\qquad
\qquad
\qquad
\qquad

1. My friend and I are slightly bored and decide to figure out how fast I can throw a ball up in the air. We find a baseball and a tall apartment building. The building will help us measure since each level of a typical residential building is 10 feet tall. I throw the ball straight up while my friend takes a video. Reviewing the video, we build the following table, which lists the height $h(t)$ of the ball at a given time t measured in seconds since I threw the ball.

t (in seconds)	0	0.5	1	1.5	2	2.5	3
$h(t)$ (in feet)	6	52	90	120	142	156	162

(a) How tall am I?
(b) What is the average velocity of the ball from second 0 to second 1? Call this A_{1}. How about from second 1 to second 2? Call this A_{2}.

$$
A_{1}=
$$

$A_{2}=$

To see how fast I throw, let's try to find the velocity of the ball at time $t=1$. Let's write $v(t)$ for velocity, so we want to find $v(1)$.
(c) Which of the following statements is most reasonable: $A_{1}=v(1), A_{1}<v(1)$, or $A_{1}>v(1)$?
(d) Repeat for A_{2}. Which is most reasonable: $v(1), A_{2}<v(1)$, or $A_{2}>v(1)$?

Here's the data again: | t (in seconds) | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h(t)$ (in feet) | 6 | 52 | 90 | 120 | 142 | 156 | 162 |

(e) What is the average velocity of the ball over the interval $[0.5,1]$? How about $[1,1.5]$?
(f) Give your best estimate of $v(1)$ and explain. What would you need to improve your estimate?
(g) Plot the data from the table on the graph below, and sketch the graph of $h(t)$.
(h) Draw the line that passes through $(0, h(0))$ and $(1, h(1))$ on the graph below. Repeat for the line passing through $(1, h(1))$ and $(2, h(2))$. Find the slopes of these two lines and describe how these slopes compare to the average velocities you found in part (b)?

