
Appendix A

Hints

Below are some hints, which should be interpreted as possible (but not the only!) ways to
get started.

Hint (Theorem 2.4). You are solving x
2 + bx + c = 0. Try “completing the square” first;

then solve for x.

Hint (Problem 3.9). Multiplying a fraction by the complex conjugate of the denominator
can be an e↵ective way to simplify an expression.

Hint (Theorem 3.11). Think back to changing from polar to rectangular coordinates (or
parametrizing circles or solving triangles).

Hint (Theorem 3.12). Try using Theorem 3.11 + trigonometric identities.

Hint (Problem 3.20). You want to find a z such that z4 = ⇣3. You are working with powers
(hence multiplication), so try writing z in the form z = r cos✓ + ir sin✓. Now you can use
Corollary 3.14 to simplify z

4 and compare with ⇣3. What can you deduce about r and ✓?

Hint (Lemma 3.22). Similar to Problem 3.20, try writing z in the form z = r cos✓+ir sin✓.
Now, what does zn = 1 imply about r and ✓?

Hint (Lemma 3.23). It may be helpful to draw some pictures first. Try plotting ⇣8, (⇣8)2,
(⇣8)3, . . . , (⇣8)8, (⇣8)14, (⇣8)85. Now, you know by a previous problem that (⇣n)n = 1, so
also (⇣n)2n = 1 and so on. Try (using the division algorithm) to write k = qn + r for some
q, r 2 Z with 0  r  n� 1 and plug that into (⇣n)k .

Hint (Theorem 3.24). You may want to view this as the following “if and only if” state-
ment: z is an n

th root of 1 () z = (⇣n)k for some 0  k  n � 1. Now make use
of the previous lemma and theorems you proved. Don’t forget to explain why each of
1,⇣n, (⇣n)2, . . . , (⇣n)n�1 are all di↵erent.

Hint (Theorem 3.28). Suppose that z is a root of p(x). Then p(z) = 0, so anz
n + an�1zn�1 +

· · ·+a2z
2 +a1z+a0 = 0. This last equation is is just comparing two complex numbers—try

taking the conjugate of both sides. Fact 3.5 is helpful.
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Hint (Problem 3.40). You are trying to find (a+ b

p
5)�1 = 1

a+b
p
5
. Try multiplying top and

bottom by the conjugate: a� b
p
5.

Hint (Theorem 3.50). For the first part, notice that x · 0 = x(0 + 0). For the last part,
remember that the definition of a field ensures that F has at least two elements, so there
is some a 2 F with a , 0. Now, what happens if 0 = 1?

Hint (Theorem 3.53). The crux is to show that every nonzero element has a multiplicative
inverse when n is prime. Let a 2 (Zn)⇤. You need to find some integer b such that ab = 1
modulo n. Now, since a 2 (Zn)⇤ and n is prime, gcd(a,n) = 1. By Bézout’s Lemma, there
exist k, l 2 Z such that 1 = ka + ln. What happens when you consider the equation 1 =
ka+ lp modulo n?

Hint (Problem 3.57). If T3 is a subfield, then, in particular, it is closed under multiplica-
tion, so it must be that ↵2 2 T3. That means that ↵2 = a+ b↵ for some a,b 2Q. What does
this imply?

Hint (Problem 3.64). Try following the approach in Example 3.60. First show {a + bi |
a,b 2 Q} ✓ Q(i) by showing that every subfield that contains Q and i must also contain
{a + bi | a,b 2 Q}. To show the reverse containment, use the fact that {a + bi | a,b 2 Q} is a
subfield, by a previous problem.

Hint (Problem 3.67). Remember, in Problem 3.57(3), we saw that {a+ b↵ | a,b 2 Q} is not
a subfield of C.

Hint (Problem 3.69). Use the previous theorem. To show Q

⇣
3�
p
2,5+ i

⌘
✓Q

⇣p
2, i

⌘
, you

need to show that Q ⇢ Q

⇣p
2, i

⌘
and that 3 �

p
2,5 + i 2 Q

⇣p
2, i

⌘
. Then show the reverse

containment in a similar way.

Hint (Theorem 4.12). Note that xn � 1 = (x � 1)(xn�1 + x
n�2 + · · · + x

2 + x + 1). Now use
Theorem 3.24; note that xn�1 + x

n�2 + · · ·+ x
2 + x +1 should only have n� 1 roots.

Hint (Problem 4.14). First find the roots of z2 � 3z � 1. Then, for each of those roots, use
Theorem 3.26 to solve for z. You should have 6 di↵erent roots in the end.

