Linear Algebra
 MATH 224W - Spring 2016

Week 13: Kernel and range, matrix of a linear transformation, eigenvalues and eigenvectors

Writing Assignment \#12
due Friday, Apr. 29

AP \#1 Let V and W be vector spaces, and assume that $L: V \rightarrow W$ is a linear transformation. Prove that

$$
\operatorname{dim}(\text { range } L) \leq \min (\operatorname{dim} V, \operatorname{dim} W)
$$

(Here $\min (x, y)$ denotes the minimum of the two values x and y.) Hint: Range-Kernel Theorem.
AP \#2 Let V and W be vector spaces with $\operatorname{dim} V=\operatorname{dim} W$, and assume that $L: V \rightarrow W$ is a linear transformation. Prove that L is one-to-one if and only if L is onto.
Hint: Range-Kernel Theorem. Don't forget that this is an if and only if statement.
AP \#3 Let V be an n-dimensional vector space. Assume that $L: V \rightarrow V$ is a linear transformation such that $L(L(\mathbf{v}))=\mathbf{0}$ for every $\mathbf{v} \in V$. Prove that $\operatorname{dim}($ range $L) \leq \frac{n}{2}$.
Hint: Range-Kernel Theorem, but first show that range $L \leq \operatorname{ker} L$.

Homework \#12
due Thursday, Apr. 28
$\S 6.2 \# 1,2,4,6,16,25,26$
$\S 6.3 \# 8(\mathrm{a})(\mathrm{b}), 10(\mathrm{~b}), 22(\mathrm{a})(\mathrm{b})$

