\qquad

Author 2 \qquad

Author 3 \qquad \square

Worksheet 05

Author 4 \qquad

1. Suppose that the graph of $y=f(x)$ is given below. Let a be an arbitrary number.

- Label the points $(a, f(a))$ and $(x, f(x))$ on the graph on the left.
- Draw the line through the points $(a, f(a))$ and $(x, f(x))$ on the graph on the left.
- Write an equation for the slope of this line underneath it.
- Label the points $(a, f(a))$ and $(a+h, f(a+h))$ on the graph on the right.
- Draw the line through the points $(a, f(a))$ and $(a+h, f(a+h))$ on the graph on the right.
- Write an equation for the slope of this line underneath it.

2. On both of the graphs above (in part 1), draw the tangent line to the curve $y=f(x)$ when $x=a$.
3. The graph of the curve $y=\frac{1}{x}$ is below. Draw the tangent line to the curve $y=\frac{1}{x}$ at the point $\left(2, \frac{1}{2}\right)$, and find an equation for the tangent line to the curve $y=\frac{1}{x}$ at the point $\left(2, \frac{1}{2}\right)$.

4. Suppose an object is dropped from a bridge, and its height in feet after t seconds is given by

$$
s(t)=-16 t^{2}+1600 .
$$

(a) How tall is the bridge?
(b) With what velocity will the ball hit the ground?

