First Add Some R Packages to the Workspace.
Caution: warning messages are suppressed to reduce clutter in the output.
tidyverse: Importing data, cleaning data, data manipulation, & data visualization
kableExtra: Build HTML tables
DataExplorer: Exploratory Data Analysis & Feature Engineering
tableone: Standardized mean differences for before and after matching
survey: Matched data with match weights
Matching: Propensity score matching
cobalt: Covariate balance
reshape2: Covariate balance plot
rbounds: Rosenbaum Sensitivity test
library(tidyverse)
library(kableExtra)
library(DataExplorer)
library(tableone)
library(survey)
library(Matching)
library(cobalt)
library(reshape2)
library(rbounds)
select <- dplyr::select # Resolves package conflicts with select
options(width = 120) # Format print width
General functions used throughout the analysis.
# Update palN for Chem 24 Spring 2019 ------------------------------------------
update.chem24s19 <- function(chem.dat) {
PAL.course.data <- read_rds("palCourseData.rds")
chem24.S19 <- PAL.course.data %>%
filter(term == "Spring 2019", course == "CHEM 24")
# Add a palN indicator for Chem 24 Spring 2019
chem24.S19 <- chem24.S19 %>%
mutate(palN.chem24.S19 = case_when(
pal.grade == "CR" ~ 2,
is.na(pal.grade) ~ 0,
TRUE ~ 1
)) %>%
select(emplid, palN.chem24.S19)
# Check how many student are non-PAL, incomplete PAL, and PAL
table(chem24.S19$palN.chem24.S19)
# 0 1 2
# 51 10 52
chem.dat <- left_join(chem.dat, chem24.S19, by= "emplid" )
chem.dat <- chem.dat %>%
mutate(palN = case_when(
course == "CHEM 24" & term == "Spring 2019" ~ palN.chem24.S19,
TRUE ~ palN
)) %>%
select(-palN.chem24.S19)
return(chem.dat)
}
# Get raw table of mean gpa for PAL and non-PAL -------------------------------
get.raw.tab <- function(classes, df)
{
raw.table = data.frame(class=character(),
nonPALavg=numeric(),
PALavg=numeric(),
Diff=numeric(),
NonPAL_Num= integer(),
PAL_Num=integer(),
CompletePAL=numeric(),
TermPALStart=integer(),
row.names=NULL,
stringsAsFactors = FALSE)
for (i in 1:length(classes))
{
curr.class = classes[i]
temp = subset(df, course==curr.class & course.seq==0)
pal.start=min(unique(temp$term.code[temp$palN==2]))
# only include terms after PAL start term
temp = subset(temp, term.code>= pal.start)
x=tapply(temp$grd.pt.unt,temp$palN,
mean, na.rm=T) %>%
as.numeric %>%
round(2)
y=table(temp$palN) %>% as.numeric
raw.table[i, 'class' ] = curr.class
raw.table[i, c(2:4,7)]=c(x[1], x[3],x[3]-x[1],
round(y[3]/sum(y),2))
raw.table[i, c(5,6,8)]= c(y[1], y[3], pal.start)
}
# formatted table
raw.table <- kable(raw.table, caption = "Raw Comparison of PAL and non-PAL Grades (No Propensity Adjustment)") %>%
kable_styling(full_width= T, position = "left")
return(raw.table)
}
# Data cleaning ----------------------------------------------------------------
clean.data <- function(df)
{
# Replaced coh.term with coh.term.course
yr.course.taken = as.numeric(gsub(".*([0-9]{4})","\\1",df$coh.term.course))
df$delay.from.hs = ifelse(!is.na(yr.course.taken) & !is.na(df$hs.grad.yr),
yr.course.taken-df$hs.grad.yr, NA)
sum(is.na(df$delay.from.hs))
# remove students who did not complete PAL
df=subset(df, palN!=1)
#recode palN to factor with 0/1 levels
df$palN = ifelse(df$palN==2, 1, 0)
#clean up category names in m.rmd and e.rmd
df$m.rmd[df$m.rmd=="Not Remedial\nin Math"]="Not Remedial in Math"
df$m.rmd[df$m.rmd=="Remedial\nin Math"]="Remedial in Math"
df$e.rmd[df$e.rmd=="Not Remedial\nin English"]="Not Remedial in English"
df$e.rmd[df$e.rmd=="Remedial\nin English"]="Remedial in English"
df <- df %>% mutate(m.rmd = factor(m.rmd), e.rmd = factor(e.rmd))
# table(df$e.rmd)
# Create feature, proportion of cumulative units taken that were passes
# To distinguish the students who have taken 0 units from the students who
# have passed 0 units they have taken, students who have taken 0 units are
# labeled as -1. Then the -1 is replaced by the mean of cum.percent.units.passed
df <- df %>%
mutate(cum.percent.units.passed = ifelse(tot.taken.prgrss.start == 0, -1,
tot.passd.prgrss.start / tot.taken.prgrss.start)) %>%
mutate(cum.percent.units.passed = ifelse(cum.percent.units.passed == -1, mean(cum.percent.units.passed, na.rm =TRUE),
cum.percent.units.passed ))
# code instructor as alphabetic letter for anonymity
df$Instructor_01=droplevels(factor(df$Instructor_01))
instructor.vec = sort(unique(df$Instructor_01))
num.instr = length(instructor.vec)
df$Instructor_01 = factor(
df$Instructor_01, levels = instructor.vec, labels=as.character(1:num.instr)
)
key.instr.code = cbind(as.character(instructor.vec), 1:num.instr)
# Add "cMaj", census majors without concentrations/specializations/tracks/etc.
major_lookup <- read.csv("Census Major Lookup.csv", header = TRUE,
stringsAsFactors = FALSE)
df <- merge(df, major_lookup %>% select(censusMajor, cMaj),
by = "censusMajor", all.x = TRUE)
# Recode mother's education and father's education variables.
non.hs.grad= c("No High School","Some High School")
hs.grad= c("High School Graduate","Some College","2-Year College Graduate")
coll.grad= c("4-Year College Graduate","Postgraduate")
parent.ed.levels= c(
"Non-HS Graduate","HS Graduate", "College Graduate", "Unknown"
)
df <- df %>%
mutate(
mother.ed = ifelse(mother.ed %in% non.hs.grad, "Non-HS Graduate",
ifelse(mother.ed %in% hs.grad, "HS Graduate",
ifelse(mother.ed %in% coll.grad, "College Graduate", "Unknown"))),
mother.ed= factor(mother.ed, levels= parent.ed.levels),
father.ed = ifelse(father.ed %in% non.hs.grad,"Non-HS Graduate",
ifelse(father.ed %in% hs.grad, "HS Graduate",
ifelse(father.ed %in% coll.grad, "College Graduate", "Unknown"))),
father.ed= factor(father.ed, levels= parent.ed.levels))
