
Chapter 7

Galois theory

We finished Chapter 6 by computing automorphism groups of field extensions. We also
began to connect the subfields of an extension field L of F to subgroups of Aut(L/F). We
now narrow our focus on which types of extension fields we consider, and in doing so, we
significantly sharpen what we can say about this connection. It will be lynchpin of our
argument showing that not all polynomials over Q are solvable by radicals over Q.

Also, from here on, we will exclusively focus on subfields of C. This will streamline
(and simplify) our work, but it will also slightly obscure the general theory. Which is to
say, this is more the beginning of the story than the end.

7.1 Galois extensions and Galois groups

Definition 7.1. Let F be a subfield of C, and let p(x) 2 F[x]. Define Fp(x) to be the subfield
of C generated by F and all roots of p(x); thus, Fp(x) = F(r1, . . . , rn) where r1, . . . , rn are all of
the roots of p(x) in C.

For example, if p(x) = x
5�1, then by Theorem 3.24, the roots of p(x) are 1,⇣5,⇣25 ,⇣

3
5 ,⇣

4
5,

so Q
p(x) =Q(1,⇣5,⇣25 ,⇣

3
5 ,⇣

4
5).

Problem 7.2. Let p(x) = x
5 � 1. Use Theorem 3.68 to explain why Q

p(x) =Q(⇣5).

Problem 7.3. Let p(x) = x
3 � 2. Explain why Q

p(x) ,Q( 3
p
2).

Problem 7.4. For each field F below, find a polynomial p(x) 2Q[x] such that F =Q
p(x).

(1) F =Q(
p
2)

(2) F =Q(
p
2, i)

(3) F =Q( 3
p
2,⇣3)

(4) F =Q(⇣12)

Definition 7.5. Let F ✓ K be subfields of C.

(1) We say that K is a Galois extension of F if K = F
p(x) for some p(x) 2 F[x].

(2) If K is a Galois extension of F, then Aut(K/F) is called theGalois group of K over F.
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Revisiting Problem 7.4 with this new terminology, we see that each ofQ(
p
2), Q(

p
2, i),

Q( 3
p
2,⇣3), and Q(⇣12) are Galois extensions of Q. Also, Problem 7.3 hints at the fact that

Q( 3
p
2) might not be a Galois extension of Q (but there is more to prove to establish that).
Let’s generalize parts of Problem 7.4 and record some types of extensions that are

always Galois.

Theorem 7.6. Let a 2Q. Then Q(
p
a) is a Galois extension of Q.

Theorem 7.7. Let n be a positive integer. Then Q(⇣n) is a Galois extension of Q.

As mentioned above, Q( 3
p
2) might not be a Galois extension of Q, but it is true that

F( 3
p
2) a Galois extension of F provided F contains ⇣3. The next theorem addresses this.

Theorem 7.8. Let F be a subfield of C. Suppose that r 2 C and r
n 2 F for some positive

integer n. If ⇣n 2 F, then F(r) is a Galois extension of F.

7.1.1 Size of Galois groups

The next fact highlights the importance of Galois extensions. The point is roughly that the
automorphism group of a Galois extension has the “expected” number of automorphisms;
whereas, automorphism groups of non-Galois extension will necessarily have fewer.

Fact 7.9. Let F ✓ K be subfields of C. If K is a Galois extension of F, |Aut(K/F)| = [K : F].

Fact 7.9 is extremely powerful. Let’s start by seeing how it can help streamline the
computation of certain automorphism groups.

Problem 7.10. Let L =Q( 3
p
2,⇣3). Let’s determine Aut(L/Q). Recall from Problem 7.4 that

L is a Galois extension of Q.

(1) What is minimal polynomial for 3
p
2 over Q? Why?

(2) What is minimal polynomial for ⇣3 over Q( 3
p
2)? Why?

(3) Use Fact 6.44 to explain why [L :Q] = 6.

