Linear Algebra
 MATH 224W - Spring 2016

Week 4: logic and proof methods

Writing Assignment \#3

due Monday, Feb. 8
§1.5 \#22(b), 50, 51, 54
All of your proofs for $\S 1.5$ should be matrix-level and not entry-level. Make use of the theorems in sections 1.4 and 1.5! Each of the write-ups should be quite short, but make sure to cite all of the theorems that you are using.

AP \#1 Prove Theorem 1.2(b).
You will probably have to work with the entries of the matrix and make use of summation notation properties.

AP \#2 Show that if A is an $n \times n$ matrix with a column of zeros, then A is not invertible.
Hint: argue by contradiction. Assume A is invertible. Then there must be an $n \times n$ matrix B such that $B A=I$. Now explain why this is impossible by using a result you proved on the previous writing assignment.

Homework \#3

due Thursday, Feb. 11
§1.6 \#6, 8, 10, 12, 19
For \#19(c), the " $T(u)$ " may be confusing; ignore it. You want to find the smallest positive k such that $A^{k} \mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^{2}$.
$\S 0.1 \# 2(\mathrm{~b})(\mathrm{d}), 3(\mathrm{a})(\mathrm{c}), 4(\mathrm{c})(\mathrm{d}), 6(\mathrm{a})(\mathrm{b})(\mathrm{c})(\mathrm{e})(\mathrm{f}), 8,9$
The exercises for $\S 0.1$ are available in the Documents section of Blackboard.
AP \#1 Write down the converse and contrapositive of the following statement.

$$
\text { "If } \sum_{n=1}^{\infty} a_{n} \text { converges, then } \lim _{n \rightarrow \infty} a_{n}=0 \text {." }
$$

AP \#2 Disjunction and conjunction are associative. That is, for statements p, q, and r,
(a) $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$, and
(b) $(p \vee q) \vee r \equiv p \vee(q \vee r)$.

Further, disjunction and conjunction distribute over one another. That is, for statements p, q, and r,
(c) $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$, and
(d) $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$.

Prove (c), and only (c), using a truth table. Each truth table should have 8 rows. You do not need to prove (a), (b), or (d), but you should be aware that they are true so that you can make use of them in the future.