# Recoded adm.area with these counties as local: 'El Dorado', 'Nevada',
# 'Placer', 'Sacramento', 'San Joaquin', 'Solano', 'Yolo'.
counties.rad <- read_csv(
"countiesRadius120mi.csv",
col_types = cols(
state = col_skip(), city = col_skip(), distance.km = col_skip()
)
)
df <- left_join(df, counties.rad, by = "zip")
local.adm.counties <- c(
'El Dorado', 'Nevada', 'Placer', 'Sacramento', 'San Joaquin', 'Solano',
'Yolo'
)
# County will be NA if the zip code is not within 120 mile radius of
# CSUS zip code(95819)
df <- df %>%
mutate(
adm.area =
if_else(!(county %in% local.adm.counties) | is.na(county),
"nonlocal", "local")
) %>%
mutate(sac.county.flg =
if_else(!(county == "Sacramento") | is.na(county), 0, 1)
) %>%
mutate(sac.county.flg = factor(sac.county.flg))
return(df)
}
# Extract prerequisite course grade ---------------------------------------------
get.prereq.grades <- function(course.df, df, prereq) {
# Get student's recent Chem 1B grade
course.stu <- course.df$emplid
prereq.df <- df %>%
select(emplid, course, course.seq, grd.pt.unt, grade) %>%
filter(emplid %in% course.stu, course== prereq) %>%
group_by(emplid) %>%
filter(course.seq == max(course.seq)) %>%
rename(
prereq.course.seq = course.seq, prereq.grd.pt.unt = grd.pt.unt,
prereq.grade = grade
) %>%
select(-course)
dim(prereq.df) # [1] 275 6
prereq.stu <- prereq.df$emplid
course.df <- course.df %>%
filter(emplid %in% prereq.stu)
course.df <- left_join(course.df, prereq.df, by = "emplid")
return(course.df)
}
# Get only the variables that have missing values ---------------------------------------------
get.missing.only <- function(course.df) {
get.missing.only <- course.df %>%
summarise(across(everything(), ~ sum(is.na(.x)))) %>%
gather() %>%
filter(value != 0)
get.missing.only <- course.df %>%
dplyr::select(all_of(get.missing.only$key))
return(get.missing.only)
}
# Get imbalanced variables with SMD > 0.1------------------------------------
get.imbal.vars <- function(tab)
{
get.imbal.vars <- as.data.frame(ExtractSmd(tab))
get.imbal.vars <- get.imbal.vars %>%
rownames_to_column(var = "Variable") %>%
rename(`Before Matching SMD` = `1 vs 2`) %>%
filter(`Before Matching SMD` > 0.1) %>%
arrange(desc(`Before Matching SMD`))
get.imbal.vars <- kable(
get.imbal.vars, caption = "Variables with SMD > 0.1"
) %>%
kable_styling(full_width= F)
return(get.imbal.vars)
}
# Unadjusted means -------------------------------------------------------------
get.unadj.means <- function(df.final)
{
get.unadj.means <- df.final %>%
group_by(palN) %>% summarise(unadj.means = mean(grd.pt.unt)) %>%
pivot_wider(names_from = "palN", values_from = "unadj.means") %>%
rename(`Non-PAL`= `0`, `PAL`= `1`) %>%
mutate(Diff. = `PAL`-`Non-PAL`)
get.unadj.means<- kable(
get.unadj.means, caption = "Unadjusted Mean Grades"
) %>%
kable_styling(full_width= F)
return(get.unadj.means)
}
# Adjusted means --------------------------------------------------------------
adj.means <- function(match.list, matched.dat) {
get.adj.means <- matched.dat %>%
group_by(palN) %>%
summarise(adj.means = weighted.mean(grd.pt.unt, match.list$weights)) %>%
pivot_wider(names_from = "palN", values_from = "adj.means") %>%
rename(`Non-PAL`= `0`, `PAL`= `1`) %>%
mutate(Diff. = `PAL`-`Non-PAL`)
# formatted table
get.adj.means<- kable(get.adj.means, caption = "Adjusted Mean Grades") %>%
kable_styling(full_width= F)
return(get.adj.means)
}
# Match Table ------------------------------------------------------------------
create.match.tab <- function(matched.dat) {
matched.dat <- matched.dat %>%
mutate(pal = if_else(palN == 0, "Non-PAL", "PAL"))
pal.flg <- c('Non-PAL', 'PAL')
for (i in seq_along(pal.flg)) {
multiple.matches <- matched.dat %>%
filter(pal ==pal.flg[i]) %>%
count(id) %>%
filter(n> 1) %>%
summarise(n())
single.matches <- matched.dat %>%
filter(pal == pal.flg[i]) %>%
count(id) %>%
filter(n==1) %>%
summarise(n())
if(pal.flg[i] == 'Non-PAL') {
match.tab <- bind_rows(single.matches, multiple.matches)
match.tab <- match.tab %>%
rename('Non-PAL'= 'n()')
}
pal.matches <- bind_rows(single.matches, multiple.matches)
match.tab$PAL <- pal.matches$`n()`
row.names(match.tab) <- c("Single Matches", "Multiple Matches")
}
match.tab <-rbind(
match.tab, "Total Students" = c(sum(match.tab$`Non-PAL`), sum(match.tab$`PAL`))
)
match.tab <- kable(match.tab, caption = "PAL and Non-PAL Matches") %>%
kable_styling(full_width= F)
return(match.tab)
}
# ATT plot ---------------------------------------------------------------------
# https://livefreeordichotomize.com/2019/01/17/understanding-propensity-score-weighting/
# https://www.csus.edu/brand/colors.html
get.att.plot <- function(df.final, match.list)
{
df.final$p.score <- p.score
df.final <- df.final %>%
select(-id) %>%
rownames_to_column(var = "id")
ps.dat <- df.final %>%
select(id, palN, p.score) %>%
pivot_wider(
names_from = "palN", values_from = "p.score", names_prefix = "b.pal."
)
before.match <- ps.dat %>%
select(b.pal.0, b.pal.1)
matched.dat <- df.final[unlist(match.list[c("index.treated", "index.control")]), ]
matched.dat$match.weights<- c(match.list$weights, match.list$weights)
after.match <-matched.dat %>%
select(-id) %>%
rownames_to_column(var = "id")
after.match <- after.match %>%
pivot_wider(names_from = "palN", values_from = "p.score", names_prefix = "pal.")
after.match <- after.match %>%
select(pal.0, pal.1, match.weights)
get.att.plot <- ggplot() +
geom_histogram(data = before.match, bins = 50, aes(b.pal.1), alpha = 0.5) +
geom_histogram(data = after.match,bins = 50, aes(pal.1, weight = match.weights),
fill = "#043927", alpha = 0.5) +
geom_histogram(data = before.match, bins = 50, alpha = 0.5,
aes(x = b.pal.0, y = -..count..)) +
geom_histogram(data = after.match, bins = 50,
aes(x = pal.0, weight = match.weights, y = -..count..),
fill = "#c4b581", alpha = 0.5) +
ylab("Count") + xlab("Propensity Scores") +
geom_hline(yintercept = 0, lwd = 0.5) +
scale_y_continuous(label = abs)
return(get.att.plot)
}
# Variable Percent Improvement -------------------------------------------------
get.var.perc.tab <- function(list.bal) {
get.var.perc.tab <- list.bal %>%
pluck("Balance") %>%
rownames_to_column("Variable") %>%
dplyr::select("Variable", "Type", "Diff.Un","Diff.Adj") %>%
mutate(`% Improvement` = if_else(Diff.Un == 0, 0, round(((abs(Diff.Un) - abs(Diff.Adj))/ abs(Diff.Un)) * 100 , 0))) %>%
arrange(desc(`% Improvement`))
get.var.perc.tab <- get.var.perc.tab %>% dplyr::select("Variable", "Diff.Un", "Diff.Adj", `% Improvement`)
return(get.var.perc.tab)
}
# Covariate Balance Plots -------------------------------------------------------
# https://cran.r-project.org/web/packages/tableone/vignettes/smd.html
# https://www.csus.edu/brand/colors.html
get.bal.plot <- function(unmatched.tab, matched.tab) {
## Construct a data frame containing variable name and SMD from all methods
dataPlot <- data.frame(variable = rownames(ExtractSmd(unmatched.tab)),
Unmatched = as.numeric(ExtractSmd(unmatched.tab)),
Matched = as.numeric(ExtractSmd(matched.tab)) )
## Create long-format data for ggplot2
dataPlotMelt <- melt(data = dataPlot,
id.vars = c("variable"),
variable.name = "Method",
value.name = "SMD")
## Order variable names by magnitude of SMD
varNames <- as.character(dataPlot$variable)[order(dataPlot$Unmatched)]
## Order factor levels in the same order
dataPlotMelt$variable <- factor(dataPlotMelt$variable,
levels = varNames)
## Plot using ggplot2
# Sac State colors and dashed line
get.bal.plot <-ggplot(
data = dataPlotMelt, mapping =
aes(x = variable, y = SMD, group = Method, color= Method)) +
scale_color_manual(values = c("#043927", "#c4b581")) +
geom_line(aes(linetype = Method)) +
geom_point() +
scale_linetype_manual(values= c("dashed", "solid")) +
geom_hline(yintercept = 0.1, color = "black", size = 0.1) +
coord_flip() +
theme_bw() + theme(legend.key = element_blank())
return(get.bal.plot)
}
# PAL Effect -------------------------------------------------------------------
get.pal.effect <- function(match.list, matched.dat, course) {
get.gamma <- psens(match.list, Gamma=2.0, GammaInc = 0.1)[["bounds"]] %>%
filter(`Lower bound` < 0.05 & 0.05 < `Upper bound`) %>%
slice_min(Gamma) %>%
select(Gamma)
get.pal.effect <- matched.dat %>%
group_by(palN) %>%
summarise(adj.means = weighted.mean(grd.pt.unt, match.list$weights)) %>%
pivot_wider(names_from = "palN", values_from = "adj.means") %>%
rename(`Non-PAL`= `0`, `PAL`= `1`) %>%
mutate(Course= course, .before= "Non-PAL") %>%
mutate(Diff. = `PAL`-`Non-PAL`) %>%
mutate(`Std. error`= match.list$se, .after= "Diff.") %>%
mutate(
`p-val`= formatC( 1-pnorm(Diff./`Std. error`), format = "e", digits = 2),
Sensitivity= get.gamma$Gamma,
`N(non-PAL)`= length(unique(match.list$index.control)),
`N(PAL)`= match.list$wnobs
)
return(get.pal.effect)
}
Specialized functions for each course.
