\qquad
\qquad
\qquad
\qquad

1. The graph of $f(x)$ is below.

(a) What is the minimum value for f on $[-3,5]$?
(e) What is the minimum value for f on $(0,3.5)$?
(b) What is the maximum value for f on $[-3,5]$?
(c) What is the minimum value for f on $[0,3.5]$?
(g) What is the minimum value for f on $(-\infty, \infty)$?
(d) What is the maximum value for f on $[0,3.5]$?
(h) What is the maximum value for f on $(-\infty, \infty)$?
2. Let $f(x)$ be the same as in the previous problem.
(a) Find all x-values where f has a local minimum.
(b) Find all x-values where f has a local maximum.
3. Find all absolute and local extrema for the following by graphing.
(a) $f(x)=x^{2}$

Abs. max:
Local max's:
Abs. min:
Local min's:
(b) $f(x)=x^{3}$ on $[-1,2]$

Abs. max:

Abs. min:

Local max's:
Local min's:
(c) $f(x)=x(x-2)(x+2)$

Abs. max:
Local max's:

Abs. min:
Local min's:
(d) $f(x)=\sin x$

Abs. max: Local max's:

Abs. min:
Local min's:
4. Find the absolute extrema of $f(x)=x^{2} e^{-3 x}$ on $[-1,1]$.