(4) Let � 2 Aut(Q( 3
p
2,⇣3)/Q). Use Theorem 6.61 to explain why there are only 3 choices

for �( 3
p
2) and only two choices for ⇣3. What are they?

(5) Complete the table of possible elements of Aut(L/Q).

�1 �2 �3 �4 �5 �6

3
p
2 7! 3

p
2

⇣3 7! ⇣3

(6) Use Fact 7.9 to explain why every function in the table above must be in Aut(L/Q).
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Problem 7.11. Let’s revisit L = Q( 3
p
2,⇣3) from Problem 7.10 and connect subfields of L

with subgroups of Aut(L/Q) using Theorem 6.72. The following are subfields of L.

K0 =Q(⇣3) K1 =Q( 3p2) K2 =Q( 3p2⇣3) K3 =Q( 3p2⇣23)

(1) Compute Aut(L/K0), Aut(L/K1), Aut(L/K2), and Aut(L/K3) by determining which of
�1, . . . ,�6 are in each one.

(2) Use Theorem 6.72 to organize your findings by writing the appropriate elements in
the boxes in the subgroup lattice of Aut(L/Q).

• Label the degree of each field extension on the lines of the lattice on the left.
Fact 6.44 should help. A couple have been done for you.

• Label the order and index of each subgroup on the lines of the lattice on the
right.

Q( 3
p
2,⇣3)

Q( 3
p
2) Q( 3

p
2⇣3) Q( 3

p
2⇣23)

Q(⇣3)

Q

3

2

{id}

Aut(L/K1) Aut(L/K2) Aut(L/K3)

Aut(L/K0)

{�1,�2,�3,�4,�5,�6}

(3) What familiar group is Aut(L/Q) isomorphic to?

Problem 7.12. Use Fact 7.9 and Problem 6.77 to argue thatQ( 3
p
2) is not a Galois extension

of Q

7.1.2 Galois groups as permutation groups

We now explore how to look at Galois groups as groups of permutations. The key, yet
again, is Theorem 6.61. We begin by recalling a some definitions from group theory.

Definition 7.13. Let X be a set. A bijection from X to X is called a permutation of X. The
set of all permutations of X is denoted Sym(X). The set of all permutations of {1, . . . ,n} is
usually denoted by Sn (instead of Sym({1, . . . ,n}).

Recall that, for any set X, Sym(X) is a group with respect to function composition.
The identity is the identity function, denoted id.

Theorem 7.14. Let F be a subfield of C. Let p(x) 2 F(x) be a polynomial of degree n, and
let R = {r1, . . . , rn} be the set of all of roots of p(x) in C. Then
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(1) for all � 2 Aut(Fp(x)
/F), restricting the domain of � to R yields a permutation of R;

(2) the map Aut(Fp(x)
/F)! Sym(R) that restricts the domain of each automorphism to

R is an injective homomorphism.

Consequently, Aut(Fp(x)
/F) is isomorphic to a subgroup of Sym(R).

Corollary 7.15. Let F be a subfield of C. Let p(x) 2 F(x) be a polynomial of degree n. Then
Aut(Fp(x)

/F) is isomorphic to a subgroup of Sn.

To view Aut(Fp(x)
/F) as a subgroup of Sn, we just need to label the roots of p(x) by

1, . . . ,n in some way and then record how each element of Aut(Fp(x)
/F) permutes the roots.

Let’s take a look at an example of this.

Example 7.16. Similar to Problem 7.2, we can see that Q(⇣5) = Q
p(x) for p(x) = x

4 + x
3 +

x
2 + x +1. We know that the set of roots of p(x) is R = {⇣5,⇣25 ,⇣35 ,⇣45}.
By Corollary 7.15, Aut(Q(⇣5)/Q) is isomorphic to a subgroup of S4 because p(x) has

degree 4 (hence 4 roots to permute). Let’s find an explicit isomorphism. Recall from
Example 6.73 that the elements of Aut(Q(⇣5)/Q) are defined by the following table.