## BIO 22 ====================================================================
## Filter to relevant variables
bio22.step.vars <- function(course.df) {
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age', 'course.count',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed', 'fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01', 'median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus', 'palN', 'grd.pt.unt', 'sat.math.score',
'sat.math.flg', 'sat.verbal.score', 'sat.verbal.flg', 'AP_BIOL', 'AP_CALAB',
'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg', 'AP_CALBC.flg',
'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(bio22.dat))
bio22.final <- bio22.dat[ ,new.vars]
return(bio22.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
bio22.step <- function(final.df) {
# AP_CALAB
min.model <- glm(
palN ~ cum.percent.units.passed + eth.erss + gender + sat.math.score +
sat.verbal.score + sat.math.flg + AP_CALAB + AP_CALAB.flg,
data= bio22.final, family=binomial
)
summary(min.model)
biggest <- formula(glm(palN ~. - grd.pt.unt, data=bio22.final, family=binomial))
bio22.step.first.order <- step(
min.model, direction="forward", scope = biggest, trace=FALSE, k=2)
summary(bio22.step.first.order)
bio22.step.first.order$anova
model.first.order <- formula(bio22.step.first.order)
bio22.first.order.prop.model <- glm(
model.first.order, data=bio22.final, family=binomial
)
return(bio22.first.order.prop.model)
}
## CHEM 1A ====================================================================
## Filter to relevant variables
chem1a.step.vars <- function(course.df) {
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed','fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01', 'median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus','palN', 'grd.pt.unt', 'sat.math.score',
'sat.math.flg', 'sat.verbal.score', 'sat.verbal.flg', 'AP_BIOL', 'AP_CALAB',
'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg', 'AP_CALBC.flg',
'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(chem1a.dat))
chem1a.final <- chem1a.dat[ ,new.vars]
return(chem1a.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
chem1a.step <- function(final.df) {
# Stepwise selection selected AP_CALAB.flg, AP_BIOL.flg, AP_CHEM, and
# AP_CHEM.flg
min.model <- glm(
palN ~ cum.percent.units.passed + eth.erss + gender + sat.math.score +
sat.verbal.score + sat.math.flg + AP_CALAB + AP_CALAB.flg + AP_BIOL +
AP_BIOL.flg + AP_CHEM + AP_CHEM.flg, data= chem1a.final, family=binomial
)
summary(min.model)
biggest <- formula(
glm(palN ~. - grd.pt.unt, data=chem1a.final, family=binomial)
)
chem1a.step.first.order <- step(
min.model, direction="forward", scope = biggest, trace=FALSE, k=2
)
summary(chem1a.step.first.order)
chem1a.step.first.order$anova
model.first.order <- formula(chem1a.step.first.order)
chem1a.first.order.prop.model <- glm(
model.first.order, data=chem1a.final, family=binomial
)
return(chem1a.first.order.prop.model)
}
## CHEM 1B ====================================================================
## Filter to relevant variables
chem1b.step.vars <- function(course.df) {
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed', 'fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01','median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus', 'palN', 'grd.pt.unt', 'chem1a.grd.pt.unt',
'AP_BIOL', 'AP_CALAB', 'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg',
'AP_CALBC.flg', 'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(chem1b.dat))
chem1b.final <- chem1b.dat[ ,new.vars]
return(chem1b.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
chem1b.step <- function(final.df) {
# Stepwise selection selected AP_BIOL.flg and AP_CHEM.flg
# Removed AP_BIOL.flg. Then stepwise selection selected AP_CALAB.flg.
# Removed AP_CALAB.flg and pct.female.head.flg
min.model <- glm(
palN ~ chem1a.grd.pt.unt + cum.percent.units.passed + eth.erss + gender +
AP_CHEM + AP_CHEM.flg, data= chem1b.final, family=binomial
)
summary(min.model)
biggest <- formula(
glm(palN ~. - grd.pt.unt - AP_BIOL.flg - AP_CALAB.flg - pct.female.head.flg,
data=chem1b.final, family=binomial)
)
chem1b.step.first.order <- step(min.model,
direction="forward",scope = biggest,
trace=FALSE, k=2)
summary(chem1b.step.first.order)
chem1b.step.first.order$anova
model.first.order <- formula(chem1b.step.first.order)
chem1b.first.order.prop.model <- glm(model.first.order, data=chem1b.final, family=binomial)
return(chem1b.first.order.prop.model)
}
## CHEM 4 ====================================================================
## Filter to relevant variables
chem4.step.vars <- function(course.df)
{
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed','fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01','median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus', 'palN', 'grd.pt.unt','sat.math.score',
'sat.math.flg', 'sat.verbal.score', 'sat.verbal.flg', 'AP_BIOL', 'AP_CALAB',
'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg', 'AP_CALBC.flg',
'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(chem4.dat))
chem4.final <- chem4.dat[ ,new.vars]
return(chem4.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
chem4.step <- function(final.df)
{
# "AP_BIOL"
min.model <- glm(
palN ~ cum.percent.units.passed + eth.erss + gender+ sat.math.score +
sat.verbal.score+sat.math.flg + AP_CALAB+AP_CALAB.flg, data= chem4.final,
family=binomial
)
summary(min.model)
biggest <- formula(
glm(palN ~. - grd.pt.unt - AP_BIOL, data=chem4.final, family=binomial)
)
chem4.step.first.order <- step(
min.model, direction="forward", scope = biggest, trace=FALSE, k=2)
summary(chem4.step.first.order)
chem4.step.first.order$anova
model.first.order <- formula(chem4.step.first.order)
chem4.first.order.prop.model <- glm(
model.first.order, data=chem4.final, family=binomial
)
return(chem4.first.order.prop.model)
}
## CHEM 24 ====================================================================
## Filter to relevant variables
chem24.step.vars <- function(course.df)
{
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed', 'fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01', 'median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus', 'palN', 'grd.pt.unt', 'chem1b.grd.pt.unt',
'chem1b.term.gpa', 'chem1b.units.attempted', 'AP_BIOL', 'AP_CALAB',
'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg', 'AP_CALBC.flg',
'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(chem24.dat))
chem24.final <- chem24.dat[ ,new.vars]
return(chem24.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
chem24.step <- function(final.df) {
min.model <- glm(
palN ~ chem1b.grd.pt.unt + cum.percent.units.passed + eth.erss + gender,
data= chem24.final, family=binomial
)
summary(min.model)
biggest <- formula(
glm(palN ~.- grd.pt.unt - acad.stand - reason - pct.female.head.flg,
data=chem24.final, family=binomial)
)
chem24.step.first.order <- step(
min.model, direction="forward", scope = biggest, trace=FALSE, k=2
)
summary(chem24.step.first.order)
chem24.step.first.order$anova
model.first.order <- formula(chem24.step.first.order)
chem24.first.order.prop.model <- glm(
model.first.order, data=chem24.final, family=binomial
)
return(chem24.first.order.prop.model)
}
Make sure the PAL datafile in the same directory as this RMarkdown file.
PALdatafull <- read_rds("paldatafull_csv.rds")
dim(PALdatafull)
## [1] 1099371 174
sum(PALdatafull$grd.pt.unt)
## [1] 2237555
The files which includes data through the Spring 2019 semester has 1099371 rows and 174 columns. The total of the grd.pt.unt column is 2237555.
bio.classes <- paste("BIO", c(22, 121, 131, 139, 184))
bio.dat <- PALdatafull %>%
filter(base.time.course == 1, course %in% bio.classes) %>%
mutate(course = factor(course, levels = bio.classes))
dim(bio.dat)
## [1] 19652 174
num.stu <- dim(bio.dat)[1]
num.vars <- dim(bio.dat)[2]
There are 19652 rows and 174 variables. Each row is a biology student. So, there is a total of 19652 biology students.
