Appendix A

Hints

Below are some hints, which should be interpreted as possible (but not the only!) ways to get started.

Hint (Theorem 2.4). You are solving $x^{2}+b x+c=0$. Try "completing the square" first; then solve for x.

Hint (Problem 3.9). Multiplying a fraction by the complex conjugate of the denominator can be an effective way to simplify an expression.

Hint (Theorem 3.11). Think back to changing from polar to rectangular coordinates (or parametrizing circles or solving triangles).

Hint (Theorem 3.12). Try using Theorem $3.11+$ trigonometric identities.
Hint (Problem 3.20). You want to find a z such that $z^{4}=\zeta_{3}$. You are working with powers (hence multiplication), so try writing z in the form $z=r \cos \theta+i r \sin \theta$. Now you can use Corollary 3.14 to simplify z^{4} and compare with ζ_{3}. What can you deduce about r and θ ?

Hint (Lemma 3.22). Similar to Problem 3.20, try writing z in the form $z=r \cos \theta+i r \sin \theta$. Now, what does $z^{n}=1$ imply about r and θ ?

Hint (Lemma 3.23). It may be helpful to draw some pictures first. Try plotting $\zeta_{8},\left(\zeta_{8}\right)^{2}$, $\left(\zeta_{8}\right)^{3}, \ldots,\left(\zeta_{8}\right)^{8},\left(\zeta_{8}\right)^{14},\left(\zeta_{8}\right)^{85}$. Now, you know by a previous problem that $\left(\zeta_{n}\right)^{n}=1$, so also $\left(\zeta_{n}\right)^{2 n}=1$ and so on. Try (using the division algorithm) to write $k=q n+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r \leq n-1$ and plug that into $\left(\zeta_{n}\right)^{k}$.

Hint (Theorem 3.24). You may want to view this as the following "if and only if" statement: z is an $n^{\text {th }}$ root of $1 \Longleftrightarrow z=\left(\zeta_{n}\right)^{k}$ for some $0 \leq k \leq n-1$. Now make use of the previous lemma and theorems you proved. Don't forget to explain why each of $1, \zeta_{n},\left(\zeta_{n}\right)^{2}, \ldots,\left(\zeta_{n}\right)^{n-1}$ are all different.

Hint (Theorem 3.28). Suppose that z is a root of $p(x)$. Then $p(z)=0$, so $a_{n} z^{n}+a_{n-1} z^{n-1}+$ $\cdots+a_{2} z^{2}+a_{1} z+a_{0}=0$. This last equation is is just comparing two complex numbers-try taking the conjugate of both sides. Fact 3.5 is helpful.

Hint (Problem 3.40). You are trying to find $(a+b \sqrt{5})^{-1}=\frac{1}{a+b \sqrt{5}}$. Try multiplying top and bottom by the conjugate: $a-b \sqrt{5}$.

Hint (Theorem 3.50). For the first part, notice that $x \cdot 0=x(0+0)$. For the last part, remember that the definition of a field ensures that F has at least two elements, so there is some $a \in F$ with $a \neq 0$. Now, what happens if $0=1$?

Hint (Theorem 3.53). The crux is to show that every nonzero element has a multiplicative inverse when n is prime. Let $a \in\left(\mathbb{Z}_{n}\right)^{*}$. You need to find some integer b such that $a b=1$ modulo n. Now, since $a \in\left(\mathbb{Z}_{n}\right)^{*}$ and n is prime, $\operatorname{gcd}(a, n)=1$. By Bézout's Lemma, there exist $k, l \in \mathbb{Z}$ such that $1=k a+\ln$. What happens when you consider the equation $1=$ $k a+l p$ modulo n ?

Hint (Problem 3.57). If T_{3} is a subfield, then, in particular, it is closed under multiplication, so it must be that $\alpha^{2} \in T_{3}$. That means that $\alpha^{2}=a+b \alpha$ for some $a, b \in \mathbb{Q}$. What does this imply?

Hint (Problem 3.64). Try following the approach in Example 3.60. First show $\{a+b i \mid$ $a, b \in \mathbb{Q}\} \subseteq \mathbb{Q}(i)$ by showing that every subfield that contains \mathbb{Q} and i must also contain $\{a+b i \mid a, b \in \mathbb{Q}\}$. To show the reverse containment, use the fact that $\{a+b i \mid a, b \in \mathbb{Q}\}$ is a subfield, by a previous problem.

