Linear Algebra
 MATH 224W - Spring 2016

Week 9: Span and Linear Independence

Writing Assignment \#8
due Monday, Mar. 28 Wednesday, Mar. 30

AP \#1 Let $W=\left\{A \in M_{2 \times 2} \mid \operatorname{tr}(A)=0\right\}$. (Recall that we already proved that W is a vector space; in fact, we proved it is a subspace of $M_{2 \times 2}$.) Prove that W is spanned by the set

$$
S=\left\{\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\} .
$$

AP $\# 2$ Let $\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ be vectors in a vector space V. If $\mathbf{u} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, prove that

$$
\operatorname{span}\left\{\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}
$$

Hint: Let $S=\operatorname{span}\left\{\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ and $T=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$. To show $S=T$, you must show two things: $S \subseteq T$ and $T \subseteq S$. To show $S \subseteq T$, let s be an arbitrary element of S, and then work to show that $s \in T$. To do this, use the definition of S to write $s=c_{0} \mathbf{u}+c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}$ for some $c_{0}, c_{1}, \ldots, c_{k} \in \mathbb{R}$. Now do some math to show that $s \in T$. You can then use a similar approach to show $T \subseteq S$, but this should be much easier.

AP \#3 Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be vectors in a vector space V, and let $c_{1}, \ldots, c_{n} \in \mathbb{R}$ be scalars. Prove that if $c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=0$ and at least one of c_{1}, \ldots, c_{n} is nonzero, then one of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a linear combination of the remaining vectors.
Hint: begin your proof with "assume that $c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=0$ and that $c_{i} \neq 0$ for some $1 \leq i \leq n$." Now try to show that v_{i} is a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{n}$.

Homework \#8

due Thursday, Mar. 31 Friday, Apr. 1

§4.4 \#2, 4(a), 6(a)(d), 8(a)(c), 12, 14
Look at \#13 for inspiration on \#14.
$\S 4.5 \# 2,4,16$