The course.seq variables indicate how many times a student has taken a course prior to the current attempt. To filter on the first attempt at a course, we set course.seq to 0.
Note: Excludes incomplete PAL students
get.raw.tab(bio.classes, bio.dat)
class | nonPALavg | PALavg | Diff | NonPAL_Num | PAL_Num | CompletePAL | TermPALStart |
---|---|---|---|---|---|---|---|
BIO 22 | 1.81 | 2.33 | 0.52 | 949 | 413 | 0.29 | 2158 |
BIO 121 | 2.18 | 2.39 | 0.21 | 888 | 390 | 0.30 | 2148 |
BIO 131 | 2.33 | 2.76 | 0.43 | 1516 | 544 | 0.26 | 2148 |
BIO 139 | 2.41 | 2.61 | 0.20 | 308 | 98 | 0.24 | 2178 |
BIO 184 | 2.51 | 2.73 | 0.22 | 509 | 149 | 0.22 | 2178 |
Create new variables.
delay.from.hs: delay since high school
cum.percent.units.passed: cumulative percent of units passed
cMaj: census majors without concentrations/specializations/tracks/etc.
county: which county did the student live in at the time of application to Sac state
sac.county.flg: did the student live in Sacramento county at the time of application to Sac State
Collapse sparse categories and other miscellaneous clean up of data. Sparse categories can cause complete separation in logistic regression and are only predictive for a few students.
# Check how many students did not complete PAL
sum(bio.dat$palN==1)
## [1] 106
incl.pal.stu <- sum(bio.dat$palN==1)
bio.dat <- clean.data(bio.dat)
dim(bio.dat)
## [1] 19546 179
There were 106 biology students who did not complete PAL and were removed from the analysis. There are now 19546 biology students instead of 19652.
There were originally 174 variables in the data set, 5 variables were added, so there are now 179 total variables in the data set.
Based on data for 413 PAL students and 949 non-PAL students, the unadjusted, raw difference in average grade for PAL and non-PAL students was 0.52 on a A=4.0 grade scale. However, since students self-select into supplemental PAL instruction, it is possible that the resulting PAL and non-PAL groups were not balanced with respect to other characteristics which could impact course grade. For example, if students with better study habits tend to enroll in PAL, all else being equal, the PAL mean grade would be higher than non-PAL– even if PAL had no effect on course grade. Consequently, we also performed a propensity score analysis to adjust the estimated effect of PAL on course grade for potential self-selection biases.
After adjusting for self-selection bias, we found that PAL students earned an average grade \(0.60\pm 0.13\) higher than non-PAL students. A sensitivity analysis indicates that this analysis is moderately sensitive to unknown confounders. Although the data give us sufficient evidence to conclude that PAL increases students’ grades in Bio 22, the existence of an unknown confounder similar in magnitude to living in on-campus housing during their first year, ethnicity, or major would nullify that conclusion.
A propensity score analysis was conducted to assess the effect of PAL supplemental instruction on Bio 22 course grade. Propensity score adjustment was necessary since the data are observational and the characteristics of students who voluntarily enroll in PAL may differ in ways that may, independently of PAL, impact course grade compared to students who do not enroll in PAL. In propensity score analysis, variables related to both likelihood of PAL enrollment and course grade (confounders) are used in a logistic regression model to obtain a propensity score, which is a student’s likelihood of enrolling in PAL.
For Bio 22, 16 covariates were found to have a statistically significant relationship to likelihood of enrolling in PAL. Variables related to increased likelihood of enrolling were: female gender, lower AP Calculus exam scores, higher term units attempted, CSUS GPA at start of term, enrollment in PAL in the past, academic major, living in off-campus housing during their first year, fewer years between first term at CSUS and high school graduation, and not living in Sacramento county at the time of application.
Using the propensity score model, all students in the dataset, PAL and non-PAL, are assigned a propensity score. Then, each PAL student is matched to one or more non-PAL students who have similar propensity score(s). After matching, the PAL and matched non-PAL groups are compared to determine if the distribution of each covariate is similar between the two groups. This is called a balance check. If the standardized difference between the non-PAL and PAL means is less than 0.10 then the strong criteria in (Leite 2017, p.10) is met for covariate balance. If the standardized difference is under 0.25, then a more lenient criteria is met. The highest absolute value standardized mean difference in this analysis is 0.0951. Consequently, adequate balance appears to have been achieved.
The difference in the average grade for the matched PAL and non-PAL data is then calculated. The estimated increase in the mean grade of students in PAL over those not in PAL after correcting for self-selection biases is \(0.60\pm 0.13\) or between 0.47 and 0.73 on a 4.0 grade scale. This result is statistically significant with a P-value of \(1.28x10^{-6}\) and is based on 326 PAL students and 332 non-PAL students. For comparison, the non-propensity score adjusted difference in average grade for PAL and non-PAL students was 0.52.
The estimated PAL effect is based on the assumption that the propensity model includes all potential confounders for PAL enrollment and grade in Bio 22. However, it is possible that unknown confounders exist. A sensitivity analysis was conducted to determine how strong an unknown confounder must be to nullify the statistically significant PAL effect that was found in this analysis. The sensitivity analysis (Rosenbaum, 2002) indicated that an unknown confounder which increases the odds of being in PAL by more than 1.6 is enough to change the treatment effect from significant to non-significant. Inspection of the covariates in the estimated propensity model for Bio 22 indicates that if there is an unknown confounder that has an effect on the propensity score similar to the effect of living in on-campus housing during their first year, ethnicity, or major observed in this analysis, the PAL effect would become non-significant. Thus, this finding is sensitive to unknown confounders. It is possible a variable like the number of hours per week a student works (which is not in our dataset) is an unknown confounder which could reverse the statistical significance of this analysis.
Additionally, a number of variables were removed from this analysis due to large amounts of missingness. Since all students who had missing information on any included covariate were eliminated from the analysis, a balance had to be struck between retaining a sufficiently large pool of PAL and non-PAL students and retaining a sufficient number of important covariates. Variables which were eliminated from this analysis had substantial missing data or were subjectively judged as unlikely to be confounding. The choices about which variables to retain resulted in the original pool of 413 PAL students in Bio 22 being reduced to 326. Also, 332 non-PAL students were selected out of 949 original non-PAL students.
When a PAL student had more than one suitable match among the non-PAL students, all non-PAL students were taken as matches and weighted appropriately in the final estimated PAL effect. There were 523 non-PAL matches. Of the 326 PAL students, 196 were matched one-to-one with non-PAL students and 130 were matched one-to-many with non-PAL students.
The non-PAL and PAL groups will include students with only first attempts at BIO 22. They will also include students with previous PAL participation and/or are currently in a PAL for another course.
# Excludes course repeats
bio22.dat <- bio.dat %>%
filter(course=="BIO 22", pass.term.flg == "PASS Term", course.seq== 0)
dim(bio22.dat) # 1362 179
## [1] 1362 179
There are 1,362 BIO 22 first attempt only students.
Collapse ‘cMaj’ variable separately for each course since the amount of collapsing necessary will vary by course.
# Collapsed cMaj categories to Biology and Other majors at 0.07
with(bio22.dat, table(cMaj, palN))
## palN
## cMaj 0 1
## Anthropology 2 0
## Biology 333 125
## Business 8 1
## Chemistry 27 7
## Child Devel/Early Childhood Ed 14 4
## Civil Engineering 1 0
## Communications 3 1
## Computer Engineering 1 0
## Computer Science 6 0
## Construction Management 0 1
## Criminal Justice 6 2
## Dance 1 1
## Economics 1 0
## English 1 1
## Family & Consumer Sciences 2 0
## Film 0 1
## French 1 0
## Gender/Ethnic/Women's Studies 1 0
## Gerontology 0 3
## Graphic Design 1 2
## Health Science 8 5
## History 2 0
## Interdisciplinary Studies/Special Major 2 0
## Interior Design 0 2
## International Business 1 0
## Journalism 1 0
## Kinesiology/Physical Education 422 222
## Liberal Studies 1 0
## Mechanical Engineering 1 0
## Nursing 23 17
## Nutrition 8 2
## Philosophy 1 1
## Physics 1 0
## Psychology 7 1
## Recreation Administration 1 0
## Social Science 2 0
## Sociology 2 0
## Spanish 1 0
## Speech Pathology 1 2
## Undeclared 35 11
bio22.dat <- group_category(data = bio22.dat, feature = "cMaj", threshold = 0.07, update = TRUE)
with(bio22.dat, table(cMaj, palN))
## palN
## cMaj 0 1
## Biology 333 125
## Chemistry 27 7
## Child Devel/Early Childhood Ed 14 4
## Kinesiology/Physical Education 422 222
## Nursing 23 17
## OTHER 75 26
## Undeclared 35 11
Remove variables having too many missing values in order to retain a larger pool of PAL and non-PAL students.
