Week 7: Determinants
Writing Assignment \#6
due Monday, Feb. 29 due Thursday, Mar. 3
$\S 3.2 \# 10,11,15(\mathrm{a})$
Aim for short, concise proofs.
AP \#1 Prove that if $A \in M_{n \times n}$ and every entry of A is a rational number, then $\operatorname{det} A$ is also a rational number. Hint: try using the definition of the determinant. It is quite possible that your proof will be very short.

AP \#2 Let n be an positive odd integer. Prove that if $A \in M_{n \times n}$ and $A^{2}=2 I_{n}$, then some entry in A is an irrational number.

Homework \#6

due Thursday, Mar. 3 Friday, Mar. 4
$\S 3.1 \# 12(\mathrm{c})$
$\S 3.2 \# 2(\mathrm{c}-\mathrm{f}), 3,4,8,9,24(\mathrm{a}), 26(\mathrm{~b})$
For $\# 2,8$, and 9 make sure to cite any results you use.
§3.3 \#4, 12
AP \#1 Compute the following determinants using cofactor expansion (Theorem 3.10). Hint: start your expansion along a row or column that has many zero entries.
(a)

$$
\left|\begin{array}{rrrr}
1 & 0 & 3 & 0 \\
2 & 1 & -4 & -1 \\
3 & 2 & 4 & 0 \\
0 & 3 & -1 & 0
\end{array}\right|
$$

(b)

$$
\left|\begin{array}{rrrr}
-1 & 0 & 0 & -2 \\
5 & 6 & 7 & 8 \\
0 & -7 & 0 & 0 \\
0 & 3 & -1 & 5
\end{array}\right|
$$

