Linear Algebra
 MATH 224W - Spring 2016

Week 5: Solving linear systems and elementary matrices

Writing Assignment \#4
due Monday, Feb. 15 Wednesday, Feb. 17

Pg. 81 \#18
Hint: In this problem you are assuming that an equation is true for every n-vector \mathbf{x}, so in particular it is true for the vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ where

$$
\mathbf{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \ldots, \mathbf{e}_{n}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right] .
$$

For example, if you plug \mathbf{e}_{1} in for \mathbf{x}, you get a true statement. What does it tell you?
AP \#1 Rewrite the statement below as a universally quantified implication; that is, rewrite it in the form " $\forall ? ? ? \in ? ? ?[(? ? ?) \Longrightarrow(? ? ?)]$ ". Then prove it using the direct method.
"The sum of two even integers is even."
AP \#2 Prove the following statement, which is an implication, by proving the contrapositive.
"For all $x \in \mathbb{R}$, if x is positive and irrational, then \sqrt{x} is also irrational."
AP $\# 3$ Give a proof by contradiction of $\# 4(\mathrm{~d})$ on page 80.
AP \#4 Determine if implication is associative. That is, prove or disprove the following: for all statements p, q, and r,

$$
(p \Longrightarrow q) \Longrightarrow r \equiv p \Longrightarrow(q \Longrightarrow r)
$$

Homework \#4

due Thursday, Feb. 18
$\S 2.1 \# 1(\mathrm{~b}), 4,7,8$
$\S 2.2 \# 2,4,8$
AP \#1 Let $P(x, y)$ denote the formula $x \geq y$; that is, $P(x, y)$ is interchangeable with " $x \geq y$." Also, let \mathbb{N} denote the set of natural numbers (nonnegative integers), i.e. $\mathbb{N}=\{0,1,2,3, \ldots\}$. Determine whether the following are true or false; justify your answers!
(a) $\forall x, y \in \mathbb{N}[P(x, y)]$
(b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}[P(x, y)]$
(c) $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}[P(x, y)]$
(d) $\exists x, y \in \mathbb{N}[P(x, y)]$

AP \#2 Write down the negation of each of the following statements in such a way that negation symbols only appear next to the predicates p, q, or r.
(a) $\exists x \in \mathbb{R}[(\sim p(x)) \wedge q(x)]$
(b) $\forall x \in \mathbb{R}[p(x) \Longrightarrow[\exists y \in \mathbb{N}[q(x, y) \wedge r(x, y)]]]$
(c) $\exists x, y \in \mathbb{N}[P(x, y)]$