# Include only variables that are missing values
vars.missing <- get.missing.only(bio22.dat)
missingness.rpt <- profile_missing(vars.missing)
# missingness.rpt[order(missingness.rpt$pct_missing, decreasing = TRUE), ]
# check which variables are missing >5% values
vars.missing.data <- missingness.rpt %>%
filter(pct_missing > 0.05)
sum(missingness.rpt$pct_missing>0.05)
## [1] 37
vars.missing.data [order(vars.missing.data $pct_missing, decreasing = TRUE), ]
## feature num_missing pct_missing
## 19 Instructor_02 1362 1.00000000
## 25 deg.plan4 1362 1.00000000
## 26 deg.plan5 1362 1.00000000
## 27 deg.plan6 1362 1.00000000
## 24 deg.plan3 1361 0.99926579
## 21 withdraw_reason 1357 0.99632893
## 23 deg.plan2 1356 0.99559471
## 13 trf.gpaADM 1083 0.79515419
## 4 pledge.term 1050 0.77092511
## 20 treat.section 938 0.68869310
## 29 grad.termERS 876 0.64317181
## 22 deg.plan1 874 0.64170338
## 28 grad.term 874 0.64170338
## 30 ttg 874 0.64170338
## 1 fys.term.code 839 0.61600587
## 2 fys.grd 839 0.61600587
## 3 fys.rpt.flg 839 0.61600587
## 15 ge.critical.thinking.status 442 0.32452276
## 16 ge.english.comp.status 442 0.32452276
## 17 ge.math.status 442 0.32452276
## 18 ge.oral.comm.status 442 0.32452276
## 14 admit.term 433 0.31791483
## 7 sat.math.score 361 0.26505140
## 8 sat.math.flg 361 0.26505140
## 9 sat.verbal.score 361 0.26505140
## 10 sat.verbal.flg 361 0.26505140
## 11 sat.test.date 361 0.26505140
## 12 hs.gpa 260 0.19089574
## 31 plan.college 244 0.17914831
## 32 plan.college.desc 244 0.17914831
## 33 plan.dept 244 0.17914831
## 34 plan.deptAbbr 244 0.17914831
## 35 plan.degree 244 0.17914831
## 36 plan.type 244 0.17914831
## 37 county 189 0.13876652
## 5 m.rmd.admin 82 0.06020558
## 6 m.rmd.admin.detail 82 0.06020558
plot_missing(bio22.dat %>% select(all_of(vars.missing.data$feature)))
# Remove variables missing >5%, except for "sat.math.score", "sat.verbal.score", "hs.gpa", "sat.math.flg"
bio22.dat <- bio22.dat %>%
select(!all_of(vars.missing.data$feature),
c("sat.math.score", "sat.verbal.score", "hs.gpa","sat.math.flg"))
dim(bio22.dat) # 1362 146
## [1] 1362 146
37 variables missing >5%
The variables below are important and force included, even though they are missing >5%
“sat.math.score”, “sat.verbal.score”, “hs.gpa”,“sat.math.flg”
Only 33 variables were removed due to missingness and there are now 146 variables instead of 179 variables.
bio22.dat <- bio22.dat[complete.cases(bio22.dat), ]
dim(bio22.dat) # 937 146
## [1] 937 146
937 out of 1362 students are kept
425 students were removed due to missingness of variables
single.vars <- bio22.dat %>%
summarise(across(everything(), ~ n_distinct(.x))) %>%
select_if(. == 1)
# Table of variables with single values
CreateTableOne(vars = names(single.vars), data = bio22.dat)
##
## Overall
## n 937
## country = USA (%) 937 (100.0)
## career.course = UGRD (%) 937 (100.0)
## acad.prog.course = UGD (%) 937 (100.0)
## course (%)
## BIO 22 937 (100.0)
## BIO 121 0 ( 0.0)
## BIO 131 0 ( 0.0)
## BIO 139 0 ( 0.0)
## BIO 184 0 ( 0.0)
## component = LEC (%) 937 (100.0)
## units (mean (SD)) 4.00 (0.00)
## course.numeric (mean (SD)) 22.00 (0.00)
## div = Lower Division (%) 937 (100.0)
## course.seq (mean (SD)) 0.00 (0.00)
## rpt.flg = First Attempt (%) 937 (100.0)
## c2s = Non-C2S (%) 937 (100.0)
## base.time.course (mean (SD)) 1.00 (0.00)
## years (mean (SD)) 0.50 (0.00)
## withdraw_code = NWD (%) 937 (100.0)
## enrl.flg = Enrolled (%) 937 (100.0)
## enrl.flgERS = Enrolled (%) 937 (100.0)
## rtn.flg = Retained (%) 937 (100.0)
## rtn.flgERS = Retained (%) 937 (100.0)
## pass.term.flg = PASS Term (%) 937 (100.0)
## csus.gpa.start.flg = Not Missing (%) 937 (100.0)
## higher.ed.gpa.start.flg = Not Missing (%) 937 (100.0)
sum(single.vars) # 21
## [1] 21
# remove single-valued variables
bio22.dat<- bio22.dat %>%
dplyr::select(-names(single.vars))
dim(bio22.dat) # 937 125
## [1] 937 125
125 out of 146 variables are kept
21 variables removed due to single values
Sujective judgment was used to narrow the pool of variables down to those likely to be confounders. It’s important to include all variables correlated with outcome even if it is uncertain whether they are related to likeihood of enrolling in PAL. This allows for a more precise estimate of the treatment effect.
bio22.final <- bio22.step.vars(bio22.dat)
names(bio22.final)
## [1] "acad.stand" "adm.area" "bot.level" "cMaj"
## [5] "coh" "course.age" "csus.gpa.start" "cum.percent.units.passed"
## [9] "delay.from.hs" "e.rmd" "eth.erss" "father.ed"
## [13] "fys.flg" "gender" "hous.coh.term.flg" "hs.gpa"
## [17] "Instructor_01" "median.income" "m.rmd" "mother.ed"
## [21] "pct.female.head" "pell.coh.term.flg" "prevPAL" "prevPASS"
## [25] "reason" "sac.county.flg" "term.units.attemptedCensus" "palN"
## [29] "grd.pt.unt" "sat.math.score" "sat.math.flg" "sat.verbal.score"
## [33] "AP_BIOL" "AP_CALAB" "AP_CALBC" "AP_CHEM"
## [37] "AP_BIOL.flg" "AP_CALAB.flg" "AP_CALBC.flg" "AP_CHEM.flg"
## [41] "pct.female.head.flg" "med.inc.flg"
Subjectively identified four potential confounders to force the model to retain: cum.percent.units.passed, gender, eth.erss, sat.math.score, sat.verbal.score, and sat.math.flg (same as sat.verbal.flg). Stepwise variable selection will be used to select which of the variables currently in the PAL dataset to include in the propensity model.
