Linear Algebra
 MATH 224W - Spring 2016

Week 12: Rank, nullity, and linear transformations

Writing Assignment \#11

§4.9 \#45
AP \#1 Let D be an $n \times n$ matrix, and define a function $L: M_{n \times n} \rightarrow M_{n \times n}$ by $L(A)=D A-A D$. Prove that L is a linear transformation.

AP \#2 Let V and W be vector spaces, and let $T: V \rightarrow W$ be a one-to-one linear transformation. Prove that if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a linearly independent set of vectors in V, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is a linearly independent set of vectors in W.
Hint: you want to show $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ is linearly independent, so your proof should begin with "assume that $a_{1} T\left(\mathbf{v}_{1}\right)+\cdots+a_{k} T\left(\mathbf{v}_{k}\right)=\mathbf{0}_{W}$ for some $a_{1}, \ldots, a_{k} \in \mathbb{R}$." Now you need to show that this implies that $a_{1}=\cdots=a_{k}=0$. It is helpful to note that $\mathbf{0}_{W}=T\left(\mathbf{0}_{V}\right)$, but if you use this, make sure to quote the relevant theorem.

AP \#3 Let V and W be vector spaces, and let $T: V \rightarrow W$ be an onto isomorphism. Prove that if $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=V$, then $\operatorname{span}\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}=W$.
Hint: you want to show $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{k}\right)\right\}$ spans W, so your proof should begin with"let $\mathbf{w} \in W$; we will show that $a_{1} T\left(\mathbf{v}_{1}\right)+\cdots+a_{k} T\left(\mathbf{v}_{k}\right)=\mathbf{w}$ for some $a_{1}, \ldots, a_{k} \in \mathbb{R}$." It is helpful to note that, because T is onto, $\mathbf{w}=T(\mathbf{v})$ for some $\mathbf{v} \in V$. Now, what can you do with $\mathbf{v} \ldots$

Remember:

From now on, you can use a computer (http: // www. wolframalpha. com is one option) to perform your row reductions as long as you clearly state what you have done.
$\S 4.7 \# 10,12$
§4.9 \# 10, 34, 35, 36
§6.1 \#2, 3, 4, 5, 8(c), 11(c), 12(b), 13(b), 15, 28
For $\# 2-5$, if a function is linear, you do not need to explain why. However, for each function that is not a linear transformation, you MUST explain why it is not.