Hint (Problem 3.67). Remember, in Problem 3.57(3), we saw that $\{a+b \alpha \mid a, b \in \mathbb{Q}\}$ is not a subfield of \mathbb{C}.

Hint (Problem 3.69). Use the previous theorem. To show $\mathbb{Q}(3-\sqrt{2}, 5+i) \subseteq \mathbb{Q}(\sqrt{2}, i)$, you need to show that $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, i)$ and that $3-\sqrt{2}, 5+i \in \mathbb{Q}(\sqrt{2}, i)$. Then show the reverse containment in a similar way.

Hint (Theorem 4.12). Note that $x^{n}-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+x^{2}+x+1\right)$. Now use Theorem 3.24; note that $x^{n-1}+x^{n-2}+\cdots+x^{2}+x+1$ should only have $n-1$ roots.

Hint (Problem 4.14). First find the roots of $z^{2}-3 z-1$. Then, for each of those roots, use Theorem 3.26 to solve for z. You should have 6 different roots in the end.

Hint (Theorem 5.20). Try a proof by contradiction. Assume that u is a unit and that u is a zero divisor. Now, what does the definition of being a zero divisor tell you about u ?

Hint (Theorem 5.33). To get started, let $n=\operatorname{deg} p(x)$ and $m=\operatorname{deg} q(x)$, and then write $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ with $a_{n} \neq 0$ and $q(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ with $b_{m} \neq 0$. You want to understand the degree of $p(x)+q(x)$, so you need to determine the largest power of x in the sum $p(x)+q(x)$.

Hint (Theorem 5.35). As with the previous theorem, let $n=\operatorname{deg} p(x)$ and $m=\operatorname{deg} q(x)$, and then write $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ with $a_{n} \neq 0$ and $q(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ with $b_{m} \neq 0$. You need to determine the largest power of x in the product $p(x) q(x)$. What do you think is the largest power of x in the product $p(x) q(x)$? What is its coefficient, and how do you know it's not zero?

Hint (Corollary 5.37). There are several things to verify to ensure that $D[x]$ is an integral domain, but we've talked about most of them already. The main thing that remains is to prove that $D[x]$ has no zero divisors-try a proof by contradiction. This is a corollary of Theorem 5.35, which means that it should be "not too hard" to prove using Theorem 5.35.

Hint (Theorem 5.43). One approach is to polish up and fill in the gaps of the outline presented in the notes right before the statement of Theorem 5.43. A related, but slightly different, approach is to try using induction on the degree of $a(x)$.

Hint (Theorem 5.44). Try using the division algorithm to write $a(x)=(x-c) q(x)+r(x)$ for some $q(x), r(x) \in F[x]$ with $\operatorname{deg} r(x)<\operatorname{deg}(x-c)$ or $r(x)=0$. Now show that $r(x)$ must be the zero polynomial.

Hint (Lemma 5.51). First, explain why $d_{1}(x)$ must divide $d_{2}(x)$ and why $d_{2}(x)$ must divide $d_{1}(x)$. Now return to the definition of "to divide" and see what you can write down.

Hint (Theorem 5.53). Follow the definitions. Since $c(x) \in I$, it can be written a particular way. Then write down what it means for $h(x)$ to divide both $a(x)$ and $b(x)$. Combine.

Hint (Theorem 5.60). For the forward direction, start with the definition of a unit and apply the degree function. For the reverse direction, what does $\operatorname{deg} p(x)=0$ imply about $p(x)$? Can you explicitly write down the a multiplicative inverse for $p(x)$?

Hint (Theorem 5.64). Consider using Theorem 5.40.
Hint (Theorem 5.67). Consider using using strong induction on the degree of the polynomial. Let $\varphi(n)$ be the statement "every polynomial in $F[x]$ of degree n can be written as a product of polynomials that are irreducible in $F[x]$."

For the base case, you want to show that $\varphi(1)$ is true. Assume that $p(x) \in F[x]$ has degree 1. Then what?

Next, assume that $\varphi(k)$ is true for all $1 \leq k \leq n$. We need to show that $\varphi(n+1)$ is true. Assume that $p(x) \in F[x]$ has degree $n+1$. There are two cases to consider: $p(x)$ is irreducible or $p(x)$ is reducible. Keep going. . .