�1 �2 �3 �4

⇣5 7! ⇣5 ⇣
2
5 ⇣

3
5 ⇣

4
5

Now let’s expand the table to see how the automorphisms operate on all roots of p(x).

�1 �2 �3 �4

⇣5 7! ⇣5 ⇣
2
5 ⇣

3
5 ⇣

4
5

⇣
2
5 7! ⇣

2
5 ⇣

4
5 ⇣5 ⇣

3
5

⇣
3
5 7! ⇣

3
5 ⇣5 ⇣

4
5 ⇣

2
5

⇣
4
5 7! ⇣

4
5 ⇣

3
5 ⇣

2
5 ⇣5

Next, let’s identify the roots with the numbers 1 up to 4 as follows.

⇣5$ 1 ⇣
2
5 $ 2 ⇣

3
5 $ 3 ⇣

4
5 $ 4.

Then the previous table becomes as follows.

�1 �2 �3 �4

1 7! 1 2 3 4

2 7! 2 4 1 3

3 7! 3 1 4 2

4 7! 4 3 2 1
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So, using our labeling of the four roots, we can view Aut(Q(⇣5)/Q) as a subgroup of S4. If
we write the permutation using cycle notation, we have

�1 = id �2 = (1243) �2 = (1342) �4 = (14)(23).

Problem 7.17. Let’s look at Problem 6.79 again. Notice that Q(
p
2, i) = Q

p(x) for p(x) =
(x2 � 2)(x2 + 1), and the set of roots of p(x) are R = {

p
2,�
p
2, i,�i}.

(1) Fill in the extended table below to list how the elements of Aut(Q(
p
2, i)/Q) operate

on the elements of R. Two of the lines were completed for you.

�1 �2 �3 �4

p
2 7!

p
2

p
2 �

p
2 �

p
2

�
p
2 7!
i 7! i �i i �i
�i 7!

(2) Label the roots of p(x) via:
p
2$ 1, �

p
2$ 2, i$ 3, and �i$ 4. Write each element

of Aut(Q(
p
2, i)/Q) as a permutation in S4 using cycle notation as in Example 7.16.

Problem 7.18. Let’s revisit Problem 7.10. Set L =Q( 3
p
2,⇣3). We’ve seen that L =Q

p(x) for
p(x) = x

3 � 2, and the set of roots of p(x) are R = { 3
p
2, 3
p
2⇣3,

3
p
2⇣23}.

(1) Fill in the extended table below to list how the elements of Aut(L/Q) operate on the
elements of R. For the first two lines, use what you wrote in Problem 7.10.

�1 �2 �3 �4 �5 �6

3
p
2 7! 3

p
2

⇣3 7! ⇣3

3
p
2⇣3 7!

3
p
2⇣23 7!

(2) Label the elements of R as follows: 3
p
2$ 1, 3

p
2⇣3 $ 2, and 3

p
2⇣23 $ 3. Write each

element of Aut(L/Q) as a permutation in S3 using cycle notation as in Example 7.16.

Let’s apply the many things that we’ve learned to a very specific map: complex conju-
gation (which sends z 7! z). Remember that we know a lot about this map. In Chapter 5,
we noted that complex conjugation yields an isomorphism from C to C, and in Prob-
lem 6.60, we saw that it fixes every real number.
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We’ll investigate complex conjugation when we restrict the domain to a subfield K of
C. Let � denote complex conjugation. As � is a homomorphism and is injective (so ker� =
{0}), the First Isomorphism Theorem tells us that � gives an isomorphism of K with its
image under � (i.e. K � �(K)). Additionally, if K = �(K), then � will be an automorphism
of K , and the next theorem identifies one situation where this always happens.

Theorem 7.19. Let p(x) 2Q[x], and let R = {r1, . . . , rn} be the set of all of roots of p(x) in C.
If � is the complex conjugation map defined via �(z) = z, then

(1) restricting the domain of � to R yields a permutation of R, and

(2) � 2 Aut(Qp(x)
/Q).

