Linear Algebra
 MATH 224W - Spring 2016

Week 10: Linear Independence, Basis, Dimension

Writing Assignment \#9
due Monday, Apr. 4 Tuesday, Apr. 5
$\S 4.5 \# 20,24$
AP \#1 Let $\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in a vector space. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent and $\mathbf{u} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, prove that $\left\{\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is also linearly independent. Hint: consider proving the contrapositive, but remember that "and changes to or."

Homework \#9

due Thursday, Apr. 7 Friday, Apr. 8

Important!!

From now on, you can use a computer (http: //www. wolframalpha. com is one option) to perform your row reductions as long as you clearly state what you have done.
$\S 4.5 \# 12(\mathrm{a})(\mathrm{b}), 13(\mathrm{a})(\mathrm{c}), 15(\mathrm{a})(\mathrm{b})$
$\S 4.6 \# 2(\mathrm{a})(\mathrm{c}), 4(\mathrm{a})(\mathrm{c}), 10,11,13,20(\mathrm{~b}), 22,30$
For $\# 13$, identify each polynomial $a+b t+c t^{2}+d^{3}$ with the 4 -vector $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ (or $\left[\begin{array}{l}d \\ c \\ b \\ a\end{array}\right]$ - but be consistent), and then follow the same approach as for $\# 11$. But, make sure that the answer you provide consists of polynomials (and not 4 -vectors).
When asked to "Generalize to $M_{m n}$ " in exercise $\# 30$, make sure to describe a basis for $M_{m n}$ and give the dimension of $M_{m n}$.

