · in place of +n and ·n.

So, in Z5, we write equations like 3+6 = 4, since 3+6 = 9 and 9 is congruent to 4 when
working modulo 5. If needed, we can highlight that we are working modulo 5 by writing
3+6 ⌘5 4. And with respect to multiplication in Z5, we have equations like 2·3 = 1, which
implies that 3 is a multiplicative inverse of 2 (and vice versa) in Z5.

Problem 3.47. Show that Z5 is a field but Z6 is not.

Problem 3.48. Make a conjecture as to when Zn is a field and when it is not. That is, try
to fill in the blank: “Zn is a field provided (something about n) .” What evidence do
you have to support this?

3.3.3 Basic properties

Let’s now explore some basic properties of fields that follow from the definition. We list
some of these as facts since they follow directly from basic group theory, remembering
that, as observed above, (F,+) and (F⇤, ·) are both groups.

From now on, when we write “let F be a field,” we tacitly mean “let (F,+, ·) be a field.”

Fact 3.49. Let F be a field.

(1) The additive identity and the multiplicative identity are both unique.

(2) Additive inverses and multiplicative inverses are unique.

Theorem 3.50. Let F be a field.

(1) For all x 2 F, x · 0 = 0.

(2) For all x,y 2 F, (�x)y = �(xy) and x(�y) = �(xy).

(3) For all x 2 F⇤, �x 2 F⇤ and (�x)�1 = �(x�1).

(4) For all x,y 2 F, if xy = 0, then x = 0 or y = 0.

(5) The additive and multiplicative identities are di↵erent, i.e. 0 , 1.

17
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3.3.4 Another example

We now return to the conjecture you made in Problem 3.48. Combining the next theorem
with Theorem 3.50, we see that Zn has no hope to be a field unless n is prime.

Theorem 3.51. Let n be a positive integer. If n is not prime, then there exist a,b 2 (Zn)⇤

such that ab = 0 in Zn.

And now we completely answer the question. As you explore the next theorem, you
can use properties of modular arithmetic that you know from before. For example, you
can take for granted that addition and multiplication are both associative and commu-
tative. The crux is in showing that every nonzero element has a multiplicative inverse
when n is prime. There are many ways to approach this; one way uses Bézout’s lemma
from basic number theory. Even if you don’t use it now, it’s a useful fact to remember.

Fact 3.52 (Bézout’s lemma). If a,b 2 Z, then there exist k, l 2 Z such that ka+ lb = gcd(a,b).

Theorem 3.53. Let n be a positive integer. Then Zn is a field if and only if n is prime.

3.3.5 Subfields and extension fields

Just as with groups and subgroups, the notion of a subfield is extremely important. Ana-
lyzing the subfields of a field F can often yield a better understanding of the whole field
F, and vice versa. Also, this will allow us to generate more examples of fields.

Definition 3.54. Let (E,+, ·) be a field, and let F be a subset of E. Then F is a subfield of
E if F is a field in its own right with respect to operations + and · inherited from E. When
F is a subfield of E, we call E an extension field of F.

When checking if a subset of a field is a subfield, it turns out that the subset will
automatically satisfy many of the field axioms, leaving only a handful of things to verify.

Theorem 3.55. Let E be a field, and let F ✓ E. Then F is a subfield of E if and only if

(1) F contains at least 2 elements;

(2) for all x,y 2 F, x + y 2 F and xy 2 F;

(3) for all x 2 F, �x 2 F; and

(4) for all x 2 F⇤, x�1 2 F.
The second item in the above theorem is stating that F is closed under the addition

and multiplication inherited from E. The last two items could be read as F being closed
under additive and multiplicative inverses.

Theorem 3.56. If F is a subfield of E, then F contains the additive and multiplicative
identities of E (namely 0 and 1).

It is not di�cult to check that Q and R are both subfields of C; S from Problem 3.39
is also a subfield of C (and of R). Let’s look for more that are similar to S .
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Problem 3.57. Determine which of the following are subfields of C.

(1) T1 = {a+ bi | a,b 2Q}

(2) T2 = {a+ bi | a,b 2 Z}

(3) T3 = {a+ b↵ | a,b 2Q} where ↵ =
p
2+ i

3.3.6 Generating fields

Paralleling the theory of groups, we now investigate how to generate subfields from sub-
sets of elements. We first need a definition of “the subfield generated by a set of elements”;
it is essentially the same as for all algebraic structures: take the intersection of all sub-
fields containing the subset.

Theorem 3.58. Suppose S is a subset of a field E. Let K be the intersection of all subfields
of E that contain S ; that is

K :=
\
{F | F is a subfield of E and S ✓ F}.

Then

(1) K is a subfield of E that contains S , and

(2) if F is any subfield of E that contains S , then F also contains K .

In words, the previous theorem says that K is the “smallest” subfield of E containing
S , so K is the correct candidate for the subfield generated by S .

Definition 3.59. Suppose S is a subset of a field E. The subfield of E generated by S ,
denoted hSifield, is defined to be the intersection of all subfields of E that contain S .

