Linear Algebra
 MATH 224W - Spring 2016

Week 14-15: Eigenvalues, eigenvectors, and diagonalization

Writing Assignment \#13

due Friday, May. 6
§7.1 \#11 Just prove this when A is lower triangular, but you can use both results for other problems.
§7.2 \#24 Hint: try using the definition of diagonalizability.
AP \#1 Let A be an $n \times n$ matrix. Prove that A and A^{T} have the same characteristic polynomial. (Hence, A and A^{T} have the same eigenvalues, but you do not need to explicitly prove this.)

AP $\# 2$ Let A be an invertible $n \times n$ matrix, and assume that λ is an eigenvalue of A. Prove that $\lambda \neq 0$ and that λ^{-1} is an eigenvalue of A^{-1}. Hint: try using the definition of eigenvalue.

Extra Credit: Let $A \in M_{n \times n}$, and let $p(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}$ be the characteristic polynomial of A. Prove that $a_{0}=(-1)^{n} \operatorname{det}(A)$ and $a_{n-1}=-\operatorname{tr}(A)$.

For Fun: (Not to be turned in) Using the previous extra credit problem, you can deduce the following (interesting) formulas for determinant and trace...
Let $A \in M_{n \times n}$, and let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A, including repetitions. (It may be that $\lambda_{1}, \ldots, \lambda_{n}$ are complex numbers.) Prove that $\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n}$ and $\operatorname{tr}(A)=\lambda_{1}+\cdots+\lambda_{n}$.

Homework \#13

due Friday, May. 6
§7.1 \#1, 3, 6, 8(a)(c), 13, 18(b)
For $\# 1,3$, and 6 , you are asked to find just one eigenvector associated to each eigenvalue.
For $\# 3$, you can use any basis for P_{2} that you want. Remember that the eigenvectors for this problem should be polynomials.
$\S 7.2 \# 6,10(\mathrm{a})(\mathrm{b}), 11(\mathrm{a})(\mathrm{c}), 16(\mathrm{~b}), 19$
Hint: Theorem 7.5 is very helpful for several of the parts of $\# 6$. Show all of your work (except for the actual row reduction) for these problems, especially for \#19.

Extra Problems

\#1 Prove or disprove the following statement.
"For every positive integer n, if A and B are invertible $n \times n$ matrices with the same characteristic polynomial, then A and B are similar."
$\# 2$ Let $c \in \mathbb{R}$, and let A be an upper triangular $n \times n$ matrix such that every entry on the main diagonal is c.
(1) Prove that A is diagonalizable if and only if the nullity of $(c I-A)$ is n.
(2) Prove that A is diagonalizable if and only if A is a diagonal matrix.

Hint: use part 1 to prove part 2. What does it mean if an $n \times n$ matrix has nullity equal to n ?

