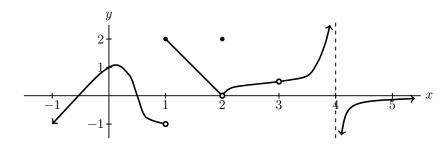
	·	_	
AUTHOR 1		ш	
ICTITOTE I		_	

Worksheet 02


Author 4 _____ \square

1. Let f(x) be a mystery function for which some values are given approximately in the following table.

x	-2	-1	-0.5	-0.1	0	0.1	0.5	1	2
f(x)	0.45	0.84	0.96	0.998		0.998	0.96	0.84	0.45

- (a) Based on this data, what do you think is the value of f(0)?
- (b) Ask me what the mystery function is, and fill in the blank: f(x) =______. Does this change your answer about f(0)? Explain.

2. Suppose the graph of a function h(x) is given below. Find the value of each of the following below.

(a)
$$h(0) =$$

(c)
$$h(2) =$$

(e)
$$h(4) =$$

(b)
$$h(1) =$$

(d)
$$h(3) =$$

3. Answer the following about f and h above.

(a)
$$\lim_{x \to 0} f(x) =$$

(c)
$$\lim_{x \to 1} h(x) =$$

(e)
$$\lim_{x \to 3} h(x) =$$

(b)
$$\lim_{x\to 0} h(x) =$$

(d)
$$\lim_{x \to 2} h(x) =$$

$$\mathbf{(f)} \ \lim_{x \to 4} h(x) =$$

4. Answer the following about f and h above.

(a)
$$\lim_{x\to 0^-} f(x) =$$

(c)
$$\lim_{x \to 1^{-}} h(x) =$$

(e)
$$\lim_{x \to 2^{-}} h(x) =$$

(b)
$$\lim_{x \to 1^+} h(x) =$$

(d)
$$\lim_{x \to 2^+} h(x) =$$

(f)
$$\lim_{x \to 4^-} h(x) =$$

- **5.** Investigate $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right)$ by following the steps below.
 - (a) Fill in the table below, and use it to make a guess about $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right)$. (I did the first one.)

x	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$	0
$\sin\left(\frac{\pi}{2x}\right)$	$\sin\left(\frac{\pi}{\frac{1}{5}}\right) = \sin(5\pi) = \boxed{0}$			

Use the table to make a guess about $\lim_{x\to 0^+} \sin\left(\frac{\pi}{2x}\right) =$

- (b) Find the value of $\sin\left(\frac{\pi}{2x}\right)$ when $x = \frac{1}{1001}$. Does this change your guess about $\lim_{x \to 0^+} \sin\left(\frac{\pi}{2x}\right)$?
- (c) Use your phone to graph $\sin\left(\frac{\pi}{2x}\right)$ at www.desmos.com or www.wolframalpha.com. Give your final answer to $\lim_{x\to 0^+}\sin\left(\frac{\pi}{2x}\right)$ below. Make sure to explain!
- **6.** Find the following given that $g(x) = \begin{cases} \ln x, & \text{if } 0 < x < 1 \\ e^{x-1} 1, & \text{if } 1 < x \le 2. \\ x + e, & \text{if } x > 2 \end{cases}$

(a)
$$\lim_{x \to 1^+} g(x) =$$

(d)
$$\lim_{x \to 2^+} g(x) =$$

(b)
$$\lim_{x \to 1^{-}} g(x) =$$

(e)
$$\lim_{x \to 2^{-}} g(x) =$$

(c)
$$\lim_{x \to 1} g(x) =$$

$$\textbf{(f)} \ \lim_{x\to 2} g(x) =$$

(g) As a follow-up, describe what the graph of g looks like at x = 2.