Calculus 1 - Outline for Exam 2

Main ideas

A. Definition of the derivative
B. Derivative rules including product, quotient, and chain (composition)
C. Derivative formulas for power, trigonometric, inverse trig., exponential, and logarithmic functions:

$$
x^{n}, e^{x}, a^{x}, \ln x, \log _{a} x, \sin (x), \cos (x), \tan (x), \sec (x), \sin ^{-1}(x), \tan ^{-1}(x)
$$

D. Implicit differentiation
E. Logarithmic differentiation
F. Interpreting derivatives: tangent lines, velocity, and acceleration.

Skills you should have

1. Be able to compute the derivative using the definition of the derivative; that is, using $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ instead of the derivative rules
2. Be able to compute derivatives using the various derivative rules and formulas
3. Be able to compute derivatives of implicitly defined functions, e.g. $\sin (x y)=x^{2}+e^{y}$
4. Be able to compute derivatives of functions using logarithmic differentiation, e.g. $y=x^{\sin x}$
5. Be able to use the graph of $f(x)$ to estimate and sketch $f^{\prime}(x)$ (using slopes)
6. Be able to compute tangent lines
7. Be able to answer questions about velocity and acceleration given a position function

How to study

I. Review core topics
II. Work lots of problems all of the way through-focus on WebAssign problems and Worksheet problems
III. Practice doing several problems in a short amount of time (by timing yourself)
IV. Come talk with me if you have any questions