bio22.first.order.prop.model <- bio22.step(bio22.final)
summary(bio22.first.order.prop.model)
##
## Call:
## glm(formula = model.first.order, family = binomial, data = bio22.final)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7671 -0.9137 -0.6395 1.1352 2.3038
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3775015 1.2040989 -0.314 0.753890
## cum.percent.units.passed -1.0822415 1.0554624 -1.025 0.305188
## eth.erssAsian -0.4634201 0.3721018 -1.245 0.212980
## eth.erssForeign -0.6166642 0.8106835 -0.761 0.446853
## eth.erssHispanic -0.0583669 0.3641114 -0.160 0.872645
## eth.erssPacific Islander 0.9985099 0.7949037 1.256 0.209065
## eth.erssTwo or More Races -0.5168364 0.4579780 -1.129 0.259101
## eth.erssUnknown -0.1312048 0.5574675 -0.235 0.813930
## eth.erssWhite -0.4577725 0.3921462 -1.167 0.243068
## genderMale -0.2872814 0.1562340 -1.839 0.065946 .
## sat.math.score -0.0006397 0.0014134 -0.453 0.650813
## sat.verbal.score -0.0021488 0.0013662 -1.573 0.115751
## sat.math.flgold -0.3615956 0.2329028 -1.553 0.120528
## AP_CALAB -0.3784461 0.1622482 -2.333 0.019674 *
## AP_CALAB.flgNot Missing -0.0812130 0.2570992 -0.316 0.752092
## term.units.attemptedCensus 0.1419638 0.0383030 3.706 0.000210 ***
## csus.gpa.start 0.5422919 0.1893888 2.863 0.004191 **
## prevPAL 0.3630843 0.0838341 4.331 1.48e-05 ***
## cMajChemistry 0.2181870 0.5406120 0.404 0.686512
## cMajChild Devel/Early Childhood Ed -0.4823010 0.8039725 -0.600 0.548575
## cMajKinesiology/Physical Education 0.8378476 0.2289283 3.660 0.000252 ***
## cMajNursing 1.4989657 0.4443443 3.373 0.000742 ***
## cMajOTHER 0.1981652 0.3601025 0.550 0.582112
## cMajUndeclared 0.4871465 0.4576017 1.065 0.287073
## hous.coh.term.flgOn-Campus Housing -0.5708439 0.2003577 -2.849 0.004384 **
## delay.from.hs -0.1437080 0.0719453 -1.997 0.045775 *
## sac.county.flg1 -0.3061509 0.1718863 -1.781 0.074892 .
## prevPASS 0.2165654 0.1462875 1.480 0.138764
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1213.4 on 936 degrees of freedom
## Residual deviance: 1092.9 on 909 degrees of freedom
## AIC: 1148.9
##
## Number of Fisher Scoring iterations: 4
p.score <- bio22.first.order.prop.model$fitted.values
bio22.covs <- names(bio22.first.order.prop.model %>% pluck("model") %>% dplyr::select(-palN))
# Unadjusted mean grades
get.unadj.means(bio22.final)
Non-PAL | PAL | Diff. |
---|---|---|
1.760099 | 2.306402 | 0.5463039 |
# Variable Summary Table for unmatched data
unmatched.tab <- CreateTableOne(vars = bio22.covs, strata = "palN",
data = bio22.final, smd = TRUE, test= FALSE)
print(unmatched.tab, smd = TRUE)
## Stratified by palN
## 0 1 SMD
## n 609 328
## cum.percent.units.passed (mean (SD)) 0.91 (0.10) 0.91 (0.09) 0.007
## eth.erss (%) 0.259
## African American 26 ( 4.3) 16 ( 4.9)
## Asian 218 (35.8) 96 (29.3)
## Foreign 8 ( 1.3) 3 ( 0.9)
## Hispanic 178 (29.2) 130 (39.6)
## Pacific Islander 4 ( 0.7) 5 ( 1.5)
## Two or More Races 44 ( 7.2) 17 ( 5.2)
## Unknown 16 ( 2.6) 9 ( 2.7)
## White 115 (18.9) 52 (15.9)
## gender = Male (%) 273 (44.8) 115 (35.1) 0.200
## sat.math.score (mean (SD)) 504.93 (79.84) 495.43 (79.20) 0.119
## sat.verbal.score (mean (SD)) 487.27 (78.52) 478.84 (72.64) 0.111
## sat.math.flg = old (%) 538 (88.3) 270 (82.3) 0.171
## AP_CALAB (mean (SD)) 2.58 (0.52) 2.48 (0.53) 0.200
## AP_CALAB.flg = Not Missing (%) 79 (13.0) 49 (14.9) 0.057
## term.units.attemptedCensus (mean (SD)) 13.57 (2.24) 14.27 (1.93) 0.330
## csus.gpa.start (mean (SD)) 3.01 (0.53) 3.12 (0.49) 0.212
## prevPAL (mean (SD)) 0.52 (1.06) 0.71 (1.29) 0.158
## cMaj (%) 0.291
## Biology 215 (35.3) 90 (27.4)
## Chemistry 14 ( 2.3) 6 ( 1.8)
## Child Devel/Early Childhood Ed 13 ( 2.1) 2 ( 0.6)
## Kinesiology/Physical Education 283 (46.5) 188 (57.3)
## Nursing 15 ( 2.5) 15 ( 4.6)
## OTHER 45 ( 7.4) 17 ( 5.2)
## Undeclared 24 ( 3.9) 10 ( 3.0)
## hous.coh.term.flg = On-Campus Housing (%) 160 (26.3) 75 (22.9) 0.079
## delay.from.hs (mean (SD)) 2.83 (1.56) 2.47 (1.26) 0.255
## sac.county.flg = 1 (%) 294 (48.3) 140 (42.7) 0.112
## prevPASS (mean (SD)) 0.23 (0.58) 0.26 (0.58) 0.040
Check how many variables have SMD > 0.1
addmargins(table(ExtractSmd(unmatched.tab) > 0.1))
##
## FALSE TRUE Sum
## 4 12 16
get.imbal.vars(unmatched.tab)
Variable | Before Matching SMD |
---|---|
term.units.attemptedCensus | 0.3299348 |
cMaj | 0.2912810 |
eth.erss | 0.2585443 |
delay.from.hs | 0.2553547 |
csus.gpa.start | 0.2118672 |
gender | 0.2004051 |
AP_CALAB | 0.1998329 |
sat.math.flg | 0.1708929 |
prevPAL | 0.1582117 |
sat.math.score | 0.1194512 |
sac.county.flg | 0.1124963 |
sat.verbal.score | 0.1114884 |
12 variables have SMD >0.1
Implement a propensity score matching method.
match.bio22 <- with(bio22.final, Match(
Y=bio22.final$grd.pt.unt, Tr = bio22.final$palN, X = p.score,
BiasAdjust = F, estimand = "ATT", M=1, caliper=0.25, replace = TRUE, ties = TRUE))
Standardized mean differences for continuous variables and categorical variables.
# Needed for match table
bio22.final <- bio22.final %>%
rownames_to_column(var = "id")
# Matched data
bio22.matched.dat <- bio22.final[unlist(match.bio22[c("index.treated", "index.control")]), ]
bio22.matched.dat$match.weights<- c(match.bio22$weights, match.bio22$weights)
# Add match weights to matched data
weighted.dat<-svydesign(id=~1,weights=~match.weights, data = bio22.matched.dat)
# Variable Summary Table for matched data with match weights
matched.tab <-svyCreateTableOne(vars = bio22.covs, strata = "palN", data= weighted.dat, smd = TRUE, test = FALSE)
print(matched.tab, smd = TRUE)
## Stratified by palN
## 0 1 SMD
## n 326.00 326.00
## cum.percent.units.passed (mean (SD)) 0.92 (0.09) 0.91 (0.09) 0.094
## eth.erss (%) 0.131
## African American 17.6 ( 5.4) 16.0 ( 4.9)
## Asian 111.8 (34.3) 96.0 (29.4)
## Foreign 3.2 ( 1.0) 3.0 ( 0.9)
## Hispanic 112.2 (34.4) 128.0 (39.3)
## Pacific Islander 3.8 ( 1.2) 5.0 ( 1.5)
## Two or More Races 19.4 ( 6.0) 17.0 ( 5.2)
## Unknown 9.7 ( 3.0) 9.0 ( 2.8)
## White 48.3 (14.8) 52.0 (16.0)
## gender = Male (%) 119.2 (36.6) 115.0 (35.3) 0.027
## sat.math.score (mean (SD)) 502.55 (79.44) 495.64 (79.29) 0.087
## sat.verbal.score (mean (SD)) 484.86 (78.53) 479.51 (72.31) 0.071
## sat.math.flg = old (%) 261.2 (80.1) 268.0 (82.2) 0.053
## AP_CALAB (mean (SD)) 2.47 (0.60) 2.48 (0.53) 0.009
## AP_CALAB.flg = Not Missing (%) 59.0 (18.1) 49.0 (15.0) 0.083
## term.units.attemptedCensus (mean (SD)) 14.44 (2.06) 14.26 (1.94) 0.088
## csus.gpa.start (mean (SD)) 3.11 (0.48) 3.12 (0.49) 0.014
## prevPAL (mean (SD)) 0.70 (1.31) 0.68 (1.24) 0.013
## cMaj (%) 0.124
## Biology 88.5 (27.2) 89.0 (27.3)
## Chemistry 4.6 ( 1.4) 6.0 ( 1.8)
## Child Devel/Early Childhood Ed 1.5 ( 0.5) 2.0 ( 0.6)
## Kinesiology/Physical Education 181.4 (55.7) 187.0 (57.4)
## Nursing 24.0 ( 7.4) 15.0 ( 4.6)
## OTHER 17.1 ( 5.3) 17.0 ( 5.2)
## Undeclared 8.8 ( 2.7) 10.0 ( 3.1)
## hous.coh.term.flg = On-Campus Housing (%) 80.2 (24.6) 75.0 (23.0) 0.038
## delay.from.hs (mean (SD)) 2.45 (1.39) 2.46 (1.26) 0.010
## sac.county.flg = 1 (%) 136.9 (42.0) 140.0 (42.9) 0.019
## prevPASS (mean (SD)) 0.23 (0.59) 0.25 (0.57) 0.030
Continuous variables: Standardized mean differences are computed by using the standard deviation of treated group Binary variables: Raw differences in proportion
All variables are balanced and under the <0.1 mean threshold.