Hint (Theorem 5.20). Try a proof by contradiction. Assume that u is a unit and that u is
a zero divisor. Now, what does the definition of being a zero divisor tell you about u?

Hint (Theorem 5.33). To get started, let n = degp(x) and m = degq(x), and then write
p(x) = a0 +a1x+ · · ·+anx

n with an , 0 and q(x) = b0 +b1x+ · · ·+bmx
m with bm , 0. You want

to understand the degree of p(x) + q(x), so you need to determine the largest power of x
in the sum p(x) + q(x).

Hint (Theorem 5.35). As with the previous theorem, let n = degp(x) and m = degq(x),
and then write p(x) = a0 + a1x + · · ·+ anx

n with an , 0 and q(x) = b0 + b1x + · · ·+ bmx
m with

bm , 0. You need to determine the largest power of x in the product p(x)q(x). What do
you think is the largest power of x in the product p(x)q(x)? What is its coe�cient, and
how do you know it’s not zero?
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Hint (Corollary 5.37). There are several things to verify to ensure that D[x] is an integral
domain, but we’ve talked about most of them already. The main thing that remains is to
prove that D[x] has no zero divisors—try a proof by contradiction. This is a corollary of
Theorem 5.35, whichmeans that it should be “not too hard” to prove using Theorem 5.35.

Hint (Theorem 5.43). One approach is to polish up and fill in the gaps of the outline
presented in the notes right before the statement of Theorem 5.43. A related, but slightly
di↵erent, approach is to try using induction on the degree of a(x).

Hint (Theorem 5.44). Try using the division algorithm to write a(x) = (x� c)q(x) + r(x) for
some q(x), r(x) 2 F[x] with degr(x) < deg(x�c) or r(x) = 0. Now show that r(x) must be the
zero polynomial.

Hint (Lemma 5.51). First, explain why d1(x) must divide d2(x) and why d2(x) must divide
d1(x). Now return to the definition of “to divide” and see what you can write down.

Hint (Theorem 5.53). Follow the definitions. Since c(x) 2 I , it can be written a particular
way. Then write down what it means for h(x) to divide both a(x) and b(x). Combine.

Hint (Theorem 5.60). For the forward direction, start with the definition of a unit and
apply the degree function. For the reverse direction, what does degp(x) = 0 imply about
p(x)? Can you explicitly write down the a multiplicative inverse for p(x)?

Hint (Theorem 5.64). Consider using Theorem 5.40.

Hint (Theorem 5.67). Consider using using strong induction on the degree of the poly-
nomial. Let '(n) be the statement “every polynomial in F[x] of degree n can be written
as a product of polynomials that are irreducible in F[x].”

For the base case, you want to show that '(1) is true. Assume that p(x) 2 F[x] has
degree 1. Then what?

Next, assume that '(k) is true for all 1  k  n. We need to show that '(n + 1) is
true. Assume that p(x) 2 F[x] has degree n + 1. There are two cases to consider: p(x) is
irreducible or p(x) is reducible. Keep going. . .

Hint (Problem 5.79). Use the division algorithm to write a(x) = (x2 + 1)q(x) + r(x). What
does this tell you?

Hint (Theorem 5.86). Using Fact 5.76, you know that R/I is ring. So, for the first part,
assume R is commutative, and use this to show R/I is commutative. The starting point is
to choose two arbitrary elements of R/I , which would be something like a+ I and b+ I for
a,b 2 R. Now show that (a + I )(b + I ) = (b + I )(a + I ) using the definition of multiplication
in Fact 5.76.

Hint (Problem 5.80). For the second part, remember that a ⌘6 b () a � b is a multiple
of 6. For the last, use the division algorithm to write a = 6q + r. What does this imply?

Hint (Theorem 5.83). By definition of an ideal, I ✓ R, so what we really need to show is
that R ✓ I . Remember that I is closed under multiplication by elements of R. So, if a 2 I ,
then ra 2 R. Try to first show that 1 2 R.
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Hint (Theorem 5.85). Theorem 5.83 should help with the forward direction. For the
backward direction, let a 2 R⇤; you need to show a has an inverse. Try using Theorem 5.82:
the set I = {ar | r 2 R} is an ideal. By assumption, I = {0} or I = R. Which is it? Notice that
if I = R, then 1 2 I .

Hint (Problem 5.96). Use Theorem 5.94. Theorem 5.83 may also be helpful.

Hint (Theorem 5.99). Try using Theorem 5.91.

