Linear Algebra MATH 224W – Spring 2016

Week 9: Span and Linear Independence

Writing Assignment #8

due Monday, Mar. 28 Wednesday, Mar. 30

AP #1 Let $W = \{A \in M_{2\times 2} | \operatorname{tr}(A) = 0\}$. (Recall that we already proved that W is a vector space; in fact, we proved it is a subspace of $M_{2\times 2}$.) Prove that W is spanned by the set

 $S = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \right\}.$

AP #2 Let $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ be vectors in a vector space V. If $\mathbf{u} \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$, prove that

 $\operatorname{span}\{\mathbf{u},\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}=\operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}.$

Hint: Let $S = \text{span}\{\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ and $T = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$. To show S = T, you must show two things: $S \subseteq T$ and $T \subseteq S$. To show $S \subseteq T$, let s be an arbitrary element of S, and then work to show that $s \in T$. To do this, use the definition of S to write $s = c_0\mathbf{u} + c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k$ for some $c_0, c_1, \dots, c_k \in \mathbb{R}$. Now do some math to show that $s \in T$. You can then use a similar approach to show $T \subseteq S$, but this should be much easier.

AP #3 Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be vectors in a vector space V, and let $c_1, \ldots, c_n \in \mathbb{R}$ be scalars. Prove that if $c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = 0$ and at least one of c_1, \ldots, c_n is nonzero, then one of the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is a linear combination of the remaining vectors.

Hint: begin your proof with "assume that $c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = 0$ and that $c_i \neq 0$ for some $1 \leq i \leq n$." Now try to show that v_i is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_n$.

Homework #8

due Thursday, Mar. 31 Friday, Apr. 1

 §4.4 #2, 4(a), 6(a)(d), 8(a)(c), 12, 14 Look at #13 for inspiration on #14.

 $\S4.5 \ #2, 4, 16$