bio22.bal <- bal.tab(match.bio22, formula = f.build("palN", bio22.covs), data = bio22.final,
distance = ~ p.score, thresholds = c(m = .1), un = TRUE, imbalanced.only = TRUE)
bio22.bal
## Balance Measures
## All covariates are balanced.
##
## Balance tally for mean differences
## count
## Balanced, <0.1 30
## Not Balanced, >0.1 0
##
## Variable with the greatest mean difference
## Variable Diff.Adj M.Threshold
## cum.percent.units.passed -0.0951 Balanced, <0.1
##
## Sample sizes
## Control Treated
## All 609. 328
## Matched (ESS) 169.3 326
## Matched (Unweighted) 332. 326
## Unmatched 277. 0
## Discarded 0. 2
get.var.perc.tab(bio22.bal)
## Variable Diff.Un Diff.Adj % Improvement
## 1 p.score 0.757140033 -5.483664e-05 100
## 2 cMaj_Biology -0.078647523 1.431493e-03 98
## 3 cMaj_OTHER -0.022062357 -4.601227e-04 98
## 4 delay.from.hs -0.287221743 1.036247e-02 96
## 5 AP_CALAB -0.198548550 1.004536e-02 95
## 6 csus.gpa.start 0.220446905 1.400119e-02 94
## 7 prevPAL 0.144568525 -1.297841e-02 91
## 8 cMaj_Child Devel/Early Childhood Ed -0.015248909 1.533742e-03 90
## 9 eth.erss_Foreign -0.003989948 -5.112474e-04 87
## 10 gender_Male -0.097666106 -1.303681e-02 87
## 11 cMaj_Kinesiology/Physical Education 0.108474508 1.702454e-02 84
## 12 sac.county.flg -0.055929352 9.406953e-03 83
## 13 term.units.attemptedCensus 0.356927519 -9.032332e-02 75
## 14 sat.math.flg_old -0.060244703 2.091002e-02 65
## 15 eth.erss_Two or More Races -0.020420321 -7.413088e-03 64
## 16 eth.erss_White -0.030297569 1.140082e-02 62
## 17 eth.erss_Pacific Islander 0.008675758 3.578732e-03 59
## 18 cMaj_Undeclared -0.008921062 3.834356e-03 57
## 19 eth.erss_Hispanic 0.104059033 4.836401e-02 54
## 20 hous.coh.term.flg_On-Campus Housing -0.034067243 -1.610429e-02 53
## 21 sat.verbal.score -0.116085624 -7.372148e-02 36
## 22 sat.math.score -0.119934927 -8.720503e-02 27
## 23 eth.erss_Asian -0.065280948 -4.831288e-02 26
## 24 prevPASS 0.039806845 3.026697e-02 24
## 25 eth.erss_African American 0.006087549 -5.061350e-03 17
## 26 cMaj_Chemistry -0.004695823 4.243354e-03 10
## 27 cMaj_Nursing 0.021101165 -2.760736e-02 -31
## 28 AP_CALAB.flg_Not Missing 0.019669390 -3.072597e-02 -56
## 29 eth.erss_Unknown 0.001166446 -2.044990e-03 -75
## 30 cum.percent.units.passed 0.007863796 -9.507585e-02 -1109
get.bal.plot(unmatched.tab, matched.tab)
love.plot(bio22.bal,binary = "raw", stars = "std", var.order = "unadjusted",
thresholds = c(m = .1), abs = F)
create.match.tab(bio22.matched.dat)
Non-PAL | PAL | |
---|---|---|
Single Matches | 213 | 196 |
Multiple Matches | 119 | 130 |
Total Students | 332 | 326 |
Out of 328 PAL students, 326 were matched and 2 were unable to be matched. Out of 326 PAL student matches, 196 PAL students were matched to one non-PAL student and 130 PAL students were matched to multiple non-PAL students.
Out of 523 non-PAL student matches, there were 332 non-PAL students, 213 of the non-PAL students were matched to one PAL student and 119 of the non-PAL students were matched to multiple PAL students.
get.att.plot(bio22.final, match.bio22)
The standardized mean differences of the prognostic scores is -0.0171, which indicates balance. All variables are under the 0.01 mean difference threshold. It is likely that the effect estimate will be relatively unbiased, since the estimated prognostic score is balanced.
# Outcome model of non-PAL group
ctrl.data <- bio22.final %>% filter(palN == 0)
ctrl.fit <- glm(f.build("grd.pt.unt", bio22.covs), data = ctrl.data)
summary(ctrl.fit)
##
## Call:
## glm(formula = f.build("grd.pt.unt", bio22.covs), data = ctrl.data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.7560 -0.8716 0.0303 0.8395 4.1864
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.1402550 0.7201409 -4.361 1.53e-05 ***