Problem 7.20. Let p(x) = (x2�2)(x2 +1). Theorem 7.19 says that the complex conjugation
map is in Aut(Qp(x)

/Q). Look back at Problem 7.17 and determine which element of
Aut(Qp(x)

/Q) corresponds to complex conjugation. Write your answer in cycle notation as
in Problem 7.17.

Problem 7.21. Repeat Problem 7.20 for p(x) = x
3 � 2. Use Problem 7.18 to determine

which element of Aut(Qp(x)
/Q) corresponds to complex conjugation. Write your answer

in cycle notation as in Problem 7.18.

Problem 7.22. Repeat Problem 7.20 for p(x) = x
4 + x

3 + x
2 + x + 1. Use Example 7.16

to determine which element of Aut(Qp(x)
/Q) corresponds to complex conjugation. Write

your answer in cycle notation as in Example 7.16.

The similarities and di↵erence between our answers to Problems 7.20–7.22 hint at the
following theorem.

Theorem 7.23. Let p(x) 2 Q[x], and suppose that p(x) has exactly two roots in C that
are not in R. Then when viewing Aut(Qp(x)

/Q) as permutations of the roots of p(x),
Aut(Qp(x)

/Q) contains a transposition.

Problem 7.24. Consider p(x) = x
5+5x4�5 2Q[x]. Graph p(x) or use calculus to show that

p(x) has exactly 3 roots in R, and use Theorem 7.23 to conclude that when Aut(Qp(x)
/Q)

is viewed as permutations of the 5 roots of p(x), Aut(Qp(x)
/Q) contains a transposition.

7.2 Fundamental theorem of Galois theory

We finally arrive at the main course. Looking back at Problems 6.80 and 7.11, we see
that there is a tight connection between subfields of an extension field L of F to sub-
groups of Aut(L/F). However, the extensions we considered in those problems where not
just any extensions of Q, they were Galois extensions. And in fact, the connection broke
down for Q( 3

p
2 in Problem 6.77 where we saw that Aut(Q( 3

p
2)/Q) = {id}, but as noted in

Problem 7.12, this is not a Galois extension of Q.
As it turns out, the connection we observed between subfields and subgroups holds

for all Galois extensions, and the Fundamental Theorem of Galois Theory makes this
explicit. Let’s quickly establish some notation.
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Notation 7.25. Let F be a subfield of L, and let G be a group. Define

• Sub(L/F) to be the set of all subfields K such that F ✓ K ✓ L, and

• Sub(G) to be the set of all subgroups of G.

The set Sub(L/F) can be concisely read as “the set of subfields of L containing F”; for
example,Q(⇣3) 2 Sub(Q( 3

p
2,⇣3)/Q). Also, recall that we have drawn the lattices associated

to Sub(L/F) and Sub(Aut(L/F)) (the latter upside down) in several problems before.
There is a lot it digest when reading the Fundamental Theorem of Galois Theory, but

remember that we have observed almost all of it in previous problems. It may be valuable
to look back at Problem 7.11 while reading the theorem. Anyway, here we go. . .

Fact 7.26 (Fundamental Theorem of Galois Theory (for C)). Let F ✓ L be subfields of C.
Assume that L is a Galois extension of F.

(1) The following maps are bijections and inverses of each other.

• Sub(L/F)! Sub(Aut(L/F)) defined by K 7! Aut(L/K),

• Sub(Aut(L/F))! Sub(L/F) defined by H 7! FixL(H)

(2) The map K 7! Aut(L/K)

• reverses inclusions: K1 ✓ K2 if and only if Aut(L/K2) ✓ Aut(L/K1) and

• sends Galois extensions to normal subgroups: K is a Galois extensions of F if
and only if Aut(L/K)E Aut(L/F).

Moreover, if K is a Galois extension of F, then Aut(K/F) � Aut(L/F)/Aut(L/K).

