Week 12: Rank, nullity, and linear transformations

Writing Assignment #11

due Friday, Apr. 22

 $\S4.9 \#45$

- AP #1 Let D be an $n \times n$ matrix, and define a function $L: M_{n \times n} \to M_{n \times n}$ by L(A) = DA AD. Prove that L is a linear transformation.
- AP #2 Let V and W be vector spaces, and let $T: V \to W$ be a one-to-one linear transformation. Prove that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a linearly independent set of vectors in V, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)\}$ is a linearly independent set of vectors in W. Hint: you want to show $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)\}$ is linearly independent, so your proof should begin with "assume that $a_1T(\mathbf{v}_1) + \cdots + a_kT(\mathbf{v}_k) = \mathbf{0}_W$ for some $a_1, \ldots, a_k \in \mathbb{R}$." Now you need to show that this implies that $a_1 = \cdots = a_k = 0$. It is helpful to note that $\mathbf{0}_W = T(\mathbf{0}_V)$, but if you use this, make sure to quote the relevant theorem.
- AP #3 Let V and W be vector spaces, and let $T: V \to W$ be an *onto* isomorphism. Prove that if $\operatorname{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_k\} = V$, then $\operatorname{span}\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)\} = W$. *Hint:* you want to show $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)\}$ spans W, so your proof should begin with "let $\mathbf{w} \in W$; we will show that $a_1T(\mathbf{v}_1) + \cdots + a_kT(\mathbf{v}_k) = \mathbf{w}$ for some $a_1, \ldots, a_k \in \mathbb{R}$." It is helpful to note that, because T is onto, $\mathbf{w} = T(\mathbf{v})$ for some $\mathbf{v} \in V$. Now, what can you do with \mathbf{v} ...

Homework #11

due Friday, Apr. 22

Remember:

- From now on, you can use a computer (http://www.wolframalpha.com is one option) to perform your row reductions as long as you clearly state what you have done.
 - §4.7 #10, 12
 - $\S4.9 \ \#10, \ 34, \ 35, \ 36$
 - §6.1 #2, 3, 4, 5, 8(c), 11(c), 12(b), 13(b), 15, 28
 For #2–5, if a function is linear, you do not need to explain why. However, for each function that is not a linear transformation, you MUST explain why it is not.