## cum.percent.units.passed -0.1622929 0.6399986 -0.254 0.799907
## eth.erssAsian -0.0779431 0.2438373 -0.320 0.749347
## eth.erssForeign 0.3085674 0.4645496 0.664 0.506807
## eth.erssHispanic -0.1654707 0.2422559 -0.683 0.494853
## eth.erssPacific Islander -0.2477167 0.6156367 -0.402 0.687556
## eth.erssTwo or More Races 0.0802446 0.2883046 0.278 0.780856
## eth.erssUnknown 0.3015452 0.3699353 0.815 0.415332
## eth.erssWhite 0.2307871 0.2558751 0.902 0.367456
## genderMale 0.0716462 0.0978066 0.733 0.464141
## sat.math.score 0.0019424 0.0008767 2.216 0.027112 *
## sat.verbal.score 0.0002403 0.0008407 0.286 0.775085
## sat.math.flgold -0.0241787 0.1607446 -0.150 0.880488
## AP_CALAB -0.0216909 0.0911965 -0.238 0.812083
## AP_CALAB.flgNot Missing 0.0779702 0.1512937 0.515 0.606500
## term.units.attemptedCensus 0.0214280 0.0217106 0.987 0.324062
## csus.gpa.start 1.1731403 0.1167655 10.047 < 2e-16 ***
## prevPAL 0.1710735 0.0535187 3.197 0.001466 **
## cMajChemistry 0.2927482 0.3206663 0.913 0.361654
## cMajChild Devel/Early Childhood Ed 0.3579739 0.3331423 1.075 0.283028
## cMajKinesiology/Physical Education -0.5104136 0.1382659 -3.692 0.000244 ***
## cMajNursing -0.3789272 0.3221003 -1.176 0.239906
## cMajOTHER -0.3813397 0.2029681 -1.879 0.060770 .
## cMajUndeclared -0.0800524 0.2693843 -0.297 0.766445
## hous.coh.term.flgOn-Campus Housing -0.0613837 0.1248750 -0.492 0.623215
## delay.from.hs 0.1497663 0.0376607 3.977 7.87e-05 ***
## sac.county.flg1 -0.1025577 0.1086385 -0.944 0.345548
## prevPASS -0.0261742 0.0910270 -0.288 0.773799
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1.264761)
##
## Null deviance: 1275.90 on 608 degrees of freedom
## Residual deviance: 734.83 on 581 degrees of freedom
## AIC: 1900.6
##
## Number of Fisher Scoring iterations: 2
# Predict values for both non-PAL and PAL groups
bio22.final$prog.score <- predict(ctrl.fit, bio22.final)
# Compare the standardized mean differences of the prognostic scores in the non-PAL and PAL groups
# p.score is at the bottom of the table
prog.bal <-bal.tab(match.bio22, formula = f.build("palN", bio22.covs), data = bio22.final, distance = bio22.final["prog.score"], sd.denom = "treated", addl = "p.score", thresholds = c(m = .1))
prog.bal
## Balance Measures
## Type Diff.Adj M.Threshold
## prog.score Distance -0.0171 Balanced, <0.1
## cum.percent.units.passed Contin. -0.0951 Balanced, <0.1
## eth.erss_African American Binary -0.0051 Balanced, <0.1
## eth.erss_Asian Binary -0.0483 Balanced, <0.1
## eth.erss_Foreign Binary -0.0005 Balanced, <0.1
## eth.erss_Hispanic Binary 0.0484 Balanced, <0.1
## eth.erss_Pacific Islander Binary 0.0036 Balanced, <0.1
## eth.erss_Two or More Races Binary -0.0074 Balanced, <0.1
## eth.erss_Unknown Binary -0.0020 Balanced, <0.1
## eth.erss_White Binary 0.0114 Balanced, <0.1
## gender_Male Binary -0.0130 Balanced, <0.1
## sat.math.score Contin. -0.0872 Balanced, <0.1
## sat.verbal.score Contin. -0.0737 Balanced, <0.1
## sat.math.flg_old Binary 0.0209 Balanced, <0.1
## AP_CALAB Contin. 0.0100 Balanced, <0.1
## AP_CALAB.flg_Not Missing Binary -0.0307 Balanced, <0.1
## term.units.attemptedCensus Contin. -0.0903 Balanced, <0.1
## csus.gpa.start Contin. 0.0140 Balanced, <0.1
## prevPAL Contin. -0.0130 Balanced, <0.1
## cMaj_Biology Binary 0.0014 Balanced, <0.1
## cMaj_Chemistry Binary 0.0042 Balanced, <0.1
## cMaj_Child Devel/Early Childhood Ed Binary 0.0015 Balanced, <0.1
## cMaj_Kinesiology/Physical Education Binary 0.0170 Balanced, <0.1
## cMaj_Nursing Binary -0.0276 Balanced, <0.1
## cMaj_OTHER Binary -0.0005 Balanced, <0.1
## cMaj_Undeclared Binary 0.0038 Balanced, <0.1
## hous.coh.term.flg_On-Campus Housing Binary -0.0161 Balanced, <0.1
## delay.from.hs Contin. 0.0104 Balanced, <0.1
## sac.county.flg Binary 0.0094 Balanced, <0.1
## prevPASS Contin. 0.0303 Balanced, <0.1
## p.score Contin. -0.0001 Balanced, <0.1
##
## Balance tally for mean differences
## count
## Balanced, <0.1 31
## Not Balanced, >0.1 0
##
## Variable with the greatest mean difference
## Variable Diff.Adj M.Threshold
## cum.percent.units.passed -0.0951 Balanced, <0.1
##
## Sample sizes
## Control Treated
## All 609. 328
## Matched (ESS) 169.3 326
## Matched (Unweighted) 332. 326
## Unmatched 277. 0
## Discarded 0. 2
The estimated increase in the mean grade of students in PAL over those not in PAL after correcting for self-selection biases is 0.5987 . This result is statistically significant with a P-value of \(2.556x10^{-6}\) and is based on 326 PAL students and 523 non-PAL student matches(332 total non-PAL students). Note this P-value is for a two-tailed test, but it will be corrected to a one-tailed test (halves the P-value) in the final table output summarizing the effect of PAL across chemistry courses.
summary(match.bio22)
##
## Estimate... 0.5987
## AI SE...... 0.12728
## T-stat..... 4.7036
## p.val...... 2.556e-06
##
## Original number of observations.............. 937
## Original number of treated obs............... 328
## Matched number of observations............... 326
## Matched number of observations (unweighted). 523
##
## Caliper (SDs)........................................ 0.25
## Number of obs dropped by 'exact' or 'caliper' 2
psens(match.bio22, Gamma=2.0, GammaInc = 0.1)
##
## Rosenbaum Sensitivity Test for Wilcoxon Signed Rank P-Value
##
## Unconfounded estimate .... 0
##
## Gamma Lower bound Upper bound
## 1.0 0 0.0000
## 1.1 0 0.0000
## 1.2 0 0.0001
## 1.3 0 0.0010
## 1.4 0 0.0078
## 1.5 0 0.0363
## 1.6 0 0.1123
## 1.7 0 0.2517
## 1.8 0 0.4380
## 1.9 0 0.6290
## 2.0 0 0.7852
##
## Note: Gamma is Odds of Differential Assignment To
## Treatment Due to Unobserved Factors
##
Note that in the above table \(\Gamma=1.6\) in the first column is the first row where 0.05 is between the Lower and Upper bounds. This means that an unknown confounder which increases the odds of being in PAL by more than 1.6 is enough to change the treatment effect from significant to non-significant. The next code block generates the effect on the odds ratio of each variable in the propensity score. Thus, if there is an unknown confounder that has an effect on the propensity score similar to “cMaj” or “csus.gpa.start” the PAL effect would become non-significant. Thus, this finding is sensitive to unknown confounders. It is possible a variable like the number of hours per week a student works which is not in our dataset is a confounder which could reverse the statistical significance of this analysis.
kable(sort(exp(abs(bio22.first.order.prop.model$coefficients))))
x | |
---|---|
sat.math.score | 1.000640 |
sat.verbal.score | 1.002151 |
eth.erssHispanic | 1.060104 |
AP_CALAB.flgNot Missing | 1.084602 |
eth.erssUnknown | 1.140201 |
term.units.attemptedCensus | 1.152535 |
delay.from.hs | 1.154547 |
cMajOTHER | 1.219164 |
prevPASS | 1.241804 |
cMajChemistry | 1.243820 |
genderMale | 1.332799 |
sac.county.flg1 | 1.358187 |
sat.math.flgold | 1.435618 |
prevPAL | 1.437757 |
(Intercept) | 1.458636 |
AP_CALAB | 1.460014 |
eth.erssWhite | 1.580549 |
eth.erssAsian | 1.589501 |
cMajChild Devel/Early Childhood Ed | 1.619797 |
cMajUndeclared | 1.627665 |
eth.erssTwo or More Races | 1.676715 |
csus.gpa.start | 1.719944 |
hous.coh.term.flgOn-Campus Housing | 1.769760 |
eth.erssForeign | 1.852737 |
cMajKinesiology/Physical Education | 2.311386 |
eth.erssPacific Islander | 2.714234 |
cum.percent.units.passed | 2.951287 |
cMajNursing | 4.477056 |
Course | Non-PAL | PAL | Diff. | Std. error | p-val | Sensitivity | N(non-PAL) | N(PAL) |
---|---|---|---|---|---|---|---|---|
BIO 22 | 1.71 | 2.31 | 0.6 | 0.13 | 1.28e-06 | 1.6 | 332 | 326 |
Greifer, Noah. 2020. Cobalt: Covariate Balance Tables and Plots. https://CRAN.R-project.org/package=cobalt.
Leite, W. L. 2017. Practical Propensity Score Methods Using R. Thousand Oaks, CA: Sage Publishing. https://osf.io/nygb5/.
Sekhon, Jasjeet S. 2011. “Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching Package for R.” Journal of Statistical Software 42 (7): 1–52. http://www.jstatsoft.org/v42/i07/.
Yoshida, Kazuki, and Alexander Bartel. 2020. Tableone: Create ’Table 1’ to Describe Baseline Characteristics with or Without Propensity Score Weights. https://CRAN.R-project.org/package=tableone.
Zhang, Z., H. J. Kim, G. Lonjon, Y. Zhu, and written on behalf of AME Big-Data Clinical Trial Collaborative Group. 2019. “Balance Diagnostics After Propensity Score Matching.” Annals of Translational Medicine 7 (1): 16. https://doi.org/10.21037/atm.2018.12.10.