Linear Algebra
 MATH 224W - Spring 2016

Week 6: Determinants

Writing Assignment \#5

$\S 2.3 \# 24,25$

There are many ways to approach $\# 25$, so do not feel that you must to use Theorem 2.9 , as the hint suggests.

AP \#1 This is not a proof, but please still type it up (carefully). Rewrite the following sentence in symbolic logic notation; \mathcal{F} denotes the set of all functions from \mathbb{R} to \mathbb{R}. Think carefully about the placement of quantifiers! Hint: This statement is an implication!

For all $a, b \in \mathbb{R}$ with $a<b$ and any function $f \in \mathcal{F}$ that is continuous on $[a, b]$, there is some $c \in[a, b]$ such that $f(c) \leq f(x)$ for all $x \in[a, b]$.

AP \#2 Let A be any $m \times n$ matrix, and assume that \mathbf{y} is a solution to the linear system $A \mathbf{x}=\mathbf{b}$. If \mathbf{z} is another solution to $A \mathbf{x}=\mathbf{b}$, show that there exists a $\mathbf{w} \in \mathbb{R}^{n}$ such that $\mathbf{z}=\mathbf{y}+\mathbf{w}$ and \mathbf{w} is a solution to the homogeneous system $A \mathbf{x}=\mathbf{0}$. Hint: $\mathbf{z}=\mathbf{y}-\mathbf{y}+\mathbf{z}$.

AP \#3 Prove or disprove: If A and B are invertible $n \times n$ matrices, then $(A+B)$ is invertible.
Extra Credit (Note: I will not give any hints about extra credit problems.) Call an $n \times n$ matrix A nilpotent if $A^{k}=0$ for some positive integer k. Prove that if A is an $n \times n$ nilpotent matrix, then $I-A$ is invertible (where I is the $n \times n$ identity matrix).

Homework \#5
due Thursday, Feb. 25
$\S 2.2 \# 12,14,32$
Hint: For $\# 12$, read the hint for $\# 10$. For $\# 32$, make sure to solve the system you create and find the polynomial $p(x)$.
$\S 2.3 \# 2,8,10(\mathrm{a})(\mathrm{c}), 18,20$
$\S 3.1 \# 2,4(\mathrm{~b}), 6(\mathrm{~b}), 8,12(\mathrm{a})(\mathrm{b})$

