Linear Algebra MATH 224W – Spring 2016

Week 6: Determinants

Writing Assignment #5

due Monday, Feb. 22 Wednesday, Feb. 24

 $\S2.3 \#24, 25$

There are many ways to approach #25, so do not feel that you must to use Theorem 2.9, as the hint suggests.

AP #1 This is not a proof, but please still type it up (carefully). Rewrite the following sentence in symbolic logic notation; \mathcal{F} denotes the set of all functions from \mathbb{R} to \mathbb{R} . Think carefully about the placement of quantifiers! *Hint: This statement is an implication!*

For all $a, b \in \mathbb{R}$ with a < b and any function $f \in \mathcal{F}$ that is continuous on [a, b], there is some $c \in [a, b]$ such that $f(c) \leq f(x)$ for all $x \in [a, b]$.

- AP #2 Let A be any $m \times n$ matrix, and assume that **y** is a solution to the linear system $A\mathbf{x} = \mathbf{b}$. If **z** is another solution to $A\mathbf{x} = \mathbf{b}$, show that there exists a $\mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{z} = \mathbf{y} + \mathbf{w}$ and \mathbf{w} is a solution to the homogeneous system $A\mathbf{x} = \mathbf{0}$. *Hint*: $\mathbf{z} = \mathbf{y} \mathbf{y} + \mathbf{z}$.
- AP #3 Prove or disprove: If A and B are invertible $n \times n$ matrices, then (A + B) is invertible.
- Extra Credit (Note: I will not give any hints about extra credit problems.) Call an $n \times n$ matrix A nilpotent if $A^k = 0$ for some positive integer k. Prove that if A is an $n \times n$ nilpotent matrix, then I A is invertible (where I is the $n \times n$ identity matrix).

Homework #5

due Thursday, Feb. 25

- §2.2 #12, 14, 32 Hint: For #12, read the hint for #10. For #32, make sure to solve the system you create and find the polynomial p(x).
- $\S2.3 \#2, 8, 10(a)(c), 18, 20$
- $\S3.1 \#2, 4(b), 6(b), 8, 12(a)(b)$