Hint (Problem 5.79). Use the division algorithm to write $a(x)=\left(x^{2}+1\right) q(x)+r(x)$. What does this tell you?

Hint (Theorem 5.86). Using Fact 5.76, you know that R / I is ring. So, for the first part, assume R is commutative, and use this to show R / I is commutative. The starting point is to choose two arbitrary elements of R / I, which would be something like $a+I$ and $b+I$ for $a, b \in R$. Now show that $(a+I)(b+I)=(b+I)(a+I)$ using the definition of multiplication in Fact 5.76.

Hint (Problem 5.80). For the second part, remember that $a \equiv_{6} b \Longleftrightarrow a-b$ is a multiple of 6 . For the last, use the division algorithm to write $a=6 q+r$. What does this imply?

Hint (Theorem 5.83). By definition of an ideal, $I \subseteq R$, so what we really need to show is that $R \subseteq I$. Remember that I is closed under multiplication by elements of R. So, if $a \in I$, then $r a \in R$. Try to first show that $1 \in R$.

Hint (Theorem 5.85). Theorem 5.83 should help with the forward direction. For the backward direction, let $a \in R^{*}$; you need to show a has an inverse. Try using Theorem 5.82: the set $I=\{a r \mid r \in R\}$ is an ideal. By assumption, $I=\{0\}$ or $I=R$. Which is it? Notice that if $I=R$, then $1 \in I$.

Hint (Problem 5.96). Use Theorem 5.94. Theorem 5.83 may also be helpful.
Hint (Theorem 5.99). Try using Theorem 5.91.
Hint (Theorem 5.119). Assume $\phi: R \rightarrow S$ is a ring homomorphism. We need to define a suitable homomorphism from $R / \operatorname{ker} \phi$ to $\phi(R)$, and then check that it is bijective. Let's let $K:=\operatorname{ker} \phi$. Try defining $\hat{\phi}: R / K \rightarrow \phi(R)$ via $\hat{\phi}(a+K)=\phi(a)$. A very important point, is that we don't actually know that $\hat{\phi}$ is a well-defined function. We know that a coset $a+K$ might be equal to $a^{\prime}+K$, so we'd better make sure that if $a+K=a^{\prime}+K$ then $\hat{\phi}(a+K)=\hat{\phi}\left(a^{\prime}+K\right)$. Do that first. Then, verify that $\hat{\phi}$ is a homomorphism that is also surjective and injective. For injectivity, it may be useful to use Theorem 5.117 and instead show that ker $\hat{\phi}=\{0+K\}$.

Hint (Theorem 5.121). We want to show that $\phi(I)$ is an ideal of S. Elements of $\phi(I)$ look like $\phi(a)$ for some $a \in I$. To show that $\phi(I)$ is a subring of S, let $\phi\left(a_{1}\right), \phi\left(a_{2}\right) \in \phi(I)$ for some $a_{1}, a_{2} \in I$. Now explain why $\phi\left(a_{1}\right)+\phi\left(a_{2}\right), \phi\left(a_{1}\right) \phi\left(a_{2}\right)$, and $-\phi\left(a_{1}\right)$ are all in $\phi(I)$. You also should say why $\phi(I)$ is nonempty. Finally, you also need to show that for all $s \in S, s \phi\left(a_{1}\right)$ is in $\phi(I)$. Remember that ϕ maps onto S, so $s=\phi(r)$ for some $r \in R$. Now keep going.

Hint (Theorem 5.122). We want to show that $\phi^{-1}(J)$ is an ideal of R. Let $a_{1}, a_{2} \in \phi^{-1}(J)$. This means that $\phi\left(a_{1}\right), \phi\left(a_{2}\right) \in J$. To show that $a_{1}+a_{2}, a_{1} a_{2}$, and $-a_{1}$ are in $\phi^{-1}(J)$, you just need to show that $\phi\left(a_{1}\right)+\phi\left(a_{2}\right), \phi\left(a_{1}\right) \phi\left(a_{2}\right)$, and $-\phi\left(a_{1}\right)$ are all in J (using that $a_{1}, a_{2} \in$ $\phi^{-1}(J)$ and J is an ideal). You also need to show that $r a_{1} \in \phi^{-1}(J)$, and to do that, you need to show that $\phi\left(r a_{1}\right) \in J$.