Hint (Theorem 5.119). Assume � : R! S is a ring homomorphism. We need to define a
suitable homomorphism from R/ ker� to �(R), and then check that it is bijective. Let’s let
K := ker�. Try defining �̂ : R/K ! �(R) via �̂(a+K) = �(a). A very important point, is that
we don’t actually know that �̂ is a well-defined function. We know that a coset a+K might
be equal to a0+K , so we’d better make sure that if a+K = a

0+K then �̂(a+K) = �̂(a0+K). Do
that first. Then, verify that �̂ is a homomorphism that is also surjective and injective. For
injectivity, it may be useful to use Theorem 5.117 and instead show that ker �̂ = {0+K}.

Hint (Theorem 5.121). We want to show that �(I ) is an ideal of S . Elements of �(I ) look
like �(a) for some a 2 I . To show that �(I ) is a subring of S , let �(a1),�(a2) 2 �(I ) for some
a1, a2 2 I . Now explain why �(a1) +�(a2), �(a1)�(a2), and ��(a1) are all in �(I ). You also
should say why �(I ) is nonempty. Finally, you also need to show that for all s 2 S , s�(a1)
is in �(I ). Remember that � maps onto S , so s = �(r) for some r 2 R. Now keep going.

Hint (Theorem 5.122). We want to show that ��1(J) is an ideal of R. Let a1, a2 2 ��1(J).
This means that �(a1),�(a2) 2 J . To show that a1 + a2, a1a2, and �a1 are in �

�1(J), you
just need to show that �(a1)+�(a2), �(a1)�(a2), and ��(a1) are all in J (using that a1, a2 2
�
�1(J) and J is an ideal). You also need to show that ra1 2 ��1(J), and to do that, you need

to show that �(ra1) 2 J .

Hint (Problem 6.4). Notice that ↵2 = 2+2
p
2i � 1, so ↵

2 � 1 = 2
p
2i. What happens if you

square both sides?

Hint (Lemma 6.5). Towards a contradiction, assume that m(x) is reducible. By Theo-
rem 5.61, m(x) = a(x)b(x) for some a(x), b(x) 2 F[x] with dega(x) and degb(x) both smaller
than degm(x). Now, m(x) 2 I , so 0 = m(↵) = a(↵)b(↵). Explain why this implies that a(x)
or b(x) is in I . But I = (m(x)), so by Theorem 5.91, m(x) divides a(x) or b(x). What’s the
contradiction?

Hint (Problem 6.9). Theorem 4.12 might provide some inspiration.

Hint (Problem 6.22). To see why the degree of m(x) can not be 3, suppose it is. Then
x
4 � 2x2 + 9 =m(x)q(x) for some q(x) 2Q[x] with degq(x) = 1. Explain why q(x) has a root

that lies in Q. But the root of q(x) is a root of x4 � 2x2 + 9, so find the roots of x4 � 2x2 + 9
(and thus a contradiction).

Hint (Theorem 6.58). Consider using Theorem 5.111 and remember that c = c · 1.

Hint (Theorem 7.8). Let p(x) = x
n�rn. Why is p(x) 2 F[x]? Can you show that F(r) = F

p(x)?
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Hint (Theorem 7.19). First use Theorem 6.61 to show that � maps R to itself, then make
use of the fact that � is an injective function.

Next, use results from Chapter 5 (including the First Isomorphism Theorem for rings)
to show that � is an isomorphism from Q

p(x) to �(Qp(x)) and that � fixes Q. Then, to
show that � 2 Aut(Qp(x)

/Q), it only remains to show that Qp(x) = �(Qp(x)). Let r1, . . . , rn be
the roots of p(x) so that Qp(x) =Q(r1, . . . , rn). Using the definition of Q(r1, . . . , rn), it is not to
hard to see that �(Q(r1, . . . , rn)) = �(Q)(�(r1), . . . ,�(rn)). Now explain why �(Q)(�(r1), . . . ,�(rn)) =
Q(r1, . . . , rn).

Hint (Theorem 7.23). Let � be complex conjugation. By Theorem 7.19, � 2 Aut(Qp(x)
/Q).

What does � do to the real roots of p(x)? What about to those that are not real?

Hint (Lemma 8.6). Youwant to show that x�1y�1xy 2N , which is the same as (x�1y�1xy)N =
N in the quotient group H/N . Work in H/N , and compute (x�1N )(y�1N )(xN )(yN ). Don’t
forget that H/N is abelian.

Hint (Theorem 8.13). Let � be an element of order 5 and ⌧ a transposition. First explain
why � must be a 5-cycle. Then notice that we can write � = (a,b,c,d, e) and ⌧ = (a,x)
where x 2 {b,c,d, e}. Try to use Fact 8.12. If x = b, you can directly apply Fact 8.12; if not,
consider �2, �3,. . .
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