(3) For all K 2 Sub(L/F),

• [L : K] = |Aut(L/K)|,
• [K : F] = |Aut(L/F) : Aut(L/K)|, and

Note that since H 7! FixL(H) is the inverse of K 7! Aut(L/K), H 7! FixL(H) is also
inclusion reversing and it sends normal subgroups to Galois extensions.

Let’s revisit Problems 6.80 and 7.11 yet again and highlight the connection between
Galois extensions and normal subgroups in part (2) of Fact 7.26.

Problem 7.27. Look back at Problem 6.80. Use what you learned in group theory to de-
termine which subgroups of Aut(Q(

p
2, i)/Q) are normal subgroups. Then use Fact 7.26(2)

to determine which subfields of Q(
p
2, i) are Galois extensions of Q. You can check you

answers by directly verifying which extensions are Galois using the definition.

Problem 7.28. Repeat Problem 7.27 for Q( 3
p
2,⇣3)/Q. Look at Problem 7.11, and deter-

mine which subgroups of Aut(Q( 3
p
2,⇣3)/Q) are normal subgroups. Then use Fact 7.26(2)

to determine which subfields of Q( 3
p
2,⇣3) are Galois extensions of Q.
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7.3 A criterion for solvability by radicals

Let’s try to apply Galois theory to the problem of determining if a polynomial is solvable
by radicals or not. Recall that p(x) 2Q[x] is solvable by radicals over Q if all of the roots of
p(x) are contained in some radical extension ofQ; notice that this is the same as requiring
that Qp(x) is contained in some radical extension of Q.

We’ll first take a closer look at radical extensions of Q and then we’ll investigate the
implications for Qp(x). Of course, our goal is to find a criterion that we can use to show
that some p(x) is not solvable by radicals.

7.3.1 Radical extensions, take 2

Let K be any radical extension of Q. Thus, there exist nonzero elements r1, r2, . . . , rm 2 C
and positive integers n1,n2 . . . ,nm such that K =Q(r1, r2, . . . , rm), and

r
n1
1 2Q, r

n2
2 2Q(r1), r

n3
3 2Q(r1, r2), . . . , r

nm
m 2Q(r1, . . . , rm�1).

Now, K might not be a Galois extension of Q, so we’ll try to expand K to a possibly
larger radical extension L in such a way that L is a Galois extension of Q and that, as we
iteratively add in elements, each field in the sequence is a Galois extension of the one that
comes before it. Let’s consider

L =Q(⇣n1 , r1,⇣n2 , r2, . . . ,⇣nm, rm).

Lemma 7.29. The field L is a radical extension of Q and K ✓ L.

Let’s now look at L as a series of extensions. Note that our definitions of Li and Fi

below imply that Li = Fi(ri) and Fi = Li�1(⇣ni ).

L = Lm =Q(⇣n1 , r1,⇣n2 , r2, . . . ,⇣nm�1 , rm�1,⇣nm, rm)

Fm =Q(⇣n1 , r1,⇣n2 , r2, . . . ,⇣nm�1 , rm�1,⇣nm)

...

L2 =Q(⇣n1 , r1,⇣n2 , r2)

F2 =Q(⇣n1 , r1,⇣n2)

L1 =Q(⇣n1 , r1)

F1 =Q(⇣n1)

L0 =Q

✓
✓

✓
✓

✓
✓

✓

76



CHAPTER 7. GALOIS THEORY

The next task to to show that each field in the sequence is a Galois extension of the
one below it—Theorems 7.7 and 7.8 do most of the work.

Lemma 7.30. Each Li is a Galois extension of Fi , and each Fi is a Galois extension of Li�1.

We now apply the Fundamental Theorem of Galois Theory to our chain of extensions.
Importantly, Fact 7.26(2), implies that Aut(L/Li) E Aut(L/Fi) and Aut(L/Li)/Aut(L/Fi) �
Aut(Li/Fi). A similar statement holds for each extension Fi over Li�1, and we get the
following picture.