In symbols, S ✓ hSifield ✓ E, and if F is any subfield of E, then S ✓ F =) hSifield ✓ F.

Example 3.60. Let’s explore h1ifield in the fieldC. By definition, h1ifield is the intersection
of all subfields of C that contain 1.

Let F be an arbitrary subfield of C containing 1. By Theorem 3.56, every subfield of
C contains 0 and 1, so F must contain 0 (in addition to 1). Further, F must contain 1 + 1,
1+1+1, etc., because F is closed under addition. So, by induction, F contains the positive
integers and 0. Then, since F is closed under additive inverses, F also contains the addi-
tive inverse of each positive integer, so in total, we now see that F contains Z. Continuing
on, F is closed under multiplicative inverses, so F also contains the multiplicative inverse
of every nonzero integer. Thus, Q ✓ F.

Since F was an arbitrary subfield of C containing 1, everything we said above is true
for every subfield of C containing 1; thus it is also true for the intersection of them. Hence
Q ✓ h1ifield. Now we have {1} ⇢Q ✓ h1ifield, so asQ is a subfield and h1ifield is the smallest
subfield containing 1, it must be that Q = h1ifield.

Theorem 3.61. If S ✓ C, then Q ✓ hSifield.
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Problem 3.62. The field defined in Problem 3.44(3) is sometimes denoted F4. Determine
h1ifield in the field F4.

Most of the time, we will want to generate fields by adding some elements to an exist-
ing field, and we have special notation for this.

Notation 3.63. Let F be a subfield of E, and let r1, r2, . . . , rn 2 E. The subfield of E generated
by F [ {r1, r2, . . . , rn} is denoted F(r1, r2, . . . , rn). In other words,

F(r1, r2, . . . , rn) := hF [ {r1, r2, . . . , rn}ifield.

We read F(r1, r2, . . . , rn) as “F adjoin r1, r2, . . . , rn”; it is the smallest field extension of F
that contains r1, r2, . . . , rn.

In the following problems, we are working with subfields of C, even if we don’t say it
explicitly. Thus, by Theorem 3.61, we are working with field extensions of Q.

Problem 3.64. In Problem 3.57(1), we saw that {a + bi | a,b 2 Q} is a subfield of C. Show
that Q(i) = {a+ bi | a,b 2Q}.
Problem 3.65. Show that R(i) = C.

Problem 3.66. We saw previously that {a + b
p
5 | a,b 2 Q} is a subfield of C. Find some

z 2 C, such that Q(z) = {a+ b
p
5 | a,b 2Q}, and prove that your choice for z works. Do you

think there is only one choice for z or might others work?

Problem 3.67. Let ↵ =
p
2+ i. Show {a+ b↵ | a,b 2Q} ⇢Q(↵), but {a+ b↵ | a,b 2Q} ,Q(↵).

Theorem 3.68. Let F,L be subfields of E, and let r1, r2, . . . , rn 2 E. Then F(r1, r2, . . . , rn) ✓ L
if and only if F ✓ L and r1, r2, . . . , rn 2 L.

Problem 3.69. Show that Q
⇣
3�
p
2,5+ i

⌘
=Q

⇣p
2, i

⌘
.

Problem 3.70. Complete the diagram below to illustrate how each of the following sets
intersect and where each element is located. Each set that is a field should be drawn in
blue; each set that is not a field should be drawn in red. Elements should be illustrated
by a dot and then labeled by the name of the element. Some have already been done.

C,R,Q,Z,0,1,
p
2, i, i
p
2,
p
2+ i,Q

⇣p
2
⌘
,Q(i),Q

⇣
i
p
2
⌘
Q

⇣p
2, i

⌘
, {a+ bi | a,b 2 Z}

C
R

Q(i)Z
p
2

Problem 3.71. Conjecture where Q
⇣p

2+ i
⌘
would be in the previous diagram.
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Suppose that F1 and F2 are subfields of E. Theorem 3.58 tells us that F1 \ F2 is again
a subfield, and it is the largest subfield contained in both F1 and F2. The same theorem,
together with Definition 3.59, also tells us that hF1 [ F2ifield is a subfield, and it is the
smallest subfield containing both F1and F2. This implies that the set of all subfields of E
forms a lattice. Lattices will not be defined here, but feel free to look them up on your
own. We will, however, be interested in illustrating these relationships with a diagram.
The situation for F1 and F2 described above would be drawn as follows.

E

hF [Ei

F1 F2

F1 \F2

For a concrete example, let’s draw the portion of the subfield lattice of C containing
Q, R, Q(i), and Q

⇣p
2, i

⌘
; this uses some of what you discovered in Problem 3.70.

C

R

Q(
p
2, i)

Q(i)

Q

Problem 3.72. Draw the portion of the subfield lattice of C that contains the following
fields: C, R, Q, Q

⇣p
2
⌘
, Q(i), Q

⇣
i
p
2
⌘
, and Q

⇣p
2, i

⌘
.

Problem 3.73. Draw the portion of the subfield lattice of C that contains the following
fields: C, Q, Q(⇣4), Q(⇣8), and Q(⇣16).
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