Hint (Problem 6.4). Notice that $\alpha^{2}=2+2 \sqrt{2} i-1$, so $\alpha^{2}-1=2 \sqrt{2} i$. What happens if you square both sides?

Hint (Lemma 6.5). Towards a contradiction, assume that $m(x)$ is reducible. By Theorem 5.61, $m(x)=a(x) b(x)$ for some $a(x), b(x) \in F[x]$ with $\operatorname{deg} a(x)$ and $\operatorname{deg} b(x)$ both smaller than $\operatorname{deg} m(x)$. Now, $m(x) \in I$, so $0=m(\alpha)=a(\alpha) b(\alpha)$. Explain why this implies that $a(x)$ or $b(x)$ is in I. But $I=(m(x))$, so by Theorem 5.91, $m(x)$ divides $a(x)$ or $b(x)$. What's the contradiction?

Hint (Problem 6.9). Theorem 4.12 might provide some inspiration.
Hint (Problem 6.22). To see why the degree of $m(x)$ can not be 3 , suppose it is. Then $x^{4}-2 x^{2}+9=m(x) q(x)$ for some $q(x) \in \mathbb{Q}[x]$ with $\operatorname{deg} q(x)=1$. Explain why $q(x)$ has a root that lies in \mathbb{Q}. But the root of $q(x)$ is a root of $x^{4}-2 x^{2}+9$, so find the roots of $x^{4}-2 x^{2}+9$ (and thus a contradiction).

Hint (Theorem 6.58). Consider using Theorem 5.111 and remember that $c=c \cdot 1$.
Hint (Theorem 7.8). Let $p(x)=x^{n}-r^{n}$. Why is $p(x) \in F[x]$? Can you show that $F(r)=F^{p(x)}$?

Hint (Theorem 7.19). First use Theorem 6.61 to show that γ maps R to itself, then make use of the fact that γ is an injective function.

Next, use results from Chapter 5 (including the First Isomorphism Theorem for rings) to show that γ is an isomorphism from $\mathbb{Q}^{p(x)}$ to $\gamma\left(\mathbb{Q}^{p(x)}\right)$ and that γ fixes \mathbb{Q}. Then, to show that $\gamma \in \operatorname{Aut}\left(\mathbb{Q}^{p(x)} / \mathbb{Q}\right)$, it only remains to show that $\mathbb{Q}^{p(x)}=\gamma\left(\mathbb{Q}^{p(x)}\right)$. Let r_{1}, \ldots, r_{n} be the roots of $p(x)$ so that $\mathbb{Q}^{p(x)}=\mathbb{Q}\left(r_{1}, \ldots, r_{n}\right)$. Using the definition of $\mathbb{Q}\left(r_{1}, \ldots, r_{n}\right)$, it is not to hard to see that $\gamma\left(\mathbb{Q}\left(r_{1}, \ldots, r_{n}\right)\right)=\gamma(\mathbb{Q})\left(\gamma\left(r_{1}\right), \ldots, \gamma\left(r_{n}\right)\right)$. Now explain why $\gamma(\mathbb{Q})\left(\gamma\left(r_{1}\right), \ldots, \gamma\left(r_{n}\right)\right)=$ $\mathbb{Q}\left(r_{1}, \ldots, r_{n}\right)$.

Hint (Theorem 7.23). Let γ be complex conjugation. By Theorem 7.19, $\gamma \in \operatorname{Aut}\left(\mathbb{Q}^{p(x)} / \mathbb{Q}\right)$. What does γ do to the real roots of $p(x)$? What about to those that are not real?

Hint (Lemma 8.6). You want to show that $x^{-1} y^{-1} x y \in N$, which is the same as $\left(x^{-1} y^{-1} x y\right) N=$ N in the quotient group H / N. Work in H / N, and compute $\left(x^{-1} N\right)\left(y^{-1} N\right)(x N)(y N)$. Don't forget that H / N is abelian.

Hint (Theorem 8.13). Let σ be an element of order 5 and τ a transposition. First explain why σ must be a 5-cycle. Then notice that we can write $\sigma=(a, b, c, d, e)$ and $\tau=(a, x)$ where $x \in\{b, c, d, e\}$. Try to use Fact 8.12. If $x=b$, you can directly apply Fact 8.12; if not, consider $\sigma^{2}, \sigma^{3}, \ldots$

