
Chapter 4

Solvability by Radicals

Our overarching goal, as laid out in Chapter 2, is to find a polynomial whose roots can
not be expressed in terms of the coe�cients of the polynomial using just the operations
of addition, subtraction, multiplication, division, and the extraction of roots. Or, in other
words, we are searching for a polynomial that is not solvable by radicals, a term that
we have only defined informally so far. Laying out a formal definition of solvability by
radicals (and trying to wrap our head around it) is the main goal of this chapter.

4.1 Radical extensions

The notion of “solvable by radicals” is about how we may express the roots of a poly-
nomial. We start by formalizing the notion that “a number can be expressed in terms of
other numbers using just the operations of addition, subtraction, multiplication, division,
and the extraction of roots.” In the next section, we apply this to roots of polynomials.

Now, when we define what it means for a number to be built using the various oper-
ations listed above, we need to capture the possibility that we may need “iterated roots”
to express a number. For example, consider

↵ =
p
2+

3
q
�1+

p
2.

To see that ↵ can be expressed using addition, subtraction, multiplication, division, and
the extraction of roots, we first note that the number � = �1 +

p
2 can be built using

addition and a square root; we then arrive at ↵ by taking a cube root of � and adding
p
2.

Let’s begin to formalize this by introducing fields. Our observations above imply that
↵ can be built using field operations from 3

p
� and

p
2, and � in turn can be built using

field operations from
p
2. Thus, ↵ 2Q

⇣p
2, 3
p
�
⌘
and � 2Q

⇣p
2
⌘
. The lattice looks like this.
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Now, when we talk about extracting roots, we must be careful to avoid ambiguous
(not well-defined) notation. For this reason, we usually adopt the point of view of Defi-
nition 3.19 where z being an nth root of a means that zn = a (as opposed to z = n

p
a). That

said, we do still occasionally use the root symbol when there is no ambiguity. For exam-
ple, 3

p
5 and

p
�1 are well-defined: the first is the one and only real solution to x3 = 5,

and the second is i (which we made a choice about long ago). However, 4
p
�1+ i

p
3 is not

well-defined, as there are 4 equally good choices.

Definition 4.1. We say K is a radical extension of a field F if there exist nonzero elements
r1, r2, . . . , rm 2 K and positive integers n1,n2 . . . ,nm such that K = F(r1, r2, . . . , rm), and

rn11 2 F,
rn22 2 F(r1),
rn33 2 F(r1, r2),

...

rnkk 2 F(r1, . . . , rk�1).
The definition expresses that each ri is an nthi -root of some element in F(r1, . . . , ri�1),

so K may be thought of as being built by iteratively adding in nth-roots of elements. The
picture is something like this:

K = F(r1, r2, . . . , rm)

F(r1, r2, . . . , rm�1)rnmm 2

...

F(r1, r2)rn33 2

F(r1)rn22 2

Frn11 2
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Example 4.2. Let’s show that K =Q

✓p
2, 3
p
�1+

p
2
◆
is a radical extension of Q.

If we let r1 =
p
2 and r2 =

3
p
�1+

p
2, then we see that

• K =Q (r1, r2);

• r21 = 2 2Q;

• r32 = �1+
p
2 2Q

⇣p
2
⌘
=Q (r1).

This shows that K is a radical extension of Q using r1 =
p
2, n1 = 2, r2 = 3

p
�1+

p
2, and

n2 = 3 in the definition of a radical extension. The picture is like this:

K =Q
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p
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◆

Q
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3
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2
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2

Q

⇣p
2
⌘2 2

Problem 4.3. Show that Q
✓p

3,⇣5,
4
p
1�
p
3
◆
is a radical extension of Q. What are you

using for r1,n1, r2,n2, and r3,n3 when applying the definition?

Problem 4.4. Show that C is a radical extension of R.

4.2 Solvability by radicals: the definition

Making precise what it means to express a number using addition, subtraction, multi-
plication, division, and the extraction of roots was the crux of defining solvability by
radicals. However, we are aiming to define what it means to express the roots of a poly-
nomial in terms of the coe�cients using these operations. Let’s establish some notation that
allows us to highlight where the coe�cients of a polynomial live.

Definition 4.5. Let F be a field. Then F[x] is the set of all polynomials whose coe�cients
lie in F. This is read “F adjoin x.”

For example, consider a(x) = x3 � ix2 � 0.5. Then a(x) < Q[x], because i < Q; however,
a(x) 2 C[x] (and, in fact, a(x) 2Q (i) [x]).

Problem 4.6. Give examples of polynomials a(x), b(x), and c(x) such that

(1) a(x) 2Q[x],

(2) b(x) 2 R[x] but b(x) <Q[x], and

(3) c(x) 2 C[x] but c(x) < R[x].
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We now, finally, write down one of our main definitions.

Definition 4.7. Let F be a field, and let p(x) 2 F[x]. We say that p(x) is solvable by radicals
over F if all of the roots of p(x) are contained in some radical extension of F.

Problem 4.8. Let p(x) = x2 + 3x + 1. Show that all roots of p(x) lie in Q

⇣p
5
⌘
. Use this to

explain why p(x) is solvable by radicals over Q.

Problem 4.9. Let p(x) = x4 + 2x2 + 5. Show that all four roots of p(x) lie in Q (i, r, s) for
some r and s such that r2 = �1�2i and s2 = �1+2i. Use this to explain why p(x) is solvable
by radicals over Q.

Problem 4.10. Let p(x) = x3 � 2. Use Theorem 3.26 to write out all complex roots of p(x),
and then show that p(x) is solvable by radicals over Q.

Theorem 4.11. For each positive n 2 Z, xn � 1 is solvable by radicals over Q.

Theorem 4.12. For each positive n 2 Z, xn�1 + xn�2 + · · ·+ x2 + x +1 is solvable by radicals
over Q.

Theorem 4.13. Every quadratic polynomial p(x) 2Q[x] is solvable by radicals over Q.

Problem 4.14. Let p(x) = x6 � 3x3 � 1. Show that p(x) is solvable by radicals over Q.
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