Week 14-15: Eigenvalues, eigenvectors, and diagonalization

Writing Assignment #13

- §7.1 #11 Just prove this when A is lower triangular, but you can use both results for other problems.
- $\S7.2 \#24$ Hint: try using the **definition** of diagonalizability.
- AP #1 Let A be an $n \times n$ matrix. Prove that A and A^T have the same characteristic polynomial. (Hence, A and A^T have the same eigenvalues, but you do not need to explicitly prove this.)
- AP #2 Let A be an invertible $n \times n$ matrix, and assume that λ is an eigenvalue of A. Prove that $\lambda \neq 0$ and that λ^{-1} is an eigenvalue of A^{-1} . *Hint: try using the definition of eigenvalue.*
- Extra Credit: Let $A \in M_{n \times n}$, and let $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$ be the characteristic polynomial of A. Prove that $a_0 = (-1)^n \det(A)$ and $a_{n-1} = -\operatorname{tr}(A)$.
 - For Fun: (Not to be turned in) Using the previous extra credit problem, you can deduce the following (interesting) formulas for determinant and trace...

Let $A \in M_{n \times n}$, and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A, including repetitions. (It may be that $\lambda_1, \ldots, \lambda_n$ are complex numbers.) Prove that $\det(A) = \lambda_1 \cdots \lambda_n$ and $\operatorname{tr}(A) = \lambda_1 + \cdots + \lambda_n$.

Homework #13

§7.1 #1, 3, 6, 8(a)(c), 13, 18(b) For #1,3, and 6, you are asked to find just one eigenvector associated to each eigenvalue. For #3, you can use any basis for P_2 that you want. Remember that the eigenvectors for this problem should be polynomials.

§7.2 #6, 10(a)(b), 11(a)(c), 16(b), 19
Hint: Theorem 7.5 is very helpful for several of the parts of #6. Show all of your work (except for the actual row reduction) for these problems, especially for #19.

Extra Problems

Not To Be Turned In—But May Appear on the Final

- #1 Prove or disprove the following statement. "For every positive integer n, if A and B are invertible $n \times n$ matrices with the same characteristic polynomial, then A and B are similar."
- #2 Let $c \in \mathbb{R}$, and let A be an upper triangular $n \times n$ matrix such that every entry on the main diagonal is c.
 - (1) Prove that A is diagonalizable if and only if the nullity of (cI A) is n.
 - (2) Prove that A is diagonalizable if and only if A is a diagonal matrix.
 - *Hint: use part 1 to prove part 2. What does it mean if an* $n \times n$ *matrix has nullity equal to* n?

due Friday, May. 6

due Friday, May. 6