$\qquad$

Author 2 $\qquad$
$\qquad$

## Worksheet 08

$\qquad$

1. Let $f(x)=x^{3} e^{x}-7+\sqrt{x}$
(a) Find $f^{\prime}(x)$.
(b) Find $f^{\prime \prime}(x)$.
2. Suppose that $h(x)$ is function for which $h^{\prime}(x)=x^{2} h(x)$ and $h(2)=10$.
(a) Find $h^{\prime}(2)$.
(b) Find $h^{\prime \prime}(2)$.
3. Find the derivative of $f(x)=\frac{\sqrt{x}+x e^{x}}{e^{x}-x}$
4. Let $f(x)=\frac{x^{2}}{h(x)}$ where the graph of $y=h(x)$ is below. Find $f^{\prime}(1)$.

5. Follow the steps below to prove the quotient rule: $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$.

We will let $h(x)=\frac{f(x)}{g(x)}$. This means that we are looking for a formula for $h^{\prime}(x)$.
(a) Solving for $f(x)$, we have $f(x)=h(x) g(x)$. Now use the product rule to write an expression for $f^{\prime}(x)$

$$
f^{\prime}(x)=
$$

(b) Take your expression for $f^{\prime}(x)$, and solve for $h^{\prime}(x)$ (in terms of $f^{\prime}(x), g(x), g^{\prime}(x)$, and $\left.h(x)\right)$.

$$
h^{\prime}(x)=
$$

(c) Take your expression for $h^{\prime}(x)$, and substitute in $\frac{f(x)}{g(x)}$ for $h(x)$. Simplify, until you get the quotient rule.

$$
h^{\prime}(x)=
$$