L = Lm

Fm

...

L2

F2

L1

F1

L0 =Q

✓
✓

✓
✓

✓
✓

✓

{id}

Aut(L/Fm)

...

Aut(L/L2)

Aut(L/F2)

Aut(L/L1)

Aut(L/F1)

Aut(L/Q)

E
E

E
E

E
E

E � Aut(L/Fm)

� Aut(L2/F2)

� Aut(F2/L1)

� Aut(L1/F1)

� Aut(F1/Q)

...

We’ll now investigate the structure of each of the corresponding Galois groups, start-
ing with Aut(Li/Fi).

Lemma 7.31. Consider the field Li = Fi(ri). The minimal polynomial of ri over Fi is a
factor of xni � rni , so the possible elements of Aut(Li/Fi) are described by the following
table.

id �1 �2 �3 · · · �m�1

ri 7! ri ri⇣ni ri⇣
2
ni

ri⇣
3
ni

· · · ri⇣
m�1
ni

Corollary 7.32. The group Aut(Li/Fi) is abelian.

We now investigate Aut(Fi/Li�1) and obtain a similar result.

Lemma 7.33. Consider the field Fi = Li�1(⇣ni ). The minimal polynomial of ⇣ni over Li�1 is
a factor of xni �1, and the possible elements of Aut(Fi/Li�1) are described by the following
table.
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id �2 �3 · · · �ni�1

⇣ni
7! ⇣ni ⇣

2
ni

⇣
3
ni

· · · ⇣
ni�1
ni

Corollary 7.34. The group Aut(Fi/Li�1) is abelian.

We’ve learned a lot about L, or, more specifically, about Aut(LQ). We see now that
Aut(L/Q) has a chain of subgroups, each normal in the next, such that the corresponding
quotient groups are abelian. Let’s name this property.

Definition 7.35. Let G be a group with identity 1. We say that G is a solvable group if
there exists a chain of subgroups

{1} =H0 EH1 EH2 E · · ·EHk = G

such that for all 1  i  k, the quotient group Hi/Hi�1 is abelian.

Using this new language, we can summarize our findings above as follows.

Fact 7.36. If p(x) 2Q[x] is solvable by radicals overQ, thenQ
p(x) is contained in a subfield

L of C for which

(1) L is a Galois extension of Q, and

(2) Aut(L/Q) a solvable group.

7.3.2 The criterion

Notice that Fact 7.36 tells us a lot about L, but on the surface, it doesn’t seem to address
Q

p(x). However, by the definition of Qp(x), we know that Qp(x) is a Galois extension of Q.
Applying the Fundamental Theorem of Galois Theory (specifically Fact 7.26(2)) to

the sequence Q ✓ Q
p(x) ✓ L, we find that Aut(Qp(x)

/Q) � Aut(L/Q)/Aut(L/Qp(x)). Thus,
Aut(Qp(x)

/Q) is isomorphic to a quotient group of Aut(L/Q). The following fact from
group theory now applies.

Fact 7.37. Suppose that G is a solvable. Then every subgroup of G and every quotient
group of G is also a solvable group.

The implication is that if Aut(L/Q) is a solvable group, then Aut(Qp(x)
/Q) is also a solv-

able group. Putting everything together, we get the following lovely (and quite useful)
test to determine if a polynomial is solvable by radicals.

Fact 7.38 (Solvability by Radicals Criterion). If p(x) 2Q[x] is solvable by radicals over Q,
then Aut(Qp(x)

/Q) a solvable group.

So, if we can find some p(x) 2Q[x] for which Aut(Qp(x)
/Q) is not a solvable group, then

we will be able to conclude that p(x) is not solvable by radicals over Q.
Incidentally, the converse of Fact 7.38 is also true! This means that p(x) 2 Q[x] is

solvable by radicals over Q if and only if Aut(Qp(x)
/Q) a solvable group.
